
BIP2 Documentation
Release 2015.04 (RC7)

VERIMAG

April 30, 2015

CONTENTS

1 Introduction 3
1.1 Conventions used in this documentation . 3

2 The BIP2 Language 5
2.1 Introduction . 5
2.2 Quick overview of the language . 6
2.3 Execution sequences . 24

3 Compiler and Engines presentation 27
3.1 The compiler . 27
3.2 The engines . 29
3.3 The interactions between the engines and the compiler . 29

4 Installing & using the BIP compiler 31
4.1 Requirements . 31
4.2 Downloading & installing . 31
4.3 Front-end checks for BIP model correctness . 33
4.4 Using middle-ends (aka. filters) . 35
4.5 Using back-ends (code generators) . 36

5 More about C++ code generator 39
5.1 Presentation & prerequisites . 39
5.2 Usage . 39
5.3 Interface BIP/C++ . 40
5.4 Parameters . 43
5.5 Optimisation . 43
5.6 Debugging . 44
5.7 Annotations . 44
5.8 What you should never do . 45
5.9 Troubleshooting . 48

6 Installing & using available engines 51
6.1 Requirements . 51
6.2 Downloading & installing . 51
6.3 Using the reference engine . 52
6.4 Using the optimized engine . 56
6.5 Using the multithread engine (beta version) . 56
6.6 Troubleshooting . 57

7 Tutorial 59
7.1 Hello world . 59

i

7.2 Synchronizing components using interactions of BIP2 . 60
7.3 Hierarchy in BIP2 . 65
7.4 Petri nets . 71
7.5 Priorities . 72
7.6 Using the C++ back-end . 80

8 BIP 2 Grammar 91

9 Developer reference for Compiler 101
9.1 Compiler design . 101
9.2 Generalities . 102
9.3 Front-end . 104
9.4 Common . 109
9.5 Middle-end . 109
9.6 Back-end . 110
9.7 C++ back-end . 111
9.8 Tutorial . 113

10 Developper reference for building and packaging 117
10.1 Building a distribution . 117
10.2 Publishing a distribution . 119
10.3 Things to keep in mind . 120

11 Indices and tables 121

Index 123

ii

BIP2 Documentation, Release 2015.04 (RC7)

Contents:

CONTENTS 1

BIP2 Documentation, Release 2015.04 (RC7)

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This document starts by introducing the main concepts of the BIP2 language: types, semantics and of course its syntax
(see The BIP2 Language). Then, it presents tools used to compile and execute BIP2 programs. The compiler and the
engine: their installations and basic usage. As the main use cases involve the generation of C++ code, a dedicated
part explains more deeply how to use the C++ code generator of BIP2 (see More about C++ code generator). A
step-by-step tutorial shows how to use the main features of the BIP2 language (see Tutorial). Finally, the full language
syntax is included as a reference (see BIP 2 Grammar).

1.1 Conventions used in this documentation

1.1.1 Shell commands

Shell command are preceded by ‘$‘:

$ cd /etc/

When a command needs to be executed from within a given directory, this directory is mentioned before the $:

/home/bla/ $ mkdir toto

If a command line is too long, the line is cut by escaping the line ending character:

$./bla --this --is="a very long" --command \
--line \
--that --is --cut=twice

3

BIP2 Documentation, Release 2015.04 (RC7)

4 Chapter 1. Introduction

CHAPTER

TWO

THE BIP2 LANGUAGE

2.1 Introduction

Figure 2.1: The three-layered BIP2 representation.

BIP2 (Behavior, Interaction, Priority version 2) is a component-based language for modeling and programming com-
plex systems. In BIP2, a system is represented by:

• the behavior specified by a set of components

• a set of interactions which defines the possible synchronizations and communications between the components;
they are structured in connectors that corresponds to subset of interactions (see Connectors)

• a set of priorities used for resolving conflicts between interactions or for defining interaction schedule policies
(see Priorities).

With behavior, interactions and priorities we can build hierarchies of complex components called compound compo-
nents or compounds for short. A compound component is composed of a set of components, connectors and priorities
(see Compounds). Atomic components, or atoms for short, are the simplest component type (i.e. non hierarchical)
whose behavior is expressed by automata or Petri nets (see Atoms).

In the following, we use the term component to refer to either an atomic or a compound component. The ports
and variables accessible to other components and connectors define the component interface. Ports are used for
component communication in a synchronized manner. Variables store information accessible to priority and transition
guard expressions to resolve conflicts and non-determinism.

The BIP2 compiler processes an input file that contains a package declaration. In the processed file, a compound
component, called model, describes the system we want to simulate, analyze, verify or just execute.

5

BIP2 Documentation, Release 2015.04 (RC7)

2.2 Quick overview of the language

2.2.1 Preliminary notations

In the following sections we describe the main features of the BIP2 language. The language syntax is expressed by a
set of derivation rules that observe the following conventions:

• a rule begins with a name followed by the symbol ‘:=‘ and one or more terminal and non-terminal rules, e.g.:
non_term := ’term’ sub_non_term

• terminal elements are enclosed in ‘‘‘’‘‘’, e.g.: ’terminal’

Identifiers are used in many contexts to denote package names (package_name), variables (variable_name)
etc. In reality, those constructs are expressed by one rule in the grammar, but for readability we refer to them with a
descriptive rule synonym. You can find the full grammar in BIP 2 Grammar.

Examples of rules

sample_rule :=
’some text’ another_rule ’some ending text’

another_rule :=
’foo bar terminal’

2.2.2 Annotations

Annotations offer a mechanism for defining information that are used by tools other then the compiler. The compiler
examines the syntax of annotation directives but their content is ignored. BIP2 statements that accept annotations are
noted by the following notation:

• accepts annotations

The syntax for the annotations is given below.

Syntax

annotation :=
’@’ annotation_name [’(’ annotation_parameter (’,’ annotation_parameter)* ’)’]

annotation_parameter :=
annotation_key

| annotation_key ’=’ annotation_value
| annotation_key ’=’ ’"’ annotation_string_value ’"’

Example

@cpp(foo=bar, obj="foo.o,bar.o")
atom type MyAtom(int x)
...

end

6 Chapter 2. The BIP2 Language

BIP2 Documentation, Release 2015.04 (RC7)

2.2.3 Packages

A package is a unit of compilation contained in a single file. It may include other packages with the use directive. In
BIP2, a package may contain:

• constant data (see Variables and data types)

• external data types (see Variables and data types)

• external functions (see Variables and data types)

• external operators (see Actions)

• port types (see Port types)

• atom types (see Atoms)

• connector types (see Connectors)

• compound types (see Compounds)

Constants are referenced in type definitions or in the initialization of other constant data. Constant data are visible
only within the package that defines them.

Important: BIP2 permits the declaration of type names used for simple type checking but doesn’t support type
definitions (classes, structures, etc.). It’s the responsibility of the back-ends to really interpret the types (for example,
the C++ back-end will map these types to C++ types directly).

Important: To refer to types declared in other packages, prefix the type name with the name of the package where it
is declared (e.g. some.pack.name.SomeAtomType)

Syntax

• accepts annotations

package_definition :=
’package’ package_name

(’use’ package_name)*

data_type*
(extern_function | extern_operator)*
bip_type+

’end’

data_type :=
’extern data type’ type_name

[’refine’ type_name (’,’ type_name)*]
[’as’ ’"’ backend_name ’"’]

extern_function :=
’extern function’ [type_name] function_name ’(’ [type_name (’,’ type_name)*] ’)’

extern_operator :=
’extern oprator’ [type_name] operator ’(’ [type_name (’,’ type_name)*] ’)’

2.2. Quick overview of the language 7

BIP2 Documentation, Release 2015.04 (RC7)

Example

package SomePackage
const data int my_const_int = 42

extern data type my_list

extern function int min(int, int)
extern function printf(string)
extern function display(my_list)
extern function int get(int i, my_list)

port type Port_t()
port type Port_t2(int i, my_list l)

end

2.2.4 Variables and data types

In BIP2, variables are used to store data values. Their declaration consists of a (data) type and a name. For example:

data int x

declares a variable named x of type int. The keyword data is ommited in the declaration of parameters of BIP2
types (i.e. port types, atom types, connector types, and compound types). Constant variables can also be declared in
packages using the keyword const data and the initialization operator =. For example:

const data float Pi = 3.1415926

at the beginning of a package declares a constant named Pi of type float with value 3.1415926.

Important: The constant variables of packages are the only ones that can (and must) be initialized when declared.
Other types of variables should be initialized after their declaration.

Types of variables are either native or external. Native types are known to the BIP2 compiler and are part of the
language. Currently, the supported native types are:

• bool for boolean values false and true

• int for integers (e.g. -100, 0, 32)

• float for floating-point numbers (e.g. 2.7182818)

• string for sequences of characters (e.g. "My name is BIP2\n").

Notice that the type int is considered by the compiler as a sub-type of float regarding compatibility of types,
which means each time the type float is accepted, the type int is also accepted.

Important: The exact encoding (number of bits, range) of the native data types is not specified by the semantics of
BIP2. Currently, the specialization is done in the back-ends. Typically, native data types are mapped to the usual types
of the target language, e.g. when using the C++ back-end the native types of bool, int, float, and string are
mapped respectively to the C++ types bool, int, double, and std::string.

Notice that constant variables of packages, as well as parameters of components, can be only of a native type.

Besides the predefined native types, additional types can be declared with the keyword extern. These types are
supposed to be externally defined and present when compiling the generated code. For instance, when using the C++
backend all the external types should be defined in additional C++ files included in the compilation process of the
generated code. An example of declaration of an external type named IntList can be found below.

8 Chapter 2. The BIP2 Language

BIP2 Documentation, Release 2015.04 (RC7)

extern data type IntList refine List as "std::list<int>"

This declaration states that IntList is a valid type name. It also specifies that IntList is a sub-type of the
(external) type List, and that IntList should be translated into std::list<int> by code generators (e.g. in
this example we target C++ code generation). Code generators use the name of the type (in this example IntList)
if the instruction as is not provided, e.g. when using the following declaration code generators will not translate
IntList and use its name directly in the generated code.

extern data type IntList refine List

Important: Without any additional declation, the compiler assumes that no operation can be performed on external
types except assignments (using =). This means that assignments of external types should be implemented in the
generated code, e.g. by additional files included in the compilation process.

As for external types, BIP2 allows the declaration of external function prototypes that are assumed to be externally
defined and present when compiling the generated code. The declaration of an external function consists of an optional
return type name, a function name, and a list of types names for the arguments of the function. For example:

extern function int rand()
extern function printf(string)
extern function int getElement(int, IntList)

declares prototypes for:

• the external function rand having no argument and returning an int

• the external function printf that takes a string as argument and have no returned value

• the external function getElement that takes an int and an IntList as arguments, and returns an int.

Important: External function prototypes may involved external data types (that must be declared properly obviously).
There are no specific restrictions in the declaration of prototypes concerning overloading: different prototypes may
have the same function name even if they have the same number of arguments and/or different return types. This may
trigger errors when compiling expressions involving calls to external functions, as explained in Actions.

2.2.5 Actions

Actions define computations and data transformations. In the constant context, expressions should not have side
effects. Notice that the compiler is unable to check whether an external function involved in a constant context has
side effects. It is the user’s responsibility to ensure the absence of side effects in such context. In the non-constant
context any computation is allowed. There are also mixed contexts where some data can be changed while others can’t
(see Connectors). Whenever possible, the compiler will restrict the possible actions to enforce the “const-ness”.

Computations and data transformations in actions are expressed by C-like syntax statements and expressions. State-
ments are assignments, function calls and conditional if-then-else constructs. Notice that the language has no
support for loops. Expressions involved in statements can combine values using comparison operators, arithmetics
operators, boolean operators, and function calls (with returned values). As usual, parenthesis (and) may be used to
group expressions and enforce a specific evaluation order. Multiple statements in an action are enclosed in brackets
while individual statements are separated by ;. The following operators can be used for native types.

Comparison operators can be used to compare two values of the same native type and return a value of type bool.
In addition we also allow the comparison of int to float and float to int. The list of comparison operators is
provided as follows.

• == : equality

• != : inequality

2.2. Quick overview of the language 9

BIP2 Documentation, Release 2015.04 (RC7)

• < : less than

• > : greater than

• <= : less or equal than

• >= : greater or equal than

Arithmetic operators provided below can only be applied to numbers, i.e. int and float data types. They return a
value of type int if all the arguments are of type int. They return a value of type float otherwise.

• / : division

• % : modulo

• + : addition or positive sign

• - : subtraction or negative sign

• * : multiplication

Logical boolean operators apply to boolean values only (of type bool), and return boolean values:

• && : logical and

• || : logical or

Boolean bitwise operators apply to int only, and return int:

• & : bitwise and

• | : bitwise or

• ^ : bitwise exclusive or

• ~ : bitwise not

• ! : logical not

The assignment operator may assign a value to a variable provided that the type of this value is compatible with the
type of the variable, that is, if it is of the same type or if it is of a sub-type. Notice that in contrast to previous operators,
by default the assignment operator applies also to external types.

• = : assignment

Important: The exact behavior data types and corresponding operations is not specified by the semantics (e.g.
min/max ranges of integer and floating point types, behavior of overflows, etc.). Currently, the specialization is done
in the back-ends (usually by mapping directly BIP2 types and operations to usual types and operations of the target
language).

In addition to the predefined operators, external functions can be call provided their prototype is declared, as explained
in Variables and data types. We say that a function call matches a prototype if it has the same function name and
the same number of arguments, and if its arguments are compatible with the ones of the prototype. We say that a
prototype is strictly more precise than another prototype if it has compatible arguments with at least one being a strict
sub-type. For example in the following the first prototype is strictly more precise than the third prototype, whereas it
is not comparable with the second prototype:

extern function float min(float, int)
extern function float min(int, float)
extern function int min(int, int)

A function call will not compile if one of the following assertions apply:

• it does not match any declared external function prototype (“no match prototype” error)

10 Chapter 2. The BIP2 Language

BIP2 Documentation, Release 2015.04 (RC7)

• it matches at least two prototypes without one beging strictly more precise than the other one (“ambiguous
function call” error)

• the return type of the most precise matching prototype is not compatible with the rest of the expression in which
the function is called (“incorrect type” error)

• the most precise matching prototype has no return type and the function call is involved in an expression (“no
return value” error).

Considering that the prototypes for min are restricted to the following:

extern function float min(float, int)
extern function float min(int, float)

then the statement x = min(0, 0); will lead to a compilation error such as:

[SEVERE] In /path/to/file/my_bip_file.bip:
Ambiguous function call ’min’ with parameter(s) of type(s) ’int, int’: cannot decide
between ’float min(float, int), float min(int, float)’ :

38:
39: x = min(0, 0);

--------------------^
40:
41:

Similarly to external functions, external operators can be declared by using extern operator followed a return
type, the target operator (instead of the function name) and its arguments, e.g.:

extern operator string +(string, string)

These declarations should always include a return type, and are limited to the number of arguments a given operator
has in the language for native types. For example, in the following code the first two declarations are not permitted
whereas the last two ones are accepted:

extern operator Complex *(Complex) // not valid: missing argument - ERROR!
extern operator *(Complex, Complex) // not valid: missing return type - ERROR!
extern operator Complex *(Complex, Complex) // OK
extern operator Complex *(float, Complex) // OK

Notice that declarations of external comparison operators (==, !=, <, >, <=, >=) are not forced to return boolean
values, but for readability of the code we recommend to avoid such practice. Similarly, logical operators (!, ||, &&)
may be redefined for non boolean values, but again we strongly recommend not doing it:

extern operator int ==(IntList, IntList) // allowed but not recommended!
extern operator IntList ||(IntList, IntList) // allowed but not recommended!

Example

{
a = a * (2 + b);
g(d);
b = f(a);

}

In a constant context, an action contains a single expressions enclosed in parenthesis that must evaluate to a boolean
value.

Important: Depending on the locations of the actions, the data reference can take different forms. For example,

2.2. Quick overview of the language 11

BIP2 Documentation, Release 2015.04 (RC7)

in Atoms, the data can be directly referenced by its declaration name whereas a connector action referencing a data
within a port must use a dotted notation (e.g. port_name.data_name).

There is currently only one control flow operation: if-then-else with the following syntax:

if (boolean_condition) then
statement1;

else
statement2;

fi

The else part is optional and may be omitted. The expression boolean_condition must evaluate to a boolean
value.

2.2.6 Port types

Ports are used to synchronize component and convey information in a synchronized manner between the components
of a model. The transferred information is accessible via the variables associated with the port. Port types are declared
with the port type keyword followed by the port type name and a possibly empty list of accessible variables. The
following example declares a port with type port_t which can access integer values from the x variable:

port type port_t(int x)

Syntax

• accepts annotations

port_type_definition :=
’port type’ (package_name ’.’)? port_type_name
’(’ data_param_declaration (’,’ data_param_declaration)* ’)’

2.2.7 Atoms

Atoms are the simplest components with a behavior described by an automaton or a Petri net extended with data. An
atom type is declared with the atom type directive which contains:

• a possibly empty list of variables for storing data. Data declarations may be exported to become accessible to
priorities.

• an optional list of port declarations that may reference variables. Exported ports are accessible to connectors.

• an automaton or a Petri net that defines the behavior of the atom. The behavior is described by a set of transitions
that change the state of the atom in reaction to enabled ports.

Data types and variables

In BIP2, (data) variables are used to store data. A declaration of a variable is data keyword. For example:

data int x

declares an integer variable named x.

Variables exported with the export directive can be used in guards of compound component priorities (see Com-
pounds).

12 Chapter 2. The BIP2 Language

BIP2 Documentation, Release 2015.04 (RC7)

Ports

Atoms have ports declared with the port directive that consists of a type, a name and an optional list of previously
declared variables. It is an error if the types of the previously declared variables do not match the type of the corre-
sponding port parameters. Implicit type casting is not permitted. For example, if a previously declared parameter is of
type float, a port parameter of type int is not allowed. In the following code excerpt, three variables named a, b
and c are associated with the three parameters of the port with type Port_t:

port type Port_t(int x, float y, some_type z)

atom type SomeType()
data int a
data float b
data some_type c

port Port_t p(a, b, c)
...

end

Ports can be exported with the export directive and become accessible to other model components. Exported ports
can be accessed individually in the component interface (see Figure 2.2) or merged into one port (see Figure 2.3). In
the later case, they must accept the same number and types of parameters. The merged port provides access to all
variables of the individual ports.

Figure 2.2: Ports p, q and r are individually exported.

In BIP2, ports p, q and r are individually exported using the following statement:

export port port_t p(x), q(y), r(z)

Figure 2.3: Ports p, q and r are merged and exported as the port exp.

To merge and export ports p, q and r as a single port exp we use the keyword as:

2.2. Quick overview of the language 13

BIP2 Documentation, Release 2015.04 (RC7)

export port port_t p(x), q(y), r(z) as exp

Petri net

Petri nets implement the behavior of atoms. They consist of places and transitions. Places are used to store the current
control location of the atom given by a marking of the places, that is, a boolean function associating true to the marked
places. Places are declared in an atom using the keyword places followed by a list of place names, e.g. the following
code declares the places named START, SYNC and END:

places START, SYNC, END

Transitions change the current state of an atom and invoke associated actions that may alter the values of atom vari-
ables. A transition specifies:

• The set of triggering places that are required to be all marked at the current state for the transition to occur. They
are declared using the keyword from.

• The set of target places that are marked after its execution. They are declared using the keyword to.

• A boolean condition on values of (local) variables that must be fulfilled at the current state for the transition to
occur. This condition, called guard, is declared using the keyword provided. If no expression is provided,
the guard places no restrictions on the transition.

• An optional block of code after the do keyword that is evaluated when the transition occurs.

A transition of an atom is enabled if:

• it is enabled by the marking, that is, all its triggering places are marked at the current state and

• the associated guard evaluates to true or there is no guard associated with the transition.

Important: Notice that in BIP2 we target 1-safe Petri nets where the target places of an enabled transition are never
marked. This property for a Petri net of an atom is checked both at compile time and at run time, and leads to an error
if violated. Notice that since automata are a sub-case of 1-safe Petri nets, they can be used to define the behavior of
atoms. In automata, each transition has at most one triggering place and one target place.

We distinguish three types of transitions:

• The initial transition is responsible for initializing the marked places and atom variables. It is a mandatory
transition executed once during the model initialization. It has no triggering places and no associated guard.
Moreover, the initial transition can not be observed by other components nor synchronized with their transitions.
For example, the following code fragment specifies the initial transition of an atom that marks the place START
and initializes the variables x and y:

initial to START do { x=0; y=0; }

• Internal transitions are invisible to other components and take precedence over other observable transitions.
Their execution depends on the current state and associated guards. Internal transitions are declared using the
keyword internal, e.g. the following specifies an internal transition enabled in the START place that sets the
current state to the SYNC place restricted by an associated guard:

internal from START to SYNC provided (x!=0) do { x=f(); }

• Transitions labeled by internal port names are visible to other components. A transition labeled by an internal
port that is exported can be synchronized with transitions of other components using connectors (see _language-
connector-label). Such transitions are declared in atoms using the keyword on, e.g. the following specifies a
transition labeled by the internal port s, that changes the current state from SYNC to END:

14 Chapter 2. The BIP2 Language

BIP2 Documentation, Release 2015.04 (RC7)

on s from SYNC to END

The following figure gives an example of execution sequence of transitions in an atom A in which the initial transition
is followed by the execution of an internal transition, then a transition labeled by port p is executed followed by the
execution of two internal transitions, and finally a transition labeled by port q is executed leading to a state in which
no transition is enabled. Notice that the only visible states of A are the ones preceding the executions of p and q and
the final state, the other intermediate states are invisible.

Figure 2.4: Sequence of internal and visible transitions in an atom.

Important: Only one internal transition is enabled at any time since non-determinism is not allowed for internal
transitions of atoms. Similarly, two transitions labeled by the same internal port name must not be enabled at the same
time.

Priorities

Priorities are used to resolve conflicts or to define an ordering between transitions labelled by ports: the selected
transition corresponds to the port with highest priority. They may also include a boolean expression called guard that
specifies the conditions when it is applicable. Priorities do not apply to the initial and internal transitions. In the
following example, port q has higher priority than p provided that variable x equals to zero.:

priority myPrio p < q provided (x==0)

The transitive closure of such priorities defined in an atom is a partial order relationship among ports and associated
transitions. A port q has higher priority than p if there is a priority rule specifying p < q whose guard evaluates to
true, or there are ports p1, p2, ..., pN such as p < p1 < p2 < ... < pN < q such that all their corresponding
guards evaluates to true. Notice that it is not required for ports p1 to pN to be enabled. An enabled transition is maximal
if it has the highest priority.

Important: Inconsistencies in priorities (e.g. a < b < c < a) are detected and reported. If the priorities do not
include guards, the checks are performed at compile time. Guard expressions can not be evaluated during the model
compilation so in this case priority validation is postponed until run time.

Enabled ports of atoms

An internal port is enabled if it triggers an enabled transition for the current atom state. The port is maximal if its
corresponding enabled transition is maximal. An exported maximal port is also enabled at the interface level. When
several maximal internal ports are exported through the same port (i.e. merged export), they are all visible to other
components that can interact with any of the internal ports through the interface. Consequently, if an internal port
references variables, the values accessible from the interface are the values of the enabled maximal internal ports.

The following figure illustrates an example of a merged port named exp that consists of three internal ports p, q and r
and each internal port references a variable (e.g. x, y and z). Port exp is enabled if at least one of the corresponding
ports is enabled. However, only the variables of the enabled internal ports are accessible from the interface. For

2.2. Quick overview of the language 15

BIP2 Documentation, Release 2015.04 (RC7)

example, if ports x and z are enabled, the associated u and w values are accessible from exp. On the other hand, if
only port y is enabled, the value associated with port exp is v. This means that when other components interact with
A through port exp, depending on which of the internal ports is enabled, they interact with port p using value u, or
with port q using value v, or with port r using value w.

Figure 2.5: Example of a port enabled by an atom and the corresponding values of its variable.

Example

atom type MyAtom(int P)
data int x

export data int y

port Port_t r(x), s(y)

places START, SYNC, END

initial to START do { x=P; y=0; }
internal from START to SYNC provided (x!=0) do { y=f(x); }
on r from START to SYNC do { y=x; }
on s from SYNC to END

end

The above block of BIP2 code gives an example of atom type MyAtom that accepts one integer parameter P, and
consists of two integer variables x and the exported variable y and two exported ports r and s. Three places, START,
SYNC, END, are the states of the automaton that defines the behavior of the atomic component. An initial transition
leads to START, an internal transition changes the state from START to SYNC, an other transition triggered by r does
the same and finally a transition triggered by s modifies the state from SYNC to END. A graphical representation of
MyAtom is provided below.

Since internal transitions have higher priority than port transitions, the transition of port r is executed only if the guard
of the internal transition does not hold, i.e. the value of variable x is zero.

Syntax

• accepts annotations

atom_type_definition :=
’atom type’ atom_type_name ’(’ [data_parameter (’,’ data_parameter)*] ’)’

([’export’] ’data’ data_type
data_declaration_name (’,’ data_declaration_name)*)*

16 Chapter 2. The BIP2 Language

BIP2 Documentation, Release 2015.04 (RC7)

([’export’] ’port’ port_type
port_name ’(’ data_declaration_name (’,’ data_declaration_name)*) ’)’
(’,’ port_name ’(’ data_declaration_name (’,’ data_declaration_name)*) ’)’)*
[’as’ port_name])*

’place’ place_name (’,’ place_name)*
’initial to’ place_name (’,’ place_name)* [’do’ actions]
((’on’ port_name | ’internal’)

’from’ place_name (’,’ place_name)*
’to’ place_name (’,’ place_name)*
[’provided’ ’(’ transition_guard ’)’])*
[’do’ actions]

atom_priority_declaration*
’end’

2.2.8 Connectors

Connectors are stateless entities that enable interactions among a set of components via their interface ports. Interac-
tions defined by a connector are strong synchronizations (i.e. a rendez-vous) of a subset of the connected components.
Interactions may also include data that are transferred between the components. A connector is hierarchical if it
connects ports exported by other connectors.

Connected ports

A connector type accepts a list of typed ports that correspond to the ports of the entities it connects (components or
other connectors). Connectors (i.e. instances of connector types) bind these parameters to actual ports of the same
type.

Important: Components or connectors must be connected at most once in a connector, that is, a component or a
connector must not be reachable from different connected ports.

Data variables

Connector types can define variables that are used for storing intermediate results of computations performed in trans-
fer functions associated with interactions. The temporary stored value is accessible only during the associated interac-
tion. The syntax is shown in the following example where we declare an integer variable named tmp:

2.2. Quick overview of the language 17

BIP2 Documentation, Release 2015.04 (RC7)

data int tmp

Exported port

A connector may export a single port that can be connected to other connector instances and form hierarchical con-
nectors, or it can be exported in the interface of compound components (see Compounds). A connector is top-level if
the exported port is not connected directly to another connector (i.e. it can be connected to other connectors only at
upper levels after being exported by the containing compound), or if it has no exported port. An exported port named
exp of type port_t, referencing a variable tmp, is declared in a connector type as follows:

export port port_t exp(tmp)

Defined interactions

Formally, an interaction of a connector type is a subset of its ports. A connector type explicitly define a set of permitted
interactions regardless of the status of the connected ports. The interactions are defined in terms of expressions
involving port names, according to the following grammar:

connector_port_expression :=
(sub_expression)+

sub_expression :=
(port_name | ’(’ connector_port_expression ’)’) [’’’]

That is, an expression is a list of either port names or nested expressions (expressions enclosed into parenthesis) that
can be optionally quoted. Quoted port names or nested expressions are called triggers, whereas unquoted ones are
synchrons.

An expression of the form p, where p is a port name, defines a single interaction ‘p‘. Interactions defined by an
expression of the form e’ are the ones defined by e. Interactions defined by an expression of the form e1 e2...eN
are computed recursively from the interactions defined by sub-expressions e1, e2, ..., eN, as explained as follows. An
interaction is defined by e1 e2...eN if both following rules apply:

• it can be written as a union of interactions defined by sub-expressions e1, e2, ..., eN

• it contains (at least) an interaction defined by a trigger sub-expression, or for each sub-expression eI,
I=0,...,N, it contains an interaction defined by eI.

In the following example we define one trigger sub-expression (p q), and two synchrons ports r and s:

define (p q)’ r s

Interactions permitted by such an expression are the ones containing (at least) both ports p and q, i.e. ‘p,q‘, ‘p,q,r‘,
‘p,q,s‘ and ‘p,q,r,s‘.

Guards and transfer functions

The set of defined interactions in a connector type can be further restricted by guards. Guards evaluate a boolean
expression that refers to variables of the ports involved in an interaction. The associated interaction is enabled only if
the guard evaluates to true.

Transfer functions are used for exchanging data between the components that participate in an interaction. They consist
of two instruction groups, the up and the down group.

The up instructions compute the values of the variables referenced by exported ports. Also, intermediate values used
in computations in the down section may be temporary stored in the connector’s variables. In the following example

18 Chapter 2. The BIP2 Language

BIP2 Documentation, Release 2015.04 (RC7)

we define a rendez-vous interaction between two ports where a temporary value is stored in the tmp variable. To
prevent division by zero, the interaction is disabled when the value of the y variable equals 0:

on p q provided (q.y != 0) up { tmp = p.x / q.y; }

The down instructions may update the values of the variables associated with the ports involved in an interaction.
Port variables are assigned with values computed from connector variables and variables of the exported port. In the
following example, the instructions swap the values of variables x and y of ports p and q:

on p q down { tmp = p.x; p.x = q.y; q.y = tmp; }

Notice that transfer functions up and down can be simultaneously defined for a connector interaction. up functions
correspond to data moving upwards in the connector and component hierarchy, that is, from values of variables of
the connected ports to the values of variables of the port exported by a connector. Once an interaction is chosen and
executed, down functions correspond to the downward flow of data, that is, from variables of the exported port to
variables of the connected ports.

Important: For a given interaction, the temporary values of connector variables when executing the down instruc-
tions are computed by the corresponding up instructions. However, these values are not accessible between different
executions of the same interaction or between the execution of the transfer functions of different interactions. They
are only stored between the execution of up and down instructions of the same interaction.

Example

connector type ConnectT(Port_t1 p, Port_t2 q, Port_t3 r)
data int tmp
export port Port_t exp(tmp)

define p’ q r

on p up { tmp = p.x; } down { p.x = tmp; }
on p q up { tmp = max(p.x, q.y); } down { p.x = tmp; q.y = tmp; }
on p r up { tmp = max(p.x, r.z); } down { p.x = tmp; r.z = tmp; }
on p q r up { tmp = max(p.x, p.x, r.z); } down { p.x = tmp; q.y = tmp; r.z = tmp; }

end

In the previous BIP2 code excerpt we provided a complete definition of a connector type named ConnectT that con-
nects three ports p, q and r. We have already seen in previous examples the enabled interactions and the computations
performed by the transfer functions. A noticeable difference is that variable tmp is accessible to other connectors that
interact with port exp. Hence, the value of tmp may differ from the computation performed by up since it may be
altered by the transfer functions of connectors connected to exp. A simplified graphical representation of ConnectT
is provided below.

Figure 2.6: Connector type example

2.2. Quick overview of the language 19

BIP2 Documentation, Release 2015.04 (RC7)

Enabled interactions and ports exported by connectors

The set of ports defined by an interaction is restricted at run time based on the status of the involved ports and the
evaluated guards. Let us consider an example of interaction involving ports p, q and r:

define p’ q r

Based on the definition above, the permitted interactions are (‘p‘, ‘p,q‘, ‘p,r‘ and ‘p,q,r‘). To determine which
of the combinations are valid in a model execution, we first remove all combinations that contain a disabled port and
then we evaluate the associated guards to further restrict the possible combinations.

An exported port of a connector is enabled if there is at least one enabled interaction. Notice that the value visible
at the interface through the exported port is derived by the set of values of ports participating in an interaction. The
values accessible from an enabled interaction are in turn computed by the instructions of the up transfer function.

The notions of enabled interactions and corresponding values of the variables of exported ports of connectors are
illustrated by the following example. Consider an instance C of the connector type ConnectT presented above.
Assume that ports p, q, r are enabled, and that variable x of port p has three possible values u1, u2, u3, variable y
of port q has three possible values v1, v2, v3, and variable z of port r has only a single value w. Then, interactions
‘p‘, ‘p,q‘, ‘p,r‘ and ‘p,q,r‘ are enabled. Moreover, there are 24 possible values for variable tmp of the exported
port exp, corresponding to the application of up to all combinations of values for the 4 enabled interactions:

• The values corresponding to interaction p are the values of x, that is, u1, u2 and u3.

• The values corresponding to interaction p,q are oIJ- = max(uI, vJ), such that I=1,2,3 and
J=1,2,3.

• The values corresponding to interaction p,r are oI-* = max(uI, w), such that I=1,2,3.

• The values corresponding to interaction p,q,r are oIJ* = max(uI, vJ, w), such that I=1,2,3 and
J=1,2,3.

Figure 2.7: Enabled interaction of a connector and the corresponding values of variable tmp.

Syntax

• accepts annotations

connector_type_definition :=
’connector type’ connector_type_name ’(’ port_parameter (’,’ port_parameter)* ’)’
(’data’ data_type data_declaration_name (’,’ data_declaration_name)*)*
[’export port’ port_type

port_name ’(’ data_param_declaration (’,’ data_param_declaration)* ’)’]
’define’ connector_port_expression
connector_interaction*

20 Chapter 2. The BIP2 Language

BIP2 Documentation, Release 2015.04 (RC7)

’end’

connector_interaction :=
’on’ (port_name)+
[’provided’ ’(’ connector_guard ’)’]
[’up’ ’{’ (statement ’;’)+ ’}’]
[’down’ ’{’ (statement ’;’)+ ’}’]

connector_port_expression :=
(port_name [’’’] | ’(’ connector_port_expression ’)’ [’’’])+

(a connector interaction must have at least one of ’up’, ’down’ or ’provided’)

2.2.9 Compounds

Compounds are composite components constructed by atomic components and other compound components. Just like
atomic components, compounds provide a set of ports at the interface level. In this sense, components are used in the
same way regardless of their structure (compounds or atomic). A compound type defines the following.

• a set of components, either atomic or compound, declared with the keyword component.

• a set of connectors declared with the keyword connector that connect the contained components.

• a set of priority rules declared with the keyword priority.

• a set of exported ports that define the interface of the compound declared with the keyword export.

Notice that a compound component can export ports of contained components as well as ports of connectors.

Priorities

Priorities are used to favor the execution of a subset of enabled interactions called the maximal interactions (see below
for a definition of maximal interactions). They can be used to resolve conflict between interactions or to express
particular scheduling policies.

Priorities of a compound, form a partial order relationship that corresponds to the transitive closure of the defined pri-
ority rules. One set of priority rules is automatically derived based on the maximal progress principle, i.e. interactions
that involve more connectors have higher priority.

User-defined priority rules are of the form I < J, where I and J are interactions of connectors expressed in one of
the following forms:

• C:A1.p1,A2.p2,...,AN.pN where C is a connector and A1.p1,A2.p2,...,AN.pN is a subset of the
connected ports that corresponds to a defined interaction of C.

• C:*, where C is a connector represents all the defined interactions of C.

• *:* represents all the defined interactions for all connectors.

Important: User-defined priority rules can only involve interactions of top-level connectors.

The use of * in priority rules is a shortcut for sets of rules. Notice that *:* cannot be used for both sides of a priority
rule, (e.g. *:* < *:* is not allowed). The use of *:* in one side of a priority rule is a shortcut for all interactions
defined in all connectors except those involved in the other side of the rule.

2.2. Quick overview of the language 21

BIP2 Documentation, Release 2015.04 (RC7)

User-defined priority rules may include guards declared with the provided keyword. A rule is enabled only if its
guard evaluates to true. In the following code excerpt we show a priority rule named myPrio that is enabled only if
the values of the x and y variables of the atomic components A and B are not the same:

compound type Compound_T()
component Atom_T A()
component Atom_T B()

connector RDV C(A.p,B.p)
connector RDV D(A.q,B.q)

priority myPrio provided (A.x != B.x) C:A.p,B.p < D:A.q,B.q
end

Important: Since priorities define a partial order relationship between interactions, priority rules enabled at a state
of a compound must not form a cycle.

An enabled interaction I of a connector C has lower priority than an enabled interaction J of a connector D if D is
reachable from I in the lattice of the defined priority rules, that is, if C:I < D:I is an enabled rule or if there exists
interactions C1:I1, ..., CN:IN such that rules C:I < C1:I1, C1:I1 < C2:I2, ..., CN-1:IN-1 < CN:IN,
CN:IN < D:J are enabled. An interaction is maximal if it has the highest priority among the enabled interactions.

Exported ports and variables

Compound types export ports and variables in a similar fashion with atoms . The following statement makes the x
variable accessible from the interface of the A component and renames it to y:

export A.x as y

Ports of components and connectors can be exported individually or through a single port using a merged export, in
the same way as atoms. To determine if a port of a compound component is enabled we check if the underlying port
(component or connector port) is enabled. If a port of a component is enabled and exported, then the corresponding port
at the interface is enabled. If a (maximal) interaction is enabled in a connector that exports its port to the interface of a
compound, then the interface port is enabled. Moreover, values visible at the interface are the values corresponding to
all its maximal interactions. As for atoms, for merged exported ports the union of the values is visible at the interface.

compound type Compound_t()
component Atom_t A(), B()
connector Connector_t C1(A.p, B.p)
connector Connector_t C2(A.q, B.q)

export C1.exp, A.r, B.r as s

priority myPrio C1:A.p,B.p < C2:*
end

In the above example, the port s of an instance of the compound type Compound_t is enabled if the connector C1
has a maximal interaction (i.e. if no interaction is enabled by C2), or if port r of A is enabled, or if port r of B is
enabled. Moreover, if these ports have variables, the values visible from s are the union of the values corresponding
to the maximal interactions of C1 and the values visible from ports r of A and B.

Example

compound type Compound_t()
component CompT1 K1()

22 Chapter 2. The BIP2 Language

BIP2 Documentation, Release 2015.04 (RC7)

component CompT2 K2()
component CompT3 K3()

connector BRDXP C(K1.p, K2.q)
connector RDVXP D(C.xp, K3.t)
connector RDV E(K2.q, K3.s)

export port C.xp as u
export port F.xp as v
export port K3.t as w

export data K3.x as x
end

The above example shows the syntax for defining a compound type Compound_t that consists of:

• the components K1, K2 and K3

• the connectors C, D and E, such that C and D are connected and form a hierarchical connector

• the exported ports xp of C and F and the exported port t of K3

• the exported variable x of K3.

A graphical representation of the compound type is provided below. Notice that all the enabled interactions of con-
nector C are visible from connector D through the port xp of C, e.g. if p and p,q are enabled, there are both visible
from D. Since priorities are applied when exporting ports to the interface of a compound, only maximal interactions of
C are visible from the interface port u though xp, e.g. if interaction p and p,q are enabled, only p,q is visible from
u due to the default priority rule of maximal progress: p < p,q. Notice also that a port can be connected to several
connectors (e.g. port q of K2), or can be exported and connected to connector(s) (e.g. ports xp of C and t of K3).

Figure 2.8: Example of a compound type.

Syntax

• accepts annotations

2.2. Quick overview of the language 23

BIP2 Documentation, Release 2015.04 (RC7)

compound_type :=
’compound type’ compound_type_name ’(’ [data_parameter (’,’ data_parameter)*] ’)’
component_declaration+
connector_declaration*
compound_priority_declaration*
inner_port_export*
inner_data_export*

’end’

inner_port_export :=
’export port’ port_reference (’,’ port_reference)* ’as’ exported_name

inner_data_export :=
’export data’ data_reference ’as’ exported_name

compound_priority_declaration :=
’priority’ priority_name

(’*:*’ | compound_interaction) ’<’ (’*:*’ | compound_interaction)
[’provided’ compound_priority_guard]

compound_interaction :=
connector_name ’:’ (’*’ | (port_reference (’,’ port_reference)*))

2.3 Execution sequences

A BIP2 model is equivalent to a labeled transition system (LTS) that defines all the allowed execution sequences. The
model state is stored in the state of atomic components represented by variable values and the marking of the Petri
nets. An execution sequence is a sequence of transitions or interactions that modify the global state. The transitions
and interactions that are available in a certain state are defined as follows.

• A transition of an atom A is executed from a state if it is enabled, is maximal and is not labeled by an exported
internal port.

• An interaction of a connector C is executed if it is enabled, is maximal and connector C does not export a port.

In a given state, only the non exported maximal transitions and interactions are allowed. During their execution, non
maximal exported transitions or interactions are executed according to the hierarchy of connectors in the model.

The execution of an enabled transition modifies the current state as follows:

• marking of Petri nets are modified according to the triggering and target places of transitions, i.e. marks are
removed from triggering places and are set in target places

• variables are modified by the code associated with the transition.

Important: If a place is both a triggering and a target place for a transition, its mark remains unchanged.

An interaction ‘p1,p2,...,pN‘ of a connector C, considering a particular combination of values for its ports,
modifies the model state as follows.

First, the instructions associated with the down transfer function are performed for the values of the involved ports
p1, ..., pN. Then, the state is modified according to the execution of ports p1, ..., pN.

• The execution of an atom port is equivalent to the corresponding transition.

• The execution of a compound port corresponds to the execution of the corresponding port.

• The execution of a connector port corresponds to the execution of the corresponding interaction.

24 Chapter 2. The BIP2 Language

BIP2 Documentation, Release 2015.04 (RC7)

Important: The execution of an interaction corresponds to the execution of at most one transition of each atom of
the model. Since atoms have disjoint sets of variables and places, the state of the model resulting from the execution
of an interaction is independent from the order of execution of the involved atoms.

2.3. Execution sequences 25

BIP2 Documentation, Release 2015.04 (RC7)

26 Chapter 2. The BIP2 Language

CHAPTER

THREE

COMPILER AND ENGINES PRESENTATION

3.1 The compiler

The compiler consists of three parts that will be presented in more details in the following sections:

• the front-end : it interacts with the user of the compiler. It reads user input and transforms it in a form suitable
for the following process (ie. internal representation).

• the middle-end : applies operations on the internal representation (eg. optimizations, architectural transfor-
mations, ...). One such operation is contained into a small block in the compiler that we will call filter later
on.

• the back-end : produces the final result from the internal representation. Usually in the form of a source code in
a programming language (eg. C++). Several back-ends can be used at once.

Figure 3.1: Overview of Compiler design

A typical compilation consists of the following steps:

• first, the front-end executes and creates a BIP-EMF model

• then the filters in the middle-end are executed in turn. The result is a possibly modified BIP-EMF model.

• finally, all back-ends are executed in turn. Their results are the compilation results.

3.1.1 The Front-End

This part is responsible for reading user input (ie. BIP source code & command line argument) and transforming it
into an intermediate representation that will be used throughout the other parts of the compiler. The current front-

27

BIP2 Documentation, Release 2015.04 (RC7)

end contains a parser for the BIP language and a BIP meta-model that describes the intermediate representation. An
instance of a BIP model represented in the BIP meta-model is called a BIP-EMF model (because it is a BIP model
expressed using the Eclipse Modeling Framework (EMF) technology) in the following text. For more details on the
internals, see Front-end.

Type model versus Instance model

The BIP language only deals with types. There is no support for running entities, even if the final result should be
a running system. This missing information is usually filled by specifying a root component at compile time. The
compiler (ie. the front-end) is then able to build both a type model (ie. a representation of the BIP source code given
as input) and an instance model that represents the system you want to run. The distinction between the two can be
subtle, especially when the concept of declaration is mixed in between:

• a component type describes the shape of an instance of that type

• a component declaration instructs the creation of an instance of a component type

• a component instance is a running entity

These notions are similar to class/instance/object declaration that can be found in object oriented language. For
example, in Java:

• a component type = a class:

public class MyClass { ... }

• a component (instance of a component type) = an object (instance of a class):

new MyClass();

• a component declaration = an object declaration:

MyClass m;

Beware that a component declaration can trigger the creation of more than one instance. A component declaration
usually is not a discriminant component identifier within the whole system.

3.1.2 The Middle-End

The middle-end hosts all the BIP to BIP transformations. It acts on the BIP-EMF model by means of operations (but
are not limited to):

• architectural modifications (eg. flattening, component injection, ...)

• petri net simplifications

• dead code removal

• data collection

The compiler currently does not have any such operation: the middle-end is empty. See Middle-end for more details.

3.1.3 The Back-End

The back-end gets the BIP-EMF model and is only allowed to read it and produce something, most probably some
source code in another language (eg. C, C++, Aseba, ...) or even in BIP. Currently, the main back-end used is the
C++ back-end that produces C++ code suitable for standard engine (see Installing & using available engines for the
definition of a standard engine).

28 Chapter 3. Compiler and Engines presentation

http://www.eclipse.org/emf

BIP2 Documentation, Release 2015.04 (RC7)

Several back-ends can be used at once; for example, you may need to get a BIP version of your input after some
optimizations have been applied along with its corresponding C++ version. Compiler design forbids back-ends to
interact (when there are several back-ends to execute, the compiler does not specify in which order they will be run or
if the executions will be in parallel or not).

3.2 The engines

An engine takes some representation of a BIP model and computes corresponding execution sequences according to
the BIP semantics. Usually, the representation used is a C++ software that is linked against the engine’s runtime to
create an executable software. Typically, engines target one or more of the following main goals:

• Execution of the model corresponds to the computation of a single execution sequence that is intended to be
executed on the target platform. In this case, the engine realizes the connection between the model and the
platform in order to ensure a correct behavior of the execution with respect to timing and input/output data
(through sensors/actuators).

• Simulation of the model corresponds to the computation of a single execution sequence that is intended to be
executed on the host machine for simulation purpose, that is, time is interpreted in a logical way.

• Exploration of the model corresponds to the computation of several execution sequences corresponding to mul-
tiple simulations of the model. Model-checking of the model requires a full coverage of the execution sequences
defined by the application of the semantics, but a partial coverage can be sufficient for validation or statistical
model-checking.

3.3 The interactions between the engines and the compiler

Typically, a back-end generates source code from a BIP model. This source code is then associated with a runtime,
called an engine, that is responsible for the correct execution of the BIP model with respect to the BIP semantics.

The generated source code could be seen as yet another representation of the BIP model (with nothing added to
the information contained in the BIP source code) suitable for a given engine (that implements the semantics of the
language).

3.2. The engines 29

BIP2 Documentation, Release 2015.04 (RC7)

30 Chapter 3. Compiler and Engines presentation

CHAPTER

FOUR

INSTALLING & USING THE BIP COMPILER

4.1 Requirements

BIP compiler is currently only tested on GNU/Linux systems. It is know to work correctly on Mac OSX, and probably
other Unices, but we do not support them currently.

Before installing the compiler, you must install:

• Java VM, version 6 (or above) for the core compiler. We have mainly used OpenJDK.

Tip: On GNU/Debian Linux and its derivative (eg. Ubuntu), you can install this dependency with:

$ apt-get install openjdk-6-jre

Warning: Theses instructions covers the installation of the compiler. The common usage involves the generation
of C++ code and need the use of an engine. The quick installation contains the engines. If you are not using the
quick installation procedure, see Installing & using available engines for engine installation instructions.

4.2 Downloading & installing

4.2.1 Getting latest version

Go to the download page for the BIP tools. You are offered two solutions to install the BIP compiler and engines:

• the first is easier and quicker but may not fit all systems. Compiler and engines are packaged in the same archive
and setup scripts are provided.

• separate archives for compiler & engines are also provided. The installation of the compiler using these archives
is explained in a second step.

Quick installation using self-contained archive

For using the quick installation, you need to download the bip-full_<ARCH>.tar.gz archive. Replace <ARCH>
with your own architecture (eg. i686). Then simply follow the following steps:

• create a directory where everything will be installed:

$ mkdir bip2

• extract the archive:

31

http://openjdk.java.net/
http://www-verimag.imag.fr/New-BIP-tools.html

BIP2 Documentation, Release 2015.04 (RC7)

$ cd bip2 ; tar zxvf /path/to/bip-full_i686.tar.gz
bip-full/
bip-full/BIP-reference-engine-2012.04_Linux-i686/
bip-full/BIP-reference-engine-2012.04_Linux-i686/include/
...

• setup the environement (works only in a bash shell):

$ cd bip-full
$ source ./setup.sh
Environment configured for engine: reference-engine

By default, setup.sh configure the installation for the reference engine. If you wish, you can also
select the optimized engine or the multithread engine by passing respectively optimized-engine or
multithread-engine to setup.sh, e.g. to select the optimized engine use:

$ cd bip-full
$ source ./setup.sh optimized-engine
Environment configured for engine: optimized-engine

Using separate archives for compiler

The archive name should resemble bipc_2012.01.tar.gz, the version number being dependent of the latest
version at the moment you are downloading it.

The compiler is a self-contained archive that you need to extract in a dedicated directory, for example
/home/a_user/local/bip2:

$ mkdir /home/a_user/local/bip2
$ cd /home/a_user/local/bip2
$ tar zxvf /path/to/the/bipc_2012.01.tar.gz
bipc-2012.01/
bipc-2012.01/lib/
bipc-2012.01/lib/org.eclipse.acceleo.common_3.2.0.v20111027-0537.jar
bipc-2012.01/lib/lpg.runtime.java_2.0.17.v201004271640.jar
...
bipc-2012.01/bin/
bipc-2012.01/bin/bipc.sh
...

Then, you need to add /home/a_user/local/bip2/bipc-2012.01/bin to your PATH environment vari-
able.

In bash:

$ export PATH=$PATH:/home/a_user/local/bip2/bipc-2012.01/bin

In tcsh:

$ setenv PATH ${PATH}:/home/a_user/local/bip2/bipc-2012.01/bin

4.2.2 Quick tour of installation

After installation, you should get something similar to the following setup:

32 Chapter 4. Installing & using the BIP compiler

BIP2 Documentation, Release 2015.04 (RC7)

.
÷-- bin
| ‘-- bipc.sh
‘-- lib

÷-- acceleo.standalone.compiler_1.0-20120102155443.jar
÷-- apache.tool.ant_1.8.0.jar
÷-- backends
| ÷-- ujf.verimag.bip.backend.aseba_1.0-20120102155513.jar
| ÷-- ujf.verimag.bip.backend.bip_1.0-20120102155537.jar
| ‘-- ujf.verimag.bip.backend.cpp_1.0-20120102155558.jar
÷-- com.google.collect_1.0.0.v201105210816.jar
÷-- filters
÷-- joptsimple_3.2.jar
÷-- lpg.runtime.java_2.0.17.v201004271640.jar
...

• the bin directory contains the compiler’s executables. Usually, there is only the bipc.sh script used to run
the compiler.

• the lib directory contains all java dependencies for the compiler. The sub-directory backends contains the
back-end installed with the compiler. The filters contains the filter composing the middle-end. All files
outside this sub-directory are libraries used by the compiler (EMF, eclipse runtime, command line parsing, ...)

4.3 Front-end checks for BIP model correctness

The compiler always checks if a given input is valid with respect to the language (eg. syntax is correct, presence of
cycles in priorities, correct data flow in up/down of connectors). These checks are applied to both models (type &
instance). The compiler may emit two kinds of messages:

• WARNING: a potential error has been detected, but the it may be a false positive because of runtime dependency.
Example of such warning is a cycle in priorities with at least one guarded priority: if the guard is false when all
rules apply, then there is no cycle. These message are preceded by [WARNING] by the compiler.

• ERROR: an error has been found and the compiler stops as soon as possible. The input is not correct. A cycle in
priority rules and writing to bound port’s of a connector during the up phase are examples of such errors. These
message are preceded by [SEVERE] by the compiler.

Tip: The compiler can treat warnings as errors and stop compilation when --Werr is used (very similar to regular
C/C++ compiler behavior regarding -Werr).

Sample output with a fatal error (the root declaration references a type that the compiler could not find):

$ bipc.sh -p ASamplePackage -d "ThisTypeDoesNotExists()" -I .
[SEVERE] Type not found : ThisTypeDoesNotExists

Sample output with a warning (there may be more than one internal transition from the same state, depending on the
guards):

$ bipc.sh -p ASamplePackage -d "SomeCompoundType()" -I .
[WARNING] In ASamplePackage.bip:
Transition from this state triggered by the same port (or internal) already exists :

19: on tic from S1 to S3 do { c = c + 1; tosend = tosend + 1; start = 1;}
20: internal from S3 to S2 provided (c <= 10)

----------^
21: internal from S3 to S1 provided (c > 10)
22: on toc from S2 to S1 provided (c < 10)

4.3. Front-end checks for BIP model correctness 33

BIP2 Documentation, Release 2015.04 (RC7)

When you run the compiler, you need to provide at least the following parameters:

• a package name to compile: -p followed by the package name. The package name must match the file name
that contains it (ie. package Sample must be stored in a file named Sample.bip)

• one or more package search directories. This list of directories is used by the compiler to look for the package to
compile (and the potential other packages that are needed because of dependencies): -I followed by a directory.
Use the parameter several times to use multiple directories. The compiler will use the first correct match when
searching (order is important).

By using only these two parameters, the compiler will load the types contained in the package (and its dependencies)
and check them for validity. Nothing is produced by default.

You can also create an instance model along with the type model by giving the compiler a component declaration
using a type from the loaded package:

• -d followed by a declaration (eg. -p ACompound(1,2)). Beware that it may be required to enclose the
declaration by ” ” in order to protect it from being interpreted by your shell.

Example execution of the compiler:

$ bipc.sh -p SamplePackage -I /home/a_user/my_bip_lib/ -d "MyType()"

4.3.1 Silencing warnings

Some warnings can be silenced. This is useful when you are 100% sure that the warning is not a problem in your
specific case. You must never silence a warning because you don’t understand its presence !

To suppress a warning, you need to attach a ‘’@SuppressWarning‘’ annotation on the element that triggers the warning
along with the type of warnings you want to silence. For example, in case of possible non-determinism in a petrinet:

on work from a to a provided (x == 1) do { Max = 0; }
on work from a to a provided (x > 1) do { Max = 0; }

The compiler will output

[WARNING] In bla.bip:
Transition from this state triggered by the same port (or internal) already exists :

108:
109: on work from a to a provided (x == 1) do { Max = 0; }

---------^
110: on work from a to a provided (x > 1) do { Max = 0; }
111:

You can silence this warning by adding annotations:

@SuppressWarning(nondeterminism)
on work from a to a provided (x == 1) do { Max = 0; }
@SuppressWarning(nondeterminism)
on work from a to a provided (x > 1) do { Max = 0; }

The list of possible warning to silence is given below:

• nondeterminism

• unboundcomponentport

• unboundconnectorport

• missingup

• atomprioritycycle

34 Chapter 4. Installing & using the BIP compiler

mailto:''@SuppressWarning

BIP2 Documentation, Release 2015.04 (RC7)

• compoundprioritycycle

• uselessdown

• nointeraction

• missinginteraction

• modifiedvariabletransition

• modifiedvariableinteraction

4.3.2 Hints on using package

A package named ‘’a.b.c.D” must be stored in a directory hierarchy ‘’a/b/c/D.bip’‘. Anything else will not work. If
you want to use packages located outside of your current working directoy, you must use the ‘’-I” parameter to add
the directories that contain them. For example:

• you are developping in ‘’/somewhere/myApp” a BIP package named ‘’Foo’‘

• you want to use the package ‘’my.other.package.Bar” located in ‘’/a/bip/repository” directory

Here’s the tree snapshot and the corresponding compiler command to use:
.
|-- a
| ‘-- bip
| ‘-- repository
| ‘-- my
| ‘-- other
| ‘-- package
| ‘-- Bar.bip
‘-- somewhere

‘-- myApp
‘-- Foo.bip

somewhere/myApp $ bipc.sh -p Foo -I /a/bip/repository

4.4 Using middle-ends (aka. filters)

Filters are responsible for model to model transformations. A filter has the same input and output type: a BIP model
(type or instance model). Common use cases for filters:

• flattening : remove hierarchy by flattening compound and connectors.

• dead code optimization : modify petrinet by removing unused parts.

• annotation : attach extra information on model element used by other filters or back-ends.

A filter can be used alone or a filter chain can be build. The chain is specified using a simple syntax:

filter1_name foo=bar foo2=bar2 ! filter2_name bla=bar

This will chain filter1_name and filter2_name. Each filter will be configured using its corresponding list of
key=value pairs.

The chain specification can be given directly on from the command line using -f (or --filter):

bipc.sh -f "filter1_name foo=bar foo2=bar2 ! filter2_name bla=bar"

4.4. Using middle-ends (aka. filters) 35

BIP2 Documentation, Release 2015.04 (RC7)

Important: Do not forget to enclose the chain specification between ” or ‘, as the shell will most certainly interpret
the ! character, leading to unwanted behavior.

The chain specification can also be read from a file using --filter-file. This is useful when the chain is getting
complex as handling very long lines can be tedious work. You simply need to write the chain in a text file. To enhance
readability, you can use a 1 filter by line convention, as the line feed is ignored:

filter1_name foo=bar foo2=bar2 !
filter2_name bla=bar !
filter3_name some_very_complex_arg=something_very_very_long

And simply give this file to the compiler:

bipc.sh --filter-file filters.txt ...

4.5 Using back-ends (code generators)

4.5.1 General principles

A back-end (aka. code generator) defines a set of specific parameters. Usually, using one of them will enable the
corresponding back-end. For example, for the C++ back-end, you can see the following command line arguments (see
More about C++ code generator):

--gencpp-cc-I Add a path to the include search path
(used when calling the C++ compiler)

--gencpp-cc-extra-src Add an extra source file to the
compilation list

--gencpp-follow-used-packages Also generate code for used packages.
--gencpp-ld-L Add a path to the libraries search

path (used when calling the linker)
--gencpp-ld-extra-obj Add an extra object file to be linked

with the other parts
--gencpp-ld-l Link with this library (use several

times to add many libraries)
--gencpp-no-serial Disable the generation of

serialization code
--gencpp-output-dir Output directory for CPP backend
--gencpp-optim Set the optimization level (defaults

to none = 0). Each level includes a
set of optimization.

--gencpp-set-optim-param Set an optimisation parameter:
optimname:key:value

--gencpp-disable-optim Disable a specific optimization (can
be used several times)

--gencpp-enable-optim Enable a specific optimization (can be
used several times)

--gencpp-enable-bip-debug Generates extra code to enable GDB to
debug at the BIP level

Calling the compiler using any on these parameter will enable the C++ back-end.

You can use more than one back-end at once without any problem as back-end are meant to be independent. For
example, for generating both a C++ and Aseba source code in a single compiler run, you could use the following
command:

36 Chapter 4. Installing & using the BIP compiler

BIP2 Documentation, Release 2015.04 (RC7)

$ bipc.sh -p SamplePackage -I /home/a_user/my_bip_lib/ -d "MyType()" \
--gencpp-output-dir cpp-output --genaesl-output-dir aseba-output

4.5.2 BIP back-end

The BIP back-end can be used to generate back BIP source code. It is very simple and uses two parameters:

• --genbip-output-dir : to specify the directory where the generated will be created

• --genbip-follow-used-packages : to enable the hierarchical generation. By default, only the package
being compiled is generated back to BIP source code. When this parameter is present, the package’s dependen-
cies are also generated.

If no transformation are being executed in the middle-end, then this back-end should produce a source code equivalent
to the source code compiled (some code reformating and reordering is very likely to happen):

$ bipc.sh -p SamplePackage -I /home/a_user/my_bip_lib/ --genbip-output-dir bip-output

Important: This back-end only supports type model compilation. It won’t use the instance model that the compiler
may produce (if a -d parameter is used).

4.5.3 C++ back-end

Simple case, for compiling the package SomePackage and creating an executable by taking an instance of the
RootDefinition component use the following command :

$ bipc --gencpp-output build -p SomePackage -d ’RootDefinition()’

This command will generate several files, mainly C++ source code, but not only. This code can’t be compiled as is, it
needs some glue code from a standard engine. See More about C++ code generator for more details on this back-end.

4.5. Using back-ends (code generators) 37

BIP2 Documentation, Release 2015.04 (RC7)

38 Chapter 4. Installing & using the BIP compiler

CHAPTER

FIVE

MORE ABOUT C++ CODE GENERATOR

5.1 Presentation & prerequisites

5.1.1 Presentation

The C++ back-end produces a set of C++ source files along with a set of CMake scripts used to compile the generated
C++ files and link them with an engine.

5.1.2 Prerequisites

In order to use the code generated by the C++ back-end, you need to install the following dependencies:

• CMake, at least version 2.8.2. It may work with earlier versions, but it has not been tested.

• GNU Make.

• A C++ compiler that supports the STL. In addition, a support for C++0x is required when compiling with the
optimized engine, and C++11 for the multithread engine. We are currently working with the GNU compiler g++
version 4.8.2, and for ABI compatibility issues we recommend to use g++ version 4.8 or higher.

Tip: On GNU/Debian or derivatives, use: $ apt-get install cmake make g++

5.2 Usage

To generate C++ code, extra parameters must be used to drive C++ code generation.

Important: If you are not using the standard compiler distribution, then you need to take care of the correct loading
of the C++ back-end: its jar file must be in the classpath and the java property bip.compiler.backends must
contain the string ujf.verimag.bip.backend.cpp.CppBackend

The current C++ code generation requires the presence of an instance model, thus you must provide a root declaration
(see -d in the above section). To enable the C++ back-end, you simply need to give an output directory:

• --gencpp-output-dir followed by the directory that will contain all files generated by the C++ back-end.

Example:

$ bipc.sh -p SamplePackage -I /home/a_user/my_bip_lib/ -d "MyType()" \
--gencpp-output-dir /home/a_user/output/

39

http://www.cmake.org
http://www.cmake.org
http://www.gnu.org/software/make/
http://www.sgi.com/tech/stl/
http://en.wikipedia.org/wiki/C%2B%2B11
http://en.wikipedia.org/wiki/C%2B%2B11

BIP2 Documentation, Release 2015.04 (RC7)

The directory /home/a_user/output should contain several files & directories:
.
÷-- CMakeLists.txt
÷-- Deploy
÷ ÷-- Deploy.cpp
| ÷-- Deploy.hpp
| ‘-- DeployTypes.hpp
÷-- SamplePackage
| ÷-- CMakeLists.txt
| ÷-- include
| | ‘-- SamplePackage
| | ÷-- CT_MyType.hpp
| | ÷-- AtomEPort_Port__t.hpp
| | ÷-- AtomIPort_Port__t.hpp
...
| ‘-- src
| ‘-- SamplePackage
| ÷-- CT_MyType.cpp
| ÷-- AtomEPort_Port__t.cpp
| ÷-- AtomIPort_Port__t.cpp
...

You don’t need to dig into these directories, but it’s always better to understand how the compiler organizes the
generated files:

• a master CMakeLists.txt that will be used to compile and link everything (generated code and engine code)
together. Its use will be demonstrated later.

• a directory SamplePackage containing :

– a CMakeLists.txt with directives to compile the package

– an include directory with all header files (ie. .hpp files).

– a src directory with all implementation files (ie. .cpp files).

• a directory Deploy with a 3 files with the directives for the concrete deployment of the running system.

By default, the compiler won’t resolve dependencies and will fail in case of inter-package reference. You need to
provide --gencpp-follow-used-packages to resolve and compile dependencies.

5.3 Interface BIP/C++

5.3.1 Presentation

It is very common to interface BIP code with external C++ code (eg. legacy code, specific code, ...). The current
back-end provides you with several ways to interface your BIP code with external C++ code.

Both ways of interfacing may need to add directory to the C++ compiler include search path. This can be achieved by
using this command line argument:

• --gencpp-cc-I : adds a directory to the compiler search paths for include files (ie. this is the -I used by
most C++ compilers)

At the package/type level

You can add one or more source file (ie. .cpp file) or object file (ie. .o file) attached to a package/a type. These
source file will be compiled at the same time as the generated files corresponding to the package/type and the object

40 Chapter 5. More about C++ code generator

BIP2 Documentation, Release 2015.04 (RC7)

files will be merged with the compiled code inside the library (ie. .a file) for the package. You can also add include
directives that will be added to type/package generated files.

You need to use annotations in the BIP source file (see Debugging).

At the global level

You can inject source or object code at the global level or force the linking with an external library. Source code
injected at this level will be compiled after all packages have been compiled. Object code or library are simply linked
with all the other compiled code.

To achieve this integration, you can use the following parameters:

• --gencpp-cc-extra-src : adds a source file in the compilation process.

• --gencpp-ld-L : adds a directory to the linker search paths for libraries (ie. this is the -L used by most
linkers)

• --gencpp-ld-l : adds a library to the link list (ie. this is the -l used by most linkers)

• --gencpp-ld-extra-obj : adds an object file to the link list

5.3.2 Data handling

It is possible to use data when calling external C++ code. There are two important facts to keep in mind:

• It is important to understand in which context the call is made as the function being called depends on that.

• A function call is NEVER type-checked by the BIP compiler. It means that you can easily write WRONG
code. Hopefully, your C++ compiler will catch bad cases (but don’t rely on that). A function call can take data
parameters and can return a single data value.

For context where the callee can change the data (ie. connector down{} and petrinet transition do{}):

• function call f() in BIP is mapped to a C++ function call f().

• the BIP assignment x = f() is mapped to the equivalent C++ corresponding_internal_data_var
= f() . Type compatibility checked by C++ compiler.

• function call with data argument f(a,b,c) with a, b and c local BIP data declared in the caller’s scope (atom,
connector) is mapped in C++ to f(internal_data_a, internal_data_b, internal_data_c).
Expected prototype for f: f(T1 &a, T2 &b, T3 &c).

• the BIP assignment x = f(a,b,c) is mapped to C++ internal_data_x = f(internal_data_a,
internal_data_b, internal_data_c), with expected prototype: T1 f(T2 &a, T3 &b, T4
&c). Beware that the return type is not a reference nor a pointer. If you need to avoid useless copy, you
can have the output variable be a parameter and modify it from within the function body (ie. by-reference
parameter).

For context where the data used must not be modified (ie. const context: up{} and provided()), all function call
are prefixed by const_:

• function call f() is mapped in C++ to const_f()

• x = f() is mapped to corresponding_internal_data_var = const_f(). Type compatibility
checked by C++ compiler.

• f(a,b,c) with a, b and c local data declared in the caller’s scope (atom, connector) , mapped to
const_f(internal_data_a, internal_data_b, internal_data_c). Expected prototype for
f: f(const T1 &a, const T2 &b, const T3 &c). The const are only expected. If const_f()

5.3. Interface BIP/C++ 41

BIP2 Documentation, Release 2015.04 (RC7)

does not take const argument, it will still work, but system data may be altered by error. The const-ness is not a
guaranty, it’s only a good guide that avoids making mistakes.

• x = f(a,b,c) mapped to internal_data_x = const_f(internal_data_a,
internal_data_b, internal_data_c), with expected prototype: T1 f(const T2 &a, const
T3 &b, const T4 &c). Beware that the return type is not a reference nor a pointer. This in order to avoid
useless copy.

Hint: C++ code generator uses different function names instead of relying on C++ dispatching mechanism between
const and non-const function because it doing so would imply that the compiler is able to type function parameters,
which is currently not the case.

Important: When using custom types, you may run into problems when using the reference engine as it tries to
display a serialized version of the data during execution. This serialization relies on the C++ stream mechanism. If
your data type does not support stream operation, the generated code won’t compile. You can disable serialization
when running the compiler with --gencpp-no-serial (no data will be displayed in execution traces).

The Using the C++ back-end has examples of BIP/C++ interfacing.

Handling component parameter

If you need to use a component parameter in an external function call, the parameter in the function prototype must
not be a reference. Treat component parameters as direct value or expression:

atom type AT(int x)
...
on p from S to T do {f(x);}
...

end

The function must look like:

void f(int x);

If you try to use a reference, the C++ compiler will fail.

Pass by reference/copy

When an external function takes a data variable (ie. atom data, component exported data, connector data) as parameter,
do not forget to use a reference in the function prototype. Even if omitted, the code will still compile flawlessly, but
the function will work on a copy of the data variable, not the variable itself. Any modification will be lost and strange
behavior can arise because of the unwanted use of the copy constructor.

If the function is given a data from a component type parameter or a direct value, then the corresponding function
parameter must not be a reference.

For example:

atom type AT()
data int x
...
on p from S to T do {f(x);}
...

end

f should have the following prototype:

42 Chapter 5. More about C++ code generator

BIP2 Documentation, Release 2015.04 (RC7)

void f(int &x);

If you use

void f(int x);

The code will run, but all modifications of x within the f function will be lost when the function returns. It will also
have an overhead as data will be copied at invocation.

If the function takes a data from the type parameter, like the following:

atom type AT(int x1)
data in x
...
on p from S to T do {f(x, x1, 1+4);}
...

end

f should have the following prototype:

void f(int &a, int b, int c);

5.4 Parameters

• --gencpp-cc-I

• --gencpp-cc-extra-src

• --gencpp-ld-L

• --gencpp-ld-l

• --gencpp-ld-extra-obj

• --gencpp-follow-used-packages

• --gencpp-no-serial

• --gencpp-disable-optim

• --gencpp-enable-optim

• --gencpp-optim

• --gencpp-set-optim-param

• --gencpp-enable-bip-debug

5.5 Optimisation

The C++ back-end can apply some optimization techniques. You can enable them either one by one, or by using
predefined groups.

To enable all optimizations up to level 2:

$ bipc.sh ... --gencpp-optim 2

To enable the use of a pool of interaction object of size 200:

5.4. Parameters 43

BIP2 Documentation, Release 2015.04 (RC7)

$ bipc.sh ... --gencpp-enable-optim poolci \
--gencpp-set-optim-param poolci:size:2

Currently, the following optimizations are available:

• rdvconnector (level : 1): generates specific code for rendez-vous connectors.

• poolci (level :2) : dynamically created interaction object can be reused. When released, an interaction is
placed in a pool. When a lot of interactions are involved, it lightens the burden on the memory allocator. The
cost is that some memory is never released.

• poolciv (level : 2): same as poolciv but for interaction value objects.

• ports-reset (level: 2): allows to reduce recomputation of interactions and internal ports after components
execution, based on static analysis of the code executed by transitions of atomic components. This optimization
is only exploited by the optimized engine (i.e. no gain when using the reference engine).

• no-side-effect (level: 3): improves other optimizations (currently concerns only optimization
ports-reset) by assuming that assignments of a variable v of an external type only modify v (e.g. no side
effect on any other variable due to aliasing), and that calls to external functions can only modify the variables
provided as parameters.

Both poolci and poolciv accepts an optional parameter size to set the size of the pool. Beware that a pool of
fixed size is created for every connector instance.

5.6 Debugging

BIP tools do not include a full featured debugger. Instead, we provide a mapping between the generated C++ code (on
which any C++ debugger can be used) and the BIP source code. To enable this mechanism, you need to compile the
code using --gencpp-enable-bip-debug.

The direct benefits are:

• use of breakpoints in BIP source code

• step by step execution in BIP source code

The direct drawbacks are:

• it is not possible to print data using BIP variable names, you need to dig into the generated code, which is less
easy since it is the BIP code that gets displayed.

• incoherences/unexpected debuger behavior can appear, as the mapping is not necessarily bijective (eg. a BIP
guard could be duplicated in two locations in the generated code)

Important: You need to compile the C++ with debugging support. Use the Debug profile included in the cmake
scripts:

$ cmake -DCMAKE_BUILD_TYPE=Debug

5.7 Annotations

5.7.1 @cpp(src="<file-list>")

• scope : package definition, any type definition

44 Chapter 5. More about C++ code generator

BIP2 Documentation, Release 2015.04 (RC7)

• argument : comma separated list of file names

• role [the files specified as argument will be inserted in the file list] used during the compilation process along
with files generated with the object to which the annotation is attached.

Tip: example:

@cpp(src="something1.cpp,something2.cpp")
atom type SomeAtom()

...
end

5.7.2 @cpp(obj="<file-list>")

• scope : package definition, any type definition

• argument : comma separated list of file names

• role [the files specified as argument will be inserted in the file list] of objects to be linked with objects obtained
by the compilation of the generated C++ files (obtained from the object to which the annotation is attached).

Important: You will need to give the linker the paths containing your objects files using --gencpp-ld-L

Tip: example:

@cpp(src="a/path/something1.o")
atom type SomeAtom()

...
end

5.7.3 @cpp(include="<file-list>")

• scope : package definition, any type definition

• argument : comma separated list of file names

• role : each file in the list will trigger an include directive (ie. #include <file> in the corresponding
generated code.

Important: The C++ compiler search path must be set accordingly using --gencpp-cc-I.

Tip: example:

@cpp(include="a/path/something1.hpp,stdio.h")
atom type SomeAtom()

...
end

5.8 What you should never do

In this section, we give examples of things you should never do. All these examples will compile and run, and
sometimes have the behavior you expected. But they all break at least one the strong asumptions on which BIP is

5.8. What you should never do 45

BIP2 Documentation, Release 2015.04 (RC7)

based. This means that even if it looks ok at execution, you will most probably get incorrect result with other tools (eg.
model checking).

5.8.1 Non-deterministic external code

The most simple example of a non-deterministic code is the use of standard library’s random() function.

For example, consider the following package:

@cpp(include="stdio.h,stdlib.h")
package bad

port type Port_t()

atom type BadAtom()
data int d
port Port_t p()

place I,S1,S2
initial to I do { d = 0;}
on p from I to S1 do { d = random()%5; }
on p from S1 to S1 provided (d > 0) do { d = d - 1;}
on p from S1 to S2 provided (d <= 0)

end

compound type Top()
component BadAtom c()

end
end

The following assumption:

“From a given system state (here, atom c in state I and d equals 0), triggering a transition t always
transforms the system state in the same state (here, atom c in state S1 with d equals some value)”

is broken. Even if there is only one single transition possible in the petrinet from state‘‘I‘‘ to S1, the system state
remains unknown as the value for d is not always the same.

Even if this may be the expected behavior, this is a problem when verification tools are used. For example, the
exploration heavily relies on the assumption being broken and thus, will produce incorrect results for this example.

5.8.2 Side-effects in guards or up{}

As explained earlier, all guards and connector up{} must not have side effects on the system. This is very important,
as the engine may execute several times these methods or it may cache their results: you can’t predict how these will
be executed.

The BIP compiler prevents the user from writing wrong statements, but as always when using external code, it is still
possible to make mistake.

The following example illustrates both cases:

• the guard() method, that should not modify its data parameter will in fact modify them by calling
wrong_guard_ip()

• the up{} will also call a function wrong_up() that will modify data bound to the connector’s ports.

Such an example demonstrates both a wrong execution and incorrect verification results:

46 Chapter 5. More about C++ code generator

BIP2 Documentation, Release 2015.04 (RC7)

@cpp(include="stdio.h,sideeffects.hpp")
package sideeffects

port type Port_t(int x)

atom type Atom_t(int x)
data int id, dat
export port Port_t ep(dat)
port Port_t ip(dat), ip2(dat)

place I,IP,EP
initial to I do {id = x; dat = 999;}
on ip2 from I to I provided (wrong_guard_ip(dat) && 0 == 1)
on ip from I to IP do { printf("id:%d, data:%d\n", id, dat); }
on ep from I to EP

end

connector type LowC_t(Port_t p1, Port_t p2)
data int d
export port Port_t ep(d)
define p1’ p2’
on p1 p2 up { d = 0; wrong_up(p1.x); wrong_up(p2.x); }
on p2 up { d = 0; wrong_up(p2.x); }
on p1 up { d = 0; wrong_up(p1.x); }
end

connector type HighC_t(Port_t p1, Port_t p2)
define p1 p2
end

compound type Top()
component Atom_t c1(1), c2(2), c3(3)
connector LowC_t lowc(c1.ep, c2.ep)
connector HighC_t highc(lowc.ep, c3.ep)

end
end

With sideeffects.hpp containing:

static void const_wrong_up(int &px){
px = -1;

}

static int const_wrong_guard_ip(int &d){
d = -1;
return 0;

}

The associated execution trace illustrates clearly the problem regarding the wrong_guard_ip(). Even though
the transition labeled by ip2 is never possible, its guard gets executed, and so, internal data is modified. When the
transition labeled by ip is triggered, we can see that the data has been wrongly modified (no state change should have
been made since the initialization of the system):

[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 interaction and 3 internal ports:
[BIP ENGINE]: [0] ROOT.highc: ROOT.lowc.ep({x}=0;) ROOT.c3.ep({x}=-1;)
[BIP ENGINE]: [1] ROOT.c1._iport_decl__ip
[BIP ENGINE]: [2] ROOT.c2._iport_decl__ip
[BIP ENGINE]: [3] ROOT.c3._iport_decl__ip

5.8. What you should never do 47

BIP2 Documentation, Release 2015.04 (RC7)

[BIP ENGINE]: -> choose [1] ROOT.c2._iport_decl__ip
id:2, data:-1

The problem with the wrong_up() function is more subtle. The value changed is not the atom’s data but a port
value. This port value is used to compute interactions and evaluate guards of connectors. Modifying it will lead
silently to an undefined state (eg. some interactions may be executed even though their guards should have prevented
it).

5.9 Troubleshooting

The following is not an exhaustive list of errors with their explanations as most error messages should be self-
explained. We give details about more obscur messages that usually deal with low level errors where user friendlyness
is not the main concern.

5.9.1 Assertion ‘!_iport_decl__p.hasPortValue()’ failed.

If you get an output similar to:

system: somepath/HelloPackage/AT_MyAtomType.cpp:141: BipError&
AT_MyAtomType::updatePortValues(): Assertion ‘!_iport_decl__aport.hasPortValue()’ failed.

It usually means that an instance of the atom type MyAtomType has reached a state where two (or more) transitions
labeled by the same port (here aport) are possible. You should get a warning at compilation:

[WARNING] In path/to/HelloPackage.bip:
Transition from this state triggered by the same port (or internal) already
exists :

followed by an excerpt of the potentially faulty transition. Chances are that the guards on the transitions labelled by
aport are not exclusive as they should be.

5.9.2 XXXXX.cpp:000: error: ‘const_SOMETHING’ was not declared
in this scope

This error is the sign that you have at least of call to the SOMETHING function from a const context but the
const_SOMETHING function implementation could not be found by the C++ compiler.

Check:

• that the external code has the const_SOMETHING function, if not, add it.

• if the const_SOMETHING function is correctly defined, then check that the search paths given to the C++ are
correct (see --gencpp-cc-I)

If you think you are not using the function SOMETHING from a const context, then, check your BIP code (the XXXXX
in the C++ error message is a hint for a starting point).

5.9.3 error: no match for ‘operator<<’

If you get an error similar to:

path/to/AT_AType.cpp: In member function ‘virtual std::string AT_AType::toString() const’:
path/to/AT_Type.cpp:000: error: no match for ‘operator<<’ in ‘std::operator<<
[with _Traits = std::char_traits<char>] ... [C++ garbage]

48 Chapter 5. More about C++ code generator

BIP2 Documentation, Release 2015.04 (RC7)

You are probably using data that the compiler can’t [de]serialize. Two solutions exist for fixing this:

• disable the serialization mechanism by using the --gencpp-no-serial command line argument.

• add serialization support for your type by implementing the operator <<.

5.9.4 error: ‘my_XXX’ has a previous declaration

With my_XXX being a custom type name or an external function name. This usually means that one of your external
header file gets included more than once, hence the duplicated declarations. You should always include guards:

#ifndef MY_CUSTOM_FILE_NAME__HPP
#define MY_CUSTOM_FILE_NAME__HPP

[the actual content of the header file]

#endif // MY_CUSTOM_FILE_NAME__HPP

5.9. Troubleshooting 49

BIP2 Documentation, Release 2015.04 (RC7)

50 Chapter 5. More about C++ code generator

CHAPTER

SIX

INSTALLING & USING AVAILABLE ENGINES

6.1 Requirements

The reference engine does not require any special software aside from a standard C++ compiler and the STL (usually
installed along with the C++ compiler). In addition, a support for C++0x is required when working with the optimized
engine, and C++11 for the multithread engine. We are currently working with the GNU compiler g++ version 4.8.2,
and for ABI compatibility issues we recommend to use g++ version 4.8 or higher when compiling the generated code.

6.2 Downloading & installing

6.2.1 Getting latest version

Go to the download page for the BIP tools. As for the compiler, you may install the engines separately using specific
archives, or you can install everything at once (compiler & engines). Only the first installation procedure is presented
here. For the one archive installation, read the Downloading & installing.

6.2.2 Installation of the engine

The archive is a self-contained. You need to extract it in a dedicated directory, for example
/home/a_user/local/bip2:

$ mkdir /home/a_user/local/bip2
$ cd /home/a_user/local/bip2
$ tar zxvf /path/to/the/BIP-reference-engine_2012.01.tar.gz
BIP-reference-engine-2012.01/
...
...

For easier use, set the following environment variables:

• BIP2_ENGINE_GENERIC_DIR : absolute path to generic header files.

• BIP2_ENGINE_SPECIFIC_DIR : absolute path to specific header files.

• BIP2_ENGINE_LIB_DIR : absolute path to library containing engine library.

This can be done adding the following in your ~/.bashrc (if you are using bash):

export BIP2_ENGINE_SPECIFIC_DIR=/path/to/BIP-reference-engine-2012.01/include/specific
export BIP2_ENGINE_GENERIC_DIR=/path/to/BIP-reference-engine-2012.01/include/generic
export BIP2_ENGINE_LIB_DIR=/path/to/BIP-reference-engine-2012.01/lib/static

51

http://www.sgi.com/tech/stl/
http://en.wikipedia.org/wiki/C%2B%2B11
http://en.wikipedia.org/wiki/C%2B%2B11
http://www-verimag.imag.fr/New-BIP-tools.html

BIP2 Documentation, Release 2015.04 (RC7)

6.2.3 Quick-tour of installation

After extracting the archive, you should have a similar setup:
.
÷-- generic/
| ‘-- include
| ÷-- AtomExportPortItf.hpp
| ÷-- AtomInternalPortItf.hpp
| ÷-- AtomItf.hpp
| ÷-- bip-engineiface-config.hpp
| ÷-- BipErrorItf.hpp
|
÷-- specific/
| ‘-- include
| ÷-- AtomExportPort.hpp
| ÷-- Atom.hpp
| ÷-- AtomInternalPort.hpp
| ...
‘-- lib/

‘-- libengine.a

• the generic directory contains the header files that should be common to all engines following the standard
API (see dev-doc-engine_std_API-label).

• the specific directory contains the header files specific to the engine being installed (here, the reference
engine).

• the lib directory contains the compiled code of the engine being installed.

6.3 Using the reference engine

6.3.1 Compiling & linking with generated code

You need to generate code from your BIP source as explained in More about C++ code generator.

Quick-start : follow regular cmake procedure

• create a build directory, for example within the generated code. This directory will host all files created during
the compilation and the linking of the generated code. This directory can be wiped clean if needed without the
need to run again the BIP compiler.

• from this new directory, invoke cmake by pointing to the directory containing the generated code.

• still from this new directory, invoke make to actually compile and link everything together

Step-by-step guide

You need to create a build subdirectory where all the compiled code will be located. Usually, this directory is a
sub-directory within the generated code tree. For example, if the output directory contains all our generated code:

/home/a_user/output $ mkdir build && cd build

Then you need to invoke cmake from within this new build directory by pointing to the directory containing the
generated code (in our example, ..). If you did not set environment variables as detailed in the Installation of the

52 Chapter 6. Installing & using available engines

BIP2 Documentation, Release 2015.04 (RC7)

engine, then you need to provide cmake with absolutes paths to engine files: BIP2_ENGINE_GENERIC_DIR and
BIP2_ENGINE_SPECIFIC_DIR for the engine interface code (ie. header files), and BIP2_ENGINE_LIB_DIR
for the compiled engine code.

Example cmake invocation with environment variables set:

$ cmake ..
-- The C compiler identification is GNU
-- The CXX compiler identification is GNU
-- Check for working C compiler: /usr/bin/gcc
-- Check for working C compiler: /usr/bin/gcc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Configuring done
-- Generating done
-- Build files have been written to: /home/a_user/output/build

Example cmake invocation without environment variables set:

$ cmake \
-DBIP2_ENGINE_GENERIC_DIR=/absolute/path/to/engines/BIP-reference-engine-2012.01/include/generic/ \
-DBIP2_ENGINE_SPECIFIC_DIR=/absolute/path/to/engines/BIP-reference-engine-2012.01/include/specific/ \
-DBIP2_ENGINE_LIB_DIR=/absolute/path/to/engines/BIP-reference-engine-2012.01/lib/static \
..

-- The C compiler identification is GNU
-- The CXX compiler identification is GNU
-- Check for working C compiler: /usr/bin/gcc
-- Check for working C compiler: /usr/bin/gcc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Configuring done
-- Generating done
-- Build files have been written to: /home/a_user/output/build

If your output matches the examples, you can proceed to the actual C++ compilation & linking by simply invoking
make:

$ make

The result will be a single executable file called system.

6.3.2 Running the resulting executable

The resulting executable is called system and is created in the build directory created previously (see previous section).
It includes both the code generated specifically for the considered BIP2 model and the reference engine. Engines are
runtime used for scheduling execution sequences of BIP models.

Once the executable is built, help information is provided when executing system with option --help:

6.3. Using the reference engine 53

BIP2 Documentation, Release 2015.04 (RC7)

./system --help
Usage: ./system [options]

BIP Engine general options:
-d, --debug allows debug of the system, i.e. diplays the state of the system
--execute execute a single sequence of interactions (default)
--explore compute all possible sequences of interactions
-h, --help display this help and exit
-i, --interactive interactive mode of execution
-l, --limit LIMIT limits the execution to LIMIT interactions
--seed SEED set the seed for random to SEED
-s, --silent disables the display of the sequence of enabled/chosen interactions
-v, --verbose enables the display of the sequence of enabled/chosen interactions (default)
-V, --version displays engine version and exits

BIP Engine semantics options (WARNING: modify the official semantics of BIP!):
--disable-maximal-progress disable the application of maximal progress priorities

Executing a single sequence

An execution sequence can be scheduled simply by running directly system without any option (execution of a single
sequence is a default mode):

$./system

Notice that the reference engine is in verbose mode by default. At each state, it displays the enabled interactions and
internal ports, and the chosen sequence , e.g.:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: random scheduling based on seed=6
[BIP ENGINE]: state #0: 14 interactions:
[BIP ENGINE]: [0] ROOT.f1take1: ROOT.f1.take() ROOT.p1.take_left()
[BIP ENGINE]: [1] ROOT.f1take2: ROOT.f1.take() ROOT.p7.take_right()
[BIP ENGINE]: [2] ROOT.f2take1: ROOT.f2.take() ROOT.p2.take_left()
[BIP ENGINE]: [3] ROOT.f2take2: ROOT.f2.take() ROOT.p1.take_right()
[BIP ENGINE]: [4] ROOT.f3take1: ROOT.f3.take() ROOT.p3.take_left()
[BIP ENGINE]: [5] ROOT.f3take2: ROOT.f3.take() ROOT.p2.take_right()
[BIP ENGINE]: [6] ROOT.f4take1: ROOT.f4.take() ROOT.p4.take_left()
[BIP ENGINE]: [7] ROOT.f4take2: ROOT.f4.take() ROOT.p3.take_right()
[BIP ENGINE]: [8] ROOT.f5take1: ROOT.f5.take() ROOT.p5.take_left()
[BIP ENGINE]: [9] ROOT.f5take2: ROOT.f5.take() ROOT.p4.take_right()
[BIP ENGINE]: [10] ROOT.f6take1: ROOT.f6.take() ROOT.p6.take_left()
[BIP ENGINE]: [11] ROOT.f6take2: ROOT.f6.take() ROOT.p5.take_right()
[BIP ENGINE]: [12] ROOT.f7take1: ROOT.f7.take() ROOT.p7.take_left()
[BIP ENGINE]: [13] ROOT.f7take2: ROOT.f7.take() ROOT.p6.take_right()
[BIP ENGINE]: -> choose [1] ROOT.f1take2: ROOT.f1.take() ROOT.p7.take_right()
[BIP ENGINE]: state #1: 12 interactions:
[BIP ENGINE]: [0] ROOT.f2take1: ROOT.f2.take() ROOT.p2.take_left()
[BIP ENGINE]: [1] ROOT.f2take2: ROOT.f2.take() ROOT.p1.take_right()
[BIP ENGINE]: [2] ROOT.f3take1: ROOT.f3.take() ROOT.p3.take_left()
[BIP ENGINE]: [3] ROOT.f3take2: ROOT.f3.take() ROOT.p2.take_right()
[BIP ENGINE]: [4] ROOT.f4take1: ROOT.f4.take() ROOT.p4.take_left()
[BIP ENGINE]: [5] ROOT.f4take2: ROOT.f4.take() ROOT.p3.take_right()
[BIP ENGINE]: [6] ROOT.f5take1: ROOT.f5.take() ROOT.p5.take_left()
[BIP ENGINE]: [7] ROOT.f5take2: ROOT.f5.take() ROOT.p4.take_right()
[BIP ENGINE]: [8] ROOT.f6take1: ROOT.f6.take() ROOT.p6.take_left()
[BIP ENGINE]: [9] ROOT.f6take2: ROOT.f6.take() ROOT.p5.take_right()

54 Chapter 6. Installing & using available engines

BIP2 Documentation, Release 2015.04 (RC7)

[BIP ENGINE]: [10] ROOT.f7take1: ROOT.f7.take() ROOT.p7.take_left()
[BIP ENGINE]: [11] ROOT.f7take2: ROOT.f7.take() ROOT.p6.take_right()
[BIP ENGINE]: -> choose [11] ROOT.f7take2: ROOT.f7.take() ROOT.p6.take_right()
...
[BIP ENGINE]: state #26: 2 interactions:
[BIP ENGINE]: [0] ROOT.f7take1: ROOT.f7.take() ROOT.p7.take_left()
[BIP ENGINE]: [1] ROOT.f7take2: ROOT.f7.take() ROOT.p6.take_right()
[BIP ENGINE]: -> choose [1] ROOT.f7take2: ROOT.f7.take() ROOT.p6.take_right()
[BIP ENGINE]: state #27: deadlock!

Interactions or internal ports are chosen randomly amongst the enabled ones. The reference engine is based on a
uniform distribution of probability for the choice of the interactions or internal ports. By default, the seed used to
initialize randomize choices is computed from the current value of time, but it can be set to a given value using option
--seed. The execution is stopped if no interaction and no internal port is enabled, or if ctrl-D is hit.

Exhaustive execution

Option --explore allows the exhaustive execution of the sequences defined by a model. In order to perform
back-tracking, this mode of execution requires the generation of additional code, which is enforced using option
--gencpp-enable-marshalling when compiling the model.

Important: Enabling option --gencpp-enable-marshalling generates code for storing and retrieving states
of atomic components, which requires storing / retrieving their variables. For custom types, such code has to be
provided by the user (as the definition of the type). For a custom type custom_t, the generated code expect the
presence of an implementation for following methods:

• size_t custom_t_sizeof(const custom_t &v): returns the number of bytes necessary to allocate
for storing the current value of variable v of type custom_t provided as a parameter. Notice that it can return
non constant numbers of bytes that depend on the value of v (e.g. useful for a string, a list, etc.).

• void custom_t_toBytes(char *b, const custom_t *ptr_v) encode the value of a variable
of type custom_t pointed by ptr_v into a sequence of n bytes which are stored in a location starting from
b. The number of bytes n must satisfy n = custom_t_sizeof(*ptr_v).

• void custom_t_fromBytes(custom_t *ptr_v, const char *b): decode a sequence of bytes
stored at b and assign the corresponding value to the variable of type custom_t pointed by ptr_v. Notice
that this method must be able to guess the number of bytes to read from the sequence itself, i.e. it is the user
responsibility to provide a way for kwowing when to stop reading bytes from b.

Notice that the exploration mode requires comparison of states. It assumes deterministic execution of the above meth-
ods, that is, they must provide the same results for the same input values. Obviously, the application of fromBytes
to the sequence of bytes computed by toBytes for a variable v must assign to v the value it had when calling
toBytes.

The current version of the engine displays dots each time an interaction or an internal port is executed. Moreover, the
number of reachable states, deadlocks, and errors is displayed, e.g.:

$./system --explore
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: computing reachable states:..
...
...
...
...
...
.................... found 27303 reachable states, 2 deadlocks, and 0 error in 0 state

6.3. Using the reference engine 55

BIP2 Documentation, Release 2015.04 (RC7)

6.4 Using the optimized engine

Since the reference engine (presented in the previous section) can be very, very slow, we recommend to use the opti-
mized engine whenever performance is an issue. The optimized engine implements minimal optimizations required
for reasonable runtime performances in terms of both execution time and memory usage. It currently passes the same
tests as the reference engine, and it accepts the same general options.

For installing and using the optimized engine, proceeds as explained above for the reference engine (see Installation
of the engine), after downloading the optimized engine instead of the reference engine from download page. Perfor-
mances can be again improved when combining the use of the optimized engine and the activation of optimizations in
the code generator (see Optimisation).

To allow maximal optimization, combine the following:

• pass --gencpp-optim 3 to the C++ back-end when compiling your BIP model

• use the optimized engine

• pass -DCMAKE_BUILD_TYPE=Release to cmakewhen compiling the generated C++ code (i.e. use cmake
-DCMAKE_BUILD_TYPE=Release ..).

6.5 Using the multithread engine (beta version)

The multithread engine is proposed for increasing further the performance when running on multicore platforms. It
is available in a beta version that is experimental is and should not be considered as mature as the reference and the
optimized engine. It relies on the latest standard C++11 of C++, requiring version 4.8 or higher of GCC for compiling
the generated C++ code. Moreover, it may require additional library implementing threads, e.g. to use pthread add
the option --gencpp-ld-l pthread when invoking the BIP compiler.

The options proposed by the multithread engine are listed below:

BIP Engine general options:
(i.e. executes interactions in parallel, if obs. equivalent)

-d, --debug allows debug of the system, i.e. diplays the state of the system
-h, --help display this help and exit
-i, --interactive interactive mode of execution
-l, --limit LIMIT limits the execution to LIMIT interactions
--seed SEED set the seed for random to SEED
--threads NB set the number of threads (by default, use the maximal HW

parallelism or 8)
-s, --silent disables the display of the sequence of enabled/chosen interactions
-v, --verbose enables the display of the sequence of enabled/chosen interactions

(default)
-V, --version displays engine version and exits

The multithread engine does not support any exploration mode and can only execute sequences of interactions. It
executes components involved in interactions is parallel, based on the notion of partial state: interactions can start from
partial states, that is, even if some components are still running. The multithread engine guarantees that interactions are
always started in an order meeting the global state semantics which is implemented in the reference and the optimized
engine.

Option --threads can be used to control the total number of threads used for executing the model. Notice that
these threads are used not only for executing the atomic components, but also for computing the enabled interactions:
connectors evaluate enabled interactions in a parallel and concurrent way.

Important:

56 Chapter 6. Installing & using available engines

http://www-verimag.imag.fr/New-BIP-tools.html

BIP2 Documentation, Release 2015.04 (RC7)

• The partial state semantics execution implemented by the multithread engine is equivalent to the one of the
global state semantics if the execution of components is side-effect free (i.e. the external code executed by a
component modifies only its local variables).

• Due to the partial state semantics and the concurrent execution of connectors, the multithread engine cannot
guarantee fairness of the execution of interactions and internal ports.

Notice that performances obtained when using the multithread engine depend on many factors, and may be worse than
the ones obtained when using the optimized engine. This is due to the overhead introduced by the use of threads and
threads synchronizations, which is inherent to the concurrent design implemented by the multithread engine.

6.6 Troubleshooting

6.6.1 libengine_path error when running cmake

If you get the following error:

CMake Error: The following variables are used in this project, but they are set to NOTFOUND.
Please set them or make sure they are set and tested correctly in the CMake files:
libengine_path

linked by target "system" in directory/output

It’s probably because you are trying to use a relative path for the BIP2_ENGINE_LIB_DIR. Always use absolute
paths!

6.6.2 Atom.hpp: No such file or directory error

If you get:

In file included from .../src/simple/AT_At1.cpp:3:
.../include/simple/AT_At1.hpp:6:20: error: Atom.hpp: No such file or directory

It’s probably because you are trying to use a relative path for one or both BIP2_ENGINE_GENERIC_DIR and
BIP2_ENGINE_SPECIFIC_DIR. Always use absolute paths !

6.6. Troubleshooting 57

BIP2 Documentation, Release 2015.04 (RC7)

58 Chapter 6. Installing & using available engines

CHAPTER

SEVEN

TUTORIAL

The following sections show how to use BIP on very simple examples. The first part presents general BIP recipes for
commonly used patterns. The second part shows more precisely how to interface BIP code with external C++ code
with running examples using the reference engine.

Important: All examples in this chapter are available online : http://www-
verimag.imag.fr/TOOLS/DCS/bip/examples.tar.gz. Every example contains a build.sh script that can be
used to compile the example. A master build_all.sh is also provided to compile all examples.

7.1 Hello world

This example will be the starting point for all other examples. In a file called HelloPackage.bip, write the
following BIP code:

package HelloPackage
port type HelloPort_t()

atom type HelloAtom()
port HelloPort_t p()
place START,END
initial to START
on p from START to END

end

compound type HelloCompound()
component HelloAtom c1()

end
end

This package contains 3 types:

• 1 port type HelloPort_t with no data parameter;

• 1 atom type HelloAtom with:

– 1 internal port declaration p of type HelloPort_t;

– 2 places: START, which is also the initial place, and END;

– 1 transition labeled by p from START to END

• 1 compound type HelloCompound with:

– 1 component declaration c1 of type HelloAtom.

59

http://www-verimag.imag.fr/TOOLS/DCS/bip/examples.tar.gz
http://www-verimag.imag.fr/TOOLS/DCS/bip/examples.tar.gz

BIP2 Documentation, Release 2015.04 (RC7)

The expected behavior, when considering a system with a component of type HelloCompound as the root, is a
deadlock after the only transition labelled by p is executed in the atom c1.

For the sake of the example, we want to show an execution of this model and thus we use the C++ back-end along
with the reference engine. But this is not mandatory (but as of this writing, it’s the only option to execute BIP).

Compile it using the following commands for producing C++ code that is compiled and linked with the reference
engine:

$ mkdir output
$ bipc.sh -I . -p HelloPackage -d "HelloCompound()"\

--gencpp-output output
$ mkdir output/build
$ cd output/build
$ cmake ..
[...]
$ make
[...]

And finally, run the produced system executable:

$./system
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: state #1: deadlock!

After the only transition is triggered, the system reaches a deadlock state, as expected.

7.2 Synchronizing components using interactions of BIP2

7.2.1 Rendez-vous between several components

We modify the example of Section Hello world so that we now have three instances of the atom type HelloAtom
instead of only one, and we force them to synchronize their single transition (i.e. the rendez-vous):

@cpp(include="stdio.h")
package HelloPackage

extern function printf(string, int)

port type HelloPort_t()

atom type HelloAtom(int id)
export port HelloPort_t p()
place START,END
initial to START
on p from START to END do {printf("Hello World from %d\n", id);}

end

connector type ThreeRendezVous(HelloPort_t p1, HelloPort_t p2, HelloPort_t p3)
define p1 p2 p3

end

compound type HelloCompound()
component HelloAtom c1(1), c2(2), c3(3)

60 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

connector ThreeRendezVous connect(c1.p, c2.p, c3.p)
end

end

The annotation @cpp() is explained later on and allows us to use the printf() from the C standard library. In
this example, we add a connector type ThreeRendezVous with three port parameters of type HelloPort_t. It
defines exactly one interaction that synchronizes the three ports.

Compile it using the following commands to produce C++ code that is compiled and linked with the reference engine:

$ bipc.sh -I . -p HelloPackage -d "HelloCompound()"\
--gencpp-output output

$ mkdir output/build
$ cd output/build
$ cmake ..
[...]
$ make
[...]

When running the executable, you can see that the transitions of the three atoms are triggered simultaneously. The
execution of the three atoms is sequentialized in an arbitrary order, e.g.:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 interaction:
[BIP ENGINE]: [0] ROOT.connect: ROOT.c1.p() ROOT.c2.p() ROOT.c3.p()
[BIP ENGINE]: -> choose [0] ROOT.connect: ROOT.c1.p() ROOT.c2.p() ROOT.c3.p()
Hello World from 1
Hello World from 2
Hello World from 3
[BIP ENGINE]: state #1: deadlock!

7.2.2 Broadcasting data to several components

We now consider an example composed of one component—the sender—that broadcasts an integer variable repre-
senting its identifier to three other components, the receivers. The corresponding BIP2 code is the following.

@cpp(include="stdio.h")
package HelloPackage

extern function printf(string, int)
extern function printf(string, int, int)

port type HelloPort_t(int d)

atom type HelloSender(int id)
data int myd
export port HelloPort_t p(myd)

place START, END

initial to START do { myd = id; }

on p from START to END
do { printf("I’m %d, sending Hello World....\n", myd); }

end

atom type HelloReceiver(int id)
data int myd

7.2. Synchronizing components using interactions of BIP2 61

BIP2 Documentation, Release 2015.04 (RC7)

export port HelloPort_t p(myd)

place START,END

initial to START

on p from START to END
provided (id == 1 || id == 3)
do { printf("I’m %d, Hello World received from %d\n", id, myd); }

end

connector type OneToThree(HelloPort_t s, HelloPort_t r1, HelloPort_t r2, HelloPort_t r3)
define s’ r1 r2 r3

on s r1 r2 r3 down { r1.d = s.d; r2.d = s.d; r3.d = s.d; }
on s r1 r2 down { r1.d = s.d; r2.d = s.d; }
on s r1 r3 down { r1.d = s.d; r3.d = s.d; }
on s r2 r3 down { r2.d = s.d; r3.d = s.d; }
on s r1 down { r1.d = s.d; }
on s r2 down { r2.d = s.d; }
on s r3 down { r3.d = s.d; }

end

compound type HelloCompound()
component HelloSender s(0)
component HelloReceiver r1(1), r2(2), r3(3)
connector OneToThree brd(s.p, r1.p, r2.p, r3.p)

end
end

In the connector type OneToThree, the port s corresponding to the sender is a trigger, that is, it can executes
alone without synchronizing with the other components. Since other ports are synchrons, OneToThree defines the
following interactions: ‘s‘, ‘s,r1‘, ‘s,r2‘, ‘s,r3‘, ‘s,r1,r2‘, ‘s,r1,r3‘, ‘s,r2,r3‘, and ‘s,r1,r2,r3‘.

To implement the broadcast of data from port s, we use a list of on statements that provide down blocks of code for
all the interactions involving at least one receiver. Notice that even if the interaction ‘s‘ is not included in this list, it
is still considered as a possible interaction, but no transfer of data occurs when ‘s‘ executes alone.

Due to the guard of the transition labelled by sync in the receivers, the interactions enabled after the execution of
initial transitions are the following: ‘s‘, ‘s,r1‘, ‘s,r3‘, and ‘s,r1,r3‘. As explained in Priorities, the application
of maximal progress (the default priority rules of BIP2) leads to the execution of the maximal interaction ‘s,r1,r3‘:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 interaction:
[BIP ENGINE]: [0] ROOT.brd: ROOT.s.p({d}=0;) ROOT.r1.p({d}=0;) ROOT.r3.p({d}=0;)
[BIP ENGINE]: -> choose [0] ROOT.brd: ROOT.s.p({d}=0;) ROOT.r1.p({d}=0;) ROOT.r3.p({d}=0;)
I’m 0, sending Hello World....
I’m 1, Hello World received from 0
I’m 3, Hello World received from 0
[BIP ENGINE]: state #1: deadlock!

We can obtain an equivalent behavior using a hierarchical connector. In this case, receivers are synchronized using a
connector sync of type SyncReceivers. sync allows any subset of receivers to participate to the broadcast. A
hierarchical connector is build on top of sync. For this, we add a broabcast between the sender and the exported port
of sync. In the block of code provided below we omitted the definitions of types HelloPort_t, HelloSender
and HelloReceiver since there are identical to the previous example.

62 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

Figure 7.1: Broadcast from s using a single connector (left) or a hierarchical connector (right).

@cpp(include="stdio.h")
package HelloPackage

// [...] definitions of HelloPort_t, HelloSender and HelloReceiver

connector type SyncRecvs(HelloPort_t r1, HelloPort_t r2, HelloPort_t r3)
data int d
export port HelloPort_t ep(d)
define r1’ r2’ r3’

on r1 r2 r3 down { r1.d = d; r2.d = d; r3.d = d; }
on r1 r2 down { r1.d = d; r2.d = d; }
on r1 r3 down { r1.d = d; r3.d = d; }
on r2 r3 down { r2.d = d; r3.d = d; }
on r1 down { r1.d = d; }
on r2 down { r2.d = d; }
on r3 down { r3.d = d; }

end

connector type OneToOne(HelloPort_t s, HelloPort_t c)
define s’ c
on s c down { c.d = s.d; }

end

compound type HelloCompound()
component HelloSender s(0)
component HelloReceiver r1(1), r2(2), r3(3)
connector SyncRecvs sync(r1.p, r2.p, r3.p)
connector OneToOne brd(s.p, sync.ep)

end
end

The computation of the interactions in the hierarchical connector composed of brd and sync is as follows. First,
all the enabled interactions of sync are computed, that is, ‘r1‘, ‘r3‘, and ‘r1,r3‘. Then, from these interactions
the enabled interactions of brd are computed leading to the following enabled interactions for brd: ‘s‘, ‘s,r1‘,
‘s,r3‘, and ‘s,r1,r3‘. The application of priorities (i.e. maximal progress) to the enabled interactions of brd
leads to the following execution:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 interaction:
[BIP ENGINE]: [0] ROOT.brd: ROOT.s.p({d}=0;) ROOT.sync.ep({d}=135026452;)
[BIP ENGINE]: -> choose [0] ROOT.brd: ROOT.s.p({d}=0;) ROOT.sync.ep({d}=135026452;)
I’m 0, sending Hello World....
I’m 1, Hello World received from 0
I’m 3, Hello World received from 0
[BIP ENGINE]: state #1: deadlock!

7.2. Synchronizing components using interactions of BIP2 63

BIP2 Documentation, Release 2015.04 (RC7)

7.2.3 Wrapping components in a compound

Suppose we want to wrap the 3 receivers of the previous example into a single compound component, while keeping
the same global behavior. We simply need to build a compound component including the three receivers and the
connector that synchronizes them, and export the port of the connector at the interface:

@cpp(include="stdio.h")
package HelloPackage

// [...] definitions of HelloPort_t, HelloSender, HelloReceiver,
// SyncReceivers and OneToOne

compound type RecvsCompound()
component HelloReceiver c1(1), c2(2), c3(3)
connector SyncRecvs sync(c1.p, c2.p, c3.p)

export port sync.ep as p
end

compound type HelloCompound()
component HelloSender s(0)
component RecvsCompound rcvrs()

connector OneToOne brd(s.p, rcvrs.p)
end

end

In this case, we obtain an equivalent execution sequence, that is:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 interaction:
[BIP ENGINE]: [0] ROOT.brd: ROOT.s.p({d}=0;) ROOT.rcvrs.p({d}=135034644;)
[BIP ENGINE]: -> choose [0] ROOT.brd: ROOT.s.p({d}=0;) ROOT.rcvrs.p({d}=135034644;)
I’m 0, sending Hello World....
I’m 1, Hello World received from 0
I’m 3, Hello World received from 0
[BIP ENGINE]: state #1: deadlock!

Figure 7.2: Structure of an instance of HelloCompound.

Notice that in the above example, only maximal interactions of sync are visible from brd, since priorities are applied
to exported port of compounds. The resulting behavior is equivalent to the one obtained when using a hierarchical
connector without encapsulating the receivers in a compound, but this is not the case in general, as explained as

64 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

follows.

Important: The behavior obtained when encapsulating a subset of components and connectors into a compound
component can be different from the one of the original model if guards are defined in connectors. This is due to the
fact that when the port of a connector is exported at the interface of a compound, the priorities are applied to the set of
interactions of the connector, that is, only the maximal interactions are visible from the port of the compound.

This execution sequence also shows a interesting point about data handling. At the beginning, we can see:

ROOT.rcvrs.p({d}=135038644;)

This value 135038644 shows that the corresponding data has never been initialized. Indeed, the compiler should
have given you several warnings similar to this one:

[WARNING] In path/to/HelloPackage.bip:
’up’ maybe missing: data associated with exported port won’t be "fresh" :

34:
35: on r1 r2 r3 down { r1.d = d; r2.d = d; r3.d = d; }

------------^
36: on r1 r2 down { r1.d = d; r2.d = d; }
37: on r1 r3 down { r1.d = d; r3.d = d; }

Please note that this is only a warning and not necessarily an error. As in this example, it can be completely valid to
omit up{} even with an exported port with data. As long as the entity bound to the exported port does not read port’s
data during the up{}, there is no problem. The engine still displays the value of the data, which has no meaningful
content.

Hint: As in almost every programming language, you should refrain from having uninitialized data: this practice is
very error prone and often leads to hard to detect bugs.

7.3 Hierarchy in BIP2

7.3.1 Hierarchical connectors

The following example shows interesting aspects of the use hierarchical connectors. It is composed of height atoms
A1, A2, ..., A8 that can execute only if they are active, that is, if their integer variable active equals to 1. They are
initially active.

Figure 7.3: Structure of the model: 8 atoms, 4 levels of connectors (names of connectors of type Plus are not shown).

We consider four layers of connectors. The first layer connects atoms two by two with the connectors plus12,
plus34, plus56, plus78 of type Plus. A connector plusIJ connects ports p of AI and AJ, and defines

7.3. Hierarchy in BIP2 65

BIP2 Documentation, Release 2015.04 (RC7)

interactions ‘AI.p‘, ‘AJ.p‘ and ‘AI.p,AJ.p‘, and exports the number of atoms participating to the interaction
through its port ep.

The second layer connects the connectors of the firt layer two by two, that is, plus1234 connects plus12 and
plus34, and plus5678 connects plus56 and plus78. Since plus1234 (resp. plus5678) is also of type
Plus, and exports the number of atoms participating to the interaction through its port ep.

The first layer consists of a single connector plus12345678 of type Plus connecting the connectors of the previous
layer (i.e. plus1234 and plus5678), and exporting the number of atoms participating to the interaction.

The last layer is the connector filter of type Filter, connecting the exported port of the connector of the previous
layer (i.e. plus12345678). It has a guard that allows the interaction ‘plus12345678.ep‘ only if the value
visible through the port ep of plus12345678 is less or equals than 4, and it set this value to zero as the interaction
‘plus12345678.ep‘ is executed:

@cpp(include="stdio.h")
package HelloPackage

extern function printf(string, int, int)

port type HelloPort_t(int d)

atom type HelloAtom(int id)
data int active
export port HelloPort_t p(active)

place LOOP

initial to LOOP
do { active = 1; }

on p from LOOP to LOOP
provided (active == 1)
do { printf("I’m %d, active=%d\n", id, active); }

end

connector type Plus(HelloPort_t r1, HelloPort_t r2)
data int number_of_active
export port HelloPort_t ep(number_of_active)
define r1’ r2’

on r1 r2
up { number_of_active = r1.d + r2.d; }
down {

r1.d = number_of_active;
r2.d = number_of_active;

}

on r1
up { number_of_active = r1.d; }
down { r1.d = number_of_active; }

on r2
up { number_of_active = r2.d; }
down { r2.d = number_of_active; }

end

connector type Filter(HelloPort_t r)
define r

66 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

on r provided (r.d <= 4) down { r.d = 0; }
end

compound type HelloCompound()
component HelloAtom A1(1), A2(2), A3(3), A4(4), A5(5), A6(6), A7(7), A8(8)

connector Plus plus12(A1.p, A2.p)
connector Plus plus34(A3.p, A4.p)
connector Plus plus56(A5.p, A6.p)
connector Plus plus78(A7.p, A8.p)

connector Plus plus1234(plus12.ep, plus34.ep)
connector Plus plus5678(plus56.ep, plus78.ep)

connector Plus plus12345678(plus1234.ep, plus5678.ep)

connector Filter filter(plus12345678.ep)
end

end

The behavior of instance of HelloCompound is as follows. The first layer of connectors enables interactions ‘A1.p‘,
‘A2.p‘, ..., ‘A8.p‘, ‘A1.p,A2.p‘, ‘A3.p,A4.p‘, ‘A5.p,A6.p‘, and ‘A7.p,A8.p‘. These interactions are all
visible from the exported port of the corresponding connectors. The second layer allows:

• any combination between interactions ‘A1.p‘, ‘A2.p‘, ‘A1.p,A2.p‘ and interactions ‘A3.p‘, ‘A4.p‘,
‘A3.p,A4.p‘ due to connector plus1234, and

• any combination between interactions ‘A5.p‘, ‘A6.p‘, ‘A5.p,A6.p‘ and interactions ‘A7.p‘, ‘A8.p‘,
‘A7.p,A8.p‘ due to connector plus5678.

That is, the second layer allows any interaction between a subset of the atoms ‘A1.p‘, ..., ‘A4.p‘, and any interaction
between a subset of the atoms ‘A5.p‘, ..., ‘A8.p‘. Similarly, the third layer of connectors (i.e. plus12345678)
allows any interaction between a subset the height atoms. This corresponds to a total number of 255 interactions
visible from the port ep of plus12345678. We provided for each exported port of connector the corresponding
number of enabled interactions in the figure. Notice that the value exported through this port for a given interaction
corresponds exactly to the number of atoms involved in this interaction.

Due to the guard defined in filter, the last layer of connectors limits the enabled interactions to the one that involve
less than, or equals to, four atoms. The number of interactions enabled by filter is 162 = 70 + 56 + 28 + 8, where 70
is the number of interactions involving 4 atoms, 56 is the number of interactions involving 3 atoms, 28 is the number
of interactions involving two atoms, and 8 is the number of interactions involving only one atom.

The application of maximal progress to the enabled interactions of filter leads to only 70 maximal interactions
which correspond to the interactions involving exaclty four atoms. Once such an interaction is chosen an executed, the
integer value associated to the port ep of plus12345678 is set to 0 by the function down of connector filter.
This value is propagated recursively by down functions of connectors of type Plus to the variables active of the
atoms involved in the executed interactions, and thus disabled their transition after their execution. As a result, there
is only one maximal interaction at the next state of the model, which involves the four atoms that have not been
executed by the previous execution of interaction. Its execution leads to a deadlock since all the atoms are inactive
(i.e. active==1 is false for all atoms).

A example of execution is provided below. It corresponds to the execution of ‘A1.p,A5.p,A7.p,A8.p‘ first, and
then ‘A2.p,A3.p,A4.p,A6.p‘. Notice that when atoms execute their transition, the value of active is 0 even if
its value is 1 before executing. This comes from the fact that, in BIP2, guards of atoms are tested at their stable states,
that is, before synchronizing. The execution of an interaction may involve modification of the variables of the atoms
due to down functions.

[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 70 interactions:

7.3. Hierarchy in BIP2 67

BIP2 Documentation, Release 2015.04 (RC7)

[BIP ENGINE]: [0] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [1] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [2] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [3] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [4] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [5] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [6] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [7] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [8] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [9] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [10] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [11] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [12] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [13] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [14] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [15] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [16] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [17] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [18] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [19] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [20] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [21] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [22] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [23] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [24] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [25] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [26] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [27] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [28] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [29] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [30] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [31] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [32] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [33] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [34] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [35] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [36] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [37] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [38] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [39] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [40] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [41] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [42] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [43] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [44] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [45] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [46] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [47] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [48] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [49] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [50] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [51] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [52] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [53] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [54] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [55] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [56] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [57] ROOT.filter: ROOT.plus12345678.ep({d}=4;)

68 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

[BIP ENGINE]: [58] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [59] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [60] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [61] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [62] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [63] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [64] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [65] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [66] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [67] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [68] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: [69] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: -> choose [21] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
I’m 1, active=0
I’m 5, active=0
I’m 7, active=0
I’m 8, active=0
[BIP ENGINE]: state #1: 1 interaction:
[BIP ENGINE]: [0] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
[BIP ENGINE]: -> choose [0] ROOT.filter: ROOT.plus12345678.ep({d}=4;)
I’m 2, active=0
I’m 3, active=0
I’m 4, active=0
I’m 6, active=0
[BIP ENGINE]: state #2: deadlock!

Notice that priorities—only maximal progress here—are applied globally to the hierarchical connector defined by the
four layers of connectors. Enabled interactions of the connectors of the first, second and third layers are all taken into
account, without applying maximal progress. The behavior would have been totally different if maximal progress was
applying locally: in this case, only the interaction involving all the atoms would be enabled by the fird layer, leading
to a deadlock due to the guard of filter. This happens if the example if modified by structuring the system using
compounds, as shown below.

7.3.2 Hierarchical components

The following example is a variant of the example of the previous section. We use a hierarchy of compounds instead
of a hierarchy of connectors, but the principle remains the same.

@cpp(include="stdio.h")
package HelloPackage

extern function printf(string, int, int)

port type HelloPort_t(int d)

atom type HelloAtom(int id)
data int active
export port HelloPort_t p(active)

place LOOP

initial to LOOP
do { active = 1; }

on p from LOOP to LOOP
provided (active == 1)
do { printf("I’m %d, active=%d\n", id, active); }

end

7.3. Hierarchy in BIP2 69

BIP2 Documentation, Release 2015.04 (RC7)

Figure 7.4: Structuring using compounds (names of connectors of type Plus are not shown).

connector type Plus(HelloPort_t r1, HelloPort_t r2)
data int number_of_active
export port HelloPort_t ep(number_of_active)
define r1’ r2’

on r1 r2
up { number_of_active = r1.d + r2.d; }
down { r1.d = number_of_active; r2.d = number_of_active; }

on r1
up { number_of_active = r1.d; }
down { r1.d = number_of_active; }

on r2
up { number_of_active = r2.d; }
down { r2.d = number_of_active; }

end

connector type Filter(HelloPort_t r)
define r
on r provided (r.d <= 4) down { r.d = 0; }

end

compound type Layer1(int first)
component HelloAtom A(first), B(first + 1)

connector Plus plus12(A.p, B.p)
export port plus12.ep as ep

end

compound type Layer2(int first)
component Layer1 L11(first), L12(first + 2)

connector Plus plus12(L11.ep, L12.ep)
export port plus12.ep as ep

end

70 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

compound type Layer3()
component Layer2 L21(1), L22(5)

connector Plus plus12(L21.ep, L22.ep)
export port plus12.ep as ep

end

compound type HelloCompound()
component Layer3 A12345678()

connector Filter filter(A12345678.ep)
end

end

We provided for each exported port of compound the corresponding number of enabled interactions in the figure.
When executing an instance HelloCompound we obtain the following execution sequence:

[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: deadlock!

7.4 Petri nets

Most of the use cases of the BIP2 language consider automata for the behavior of atoms. In BIP2, it is also possible
to use 1-safe Petri nets (see Petri net). The following BIP2 code is an example in which the behavior of an atom
is a 1-safe Petri net representing concurrent accesses of two processes to a shared resource. States of the first (resp.
second) process is represented by places GET1, USE1, SYNC1 (resp. GET2, USE2, SYNC2). The state of the resource
is represented by place RESOURCE: its is marked whenever the resource is free.

Transitions represents actions of the system. With get1_res (resp. get2_res) the first (resp. second) process
aquires the resource and use it (places USE1 or USE2). Transition free1_res (resp. free2_res) corresponds to
the release of the resource by the first (resp. second) process. Transition sync synchronizes the processes and reset
them to their initial states (places GET1 and GET2).

@cpp(include="stdio.h")
package HelloPetriNet

extern function printf(string)

port type Port()

atom type HelloAtom()
port Port get1_res(), get2_res(), free1_res(), free2_res(), sync()

place GET1, GET2, RESOURCE, USE1, USE2, SYNC1, SYNC2

initial to GET1, GET2, RESOURCE

on get1_res from GET1, RESOURCE to USE1
do { printf("1: get resource\n"); }

on get2_res from GET2, RESOURCE to USE2
do { printf("2: get resource\n"); }

on free1_res from USE1 to SYNC1, RESOURCE
do { printf("1: free resource\n"); }

on free2_res from USE2 to SYNC2, RESOURCE

7.4. Petri nets 71

BIP2 Documentation, Release 2015.04 (RC7)

do { printf("2: free resource\n"); }

on sync from SYNC1, SYNC2 to GET1, GET2
do { printf("1 & 2: synchronize\n"); }

end

compound type HelloCompound()
component HelloAtom A()

end
end

Initially, both processes may aquire the resource since places GET1, GET2, RESOURCE are all marked initially. The,
one of the two process aquires the resource leading to a state in which place RESOURCE is not marked. This ensure the
mutual exclusion between the use of the resource by the two processes: in this state, the other process cannot aquire
the resource. Once the resource is released by a process it is blocked at place SYNC1 or SYNC2, and the other process
aquire, use and release the resource. Then both processes are in places SYNC1 and SYNC2 enabling the transition
sync which leads to the initial state. An example of execution is provided below. Notice that we used the silent
execution mode of the engine to remove debug information.

$./system --silent
1: get resource
1: free resource
2: get resource
2: free resource
1 & 2: synchronize
1: get resource
1: free resource
2: get resource
2: free resource
1 & 2: synchronize
2: get resource
2: free resource
1: get resource
1: free resource
1 & 2: synchronize
...

7.5 Priorities

7.5.1 Priorities in atoms

The following example is composed of a single atom that can, at each state, either executes a transition labelled by the
internal port p, or a transition labelled by the internal port q.

package priorities_in_atom
port type Port()

atom type MyAtom()
port Port p(), q()

place LOOP

initial to LOOP

on p from LOOP to LOOP

72 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

on q from LOOP to LOOP
end

compound type Model()
component MyAtom a()

end
end

The execution of the C++ code obtained from the compilation of an instance of Model shows that at each state the
two internal ports p and q can be executed. Thus, the model defines at infinite number of execution sequences. In the
standard execution mode of the engine, the choice of the port is made randomly. A typical execution for this example
is the following:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 2 internal ports:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: [1] ROOT.a._iport_decl__q
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
[BIP ENGINE]: state #1: 2 internal ports:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: [1] ROOT.a._iport_decl__q
[BIP ENGINE]: -> choose [1] ROOT.a._iport_decl__q
[BIP ENGINE]: state #2: 2 internal ports:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: [1] ROOT.a._iport_decl__q
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
[BIP ENGINE]: state #3: 2 internal ports:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: [1] ROOT.a._iport_decl__q
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
...

Using priorities to inhibit the execution of port q

Wa can modify the following example to prevent from execution of the transition labelled by q by simply giving the
priority rule q < p in MyAtom. We could also use q < * which gives less priority to q than any other port:

package priorities_in_atom
port type Port()

atom type MyAtom()
port Port p(), q()

place LOOP

initial to LOOP

on p from LOOP to LOOP
on q from LOOP to LOOP

priority myPrio q < p
end

compound type Model()
component MyAtom a()

end
end

7.5. Priorities 73

BIP2 Documentation, Release 2015.04 (RC7)

In this case, only the transition corresponding to the internal port p can be executed. Notice that in this case the model
defines a single execution sequence, which is the following:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
[BIP ENGINE]: state #1: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
[BIP ENGINE]: state #2: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
[BIP ENGINE]: state #3: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
...

Priorities in an atom is a partial order between its internal ports. It is computed from the rules provided by priority
statements: it is the result of the application of the transitive closure to the rules. We modify the previous example as
follows. We add an internal port r such that no transition labelled by r is enabled during the execution. Instead of using
the priority rule q < p, we use rules q < r and r < p. Due to the computation of the transitive closure before
the application of priorities, only transition labelled by p can be executed, leading to the execution sequence of the
previous example (see above). Even if no transition labelled by r is enabled, the priority rule q < p is automatically
deduced from the rules q < r and r < p.

package priorities_in_atom
port type Port()

atom type MyAtom()
data int i
port Port p(), q(), r()

place LOOP, NON_REACHABLE

initial to LOOP
do { i=0; }

on p from LOOP to LOOP
do { i=i+1; }

on q from LOOP to LOOP
do { i=i+1; }

on r from NON_REACHABLE to NON_REACHABLE

priority myPrio1 q < r
priority myPrio2 r < p

end

compound type Model()
component MyAtom a()

end
end

Notice that a set of rule may define a cyclic relation. Adding the rule priority myPrio3 p < q to MyAtom in
the previous example leads to following error raised by the BIP2 compiler:

74 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

[SEVERE] In /home/to/example/priorities_in_atom.bip:
Cycle found in priorities in Atom type :

20:
21: priority myPrio1 q < r

------------^
22: priority myPrio2 r < p
23: priority myPrio3 p < q

Priorities may be also defined dynamically using guards involving variables. In this case, cycles are checked at run-
time. An example of dynamic priority can be found in the following section.

Using priorities to enforce an order of execution

We can also modify the previous example to execute both transitions labelled by ports p and q, but with imposing the
order of execution by using priorities. Assume we want to enforce that p and q are alternately executed, starting by p.
For this, we first add an integer variable i representing the state number of the atom, that is, it is initialized at 0 and
incremented every transition execution. We also give more priority to p for even state numbers, and more priority for
q for odd state numbers.

package priorities_in_atom
port type Port()

atom type MyAtom()
data int i
port Port p(), q()

place LOOP

initial to LOOP
do { i=0; }

on p from LOOP to LOOP
do { i=i+1; }

on q from LOOP to LOOP
do { i=i+1; }

priority myPrioEven q < p provided ((i%2) == 0)
priority myPrioOdd p < q provided ((i%2) == 1)

end

compound type Model()
component MyAtom a()

end
end

Notice that the compilation of the previous BIP2 code leads to the following warning due to the potential cycle in
priorities introduced by the rules myPrioEven and myPrioOdd:

[WARNING] In /home/to/example/priorities_in_atom.bip:
Cycle found in priorities in Atom type :

18:
19: priority myPrioEven q < p provided ((i%2) == 0)

------------^
20: priority myPrioOdd p < q provided ((i%2) == 1)
21: end

7.5. Priorities 75

BIP2 Documentation, Release 2015.04 (RC7)

This cycle can only occur if both guards ((i%2) == 0) and ((i%2) == 1) evaluates to true for the same state,
which can never happen (otherwise an error will be reported at run-time). The execution of the model corresponds to
the expected behavior, that is, the alternation of the execution of p and q. Notice that in this case, the model defines
also a single execution sequence, as follows:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
[BIP ENGINE]: state #1: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__q
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__q
[BIP ENGINE]: state #2: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
[BIP ENGINE]: state #3: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__q
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__q
[BIP ENGINE]: state #4: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
[BIP ENGINE]: state #5: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__q
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__q
[BIP ENGINE]: state #6: 1 internal port:
[BIP ENGINE]: [0] ROOT.a._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.a._iport_decl__p
...

If guards of priorities myPrioEven are myPrioOdd are enabled at the same state of the model an error is reported
when executing the model, e.g. if both guards are ((i%2) == 0) the execution is as follows:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: ERROR: cycle in priorities! (p < q < p)

7.5.2 Priorities in compounds

Similarly to the use of priorities in atoms, when several interactions are enabled at a given state of a compound,
priorities can be used to prevent some of them from executing.

package priorities_in_compound
port type Port()

atom type MyAtom(int enabled)
export port Port p()

place SYNC, END

initial to SYNC

on p from SYNC to END
provided (enabled == 1)

end

connector type Broadcast(Port p, Port q, Port r)
define p’ q r

76 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

on p provided (false)
end

compound type Model()
component MyAtom A(1), B(1), C(0)
component MyAtom D(1), E(1), F(1)

connector Broadcast brdABC(A.p, B.p, C.p)
connector Broadcast brdDEF(D.p, E.p, F.p)

end
end

In the above example, we synchronize components A, B, C, D E, F using two connectors brdABC and brdDEF of
type Broadcast. Since ports p of A is considered as a trigger in connector brdABC, brdABC defines (statically)
interactions ‘A.p‘, ‘A.p,B.p‘, ‘A.p,C.p‘ and ‘A.p,B.p,C.p‘. Similarly, brdDEF defines ‘D.p‘, ‘D.p,E.p‘,
‘D.p,F.p‘ and ‘D.p,E.p,F.p‘. Due to the guard false in Broadcast, interactions ‘A.p‘ and ‘D.p‘ are dis-
abled. Moreover, due to the guard (enabled == 1) in MyAtom and the parameter 0 of C, interactions A.p,C.p‘
and ‘A.p,B.p,C.p‘ are also disabled. As a result, interactions enabled after initialization are: ‘A.p,B.p‘ in
brdABC and ‘D.p,E.p‘, ‘D.p,F.p‘ and ‘D.p,E.p,F.p‘ in brdDEF.

In BIP2, maximal progress is considered as default priorities. Given a connector, maximal progress gives higher pri-
ority to larger interactions. In the above example, interactions ‘D.p,E.p‘ and ‘D.p,F.p‘ of connector brdDEF are
not maximal since a larger interaction—‘D.p,E.p,F.p‘—is enabled in the same connector. As a result, execution
sequences of instances of Model corresponds to the execution of ‘A.p,B.p‘ and ‘D.p,E.p,F.p‘ in an arbitrary
order, that is, either the following execution sequence if ‘A.p,B.p‘ is executed first:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 2 interactions:
[BIP ENGINE]: [0] ROOT.brdABC: ROOT.A.p() ROOT.B.p()
[BIP ENGINE]: [1] ROOT.brdDEF: ROOT.D.p() ROOT.E.p() ROOT.F.p()
[BIP ENGINE]: -> choose [0] ROOT.brdABC: ROOT.A.p() ROOT.B.p()
[BIP ENGINE]: state #1: 1 interaction:
[BIP ENGINE]: [0] ROOT.brdDEF: ROOT.D.p() ROOT.E.p() ROOT.F.p()
[BIP ENGINE]: -> choose [0] ROOT.brdDEF: ROOT.D.p() ROOT.E.p() ROOT.F.p()
[BIP ENGINE]: state #2: deadlock!

or the following execution sequence if ‘D.p,E.p,F.p‘ is executed first:
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 2 interactions:
[BIP ENGINE]: [0] ROOT.brdABC: ROOT.A.p() ROOT.B.p()
[BIP ENGINE]: [1] ROOT.brdDEF: ROOT.D.p() ROOT.E.p() ROOT.F.p()
[BIP ENGINE]: -> choose [1] ROOT.brdDEF: ROOT.D.p() ROOT.E.p() ROOT.F.p()
[BIP ENGINE]: state #1: 1 interaction:
[BIP ENGINE]: [0] ROOT.brdABC: ROOT.A.p() ROOT.B.p()
[BIP ENGINE]: -> choose [0] ROOT.brdABC: ROOT.A.p() ROOT.B.p()
[BIP ENGINE]: state #2: deadlock!

Using priorities to enforce an order of execution

We can modify the previous example to enfore the execution of the interaction ‘D.p,E.p,F.p‘ of brdDEF before
the execution of the interaction ‘A.p,B.p‘ of brdABC. For this, we add the following priority rule in Model:

priority scheduler brdABC:A.p,B.p < brdDEF:D.p,E.p,F.p

This ensures that the model has a single execution sequence which is the following:

7.5. Priorities 77

BIP2 Documentation, Release 2015.04 (RC7)

...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 interaction:
[BIP ENGINE]: [1] ROOT.brdDEF: ROOT.D.p() ROOT.E.p() ROOT.F.p()
[BIP ENGINE]: -> choose [0] ROOT.brdDEF: ROOT.D.p() ROOT.E.p() ROOT.F.p()
[BIP ENGINE]: state #1: 1 interaction:
[BIP ENGINE]: [0] ROOT.brdABC: ROOT.A.p() ROOT.B.p()
[BIP ENGINE]: -> choose [0] ROOT.brdABC: ROOT.A.p() ROOT.B.p()
[BIP ENGINE]: state #2: deadlock!

Notice that after initialization, only interaction ‘D.p,E.p,F.p‘ is listed by the engine, since it can only exe-
cutes maximal interactions. Replacing the priority rule scheduler by brdABC:A.p,B.p,C.p < brdDEF:
D.p leads to the same execution sequence. This is due to the fact that priorities are computed as the transi-
tive closure of the union of maximal progress and the priority rules provided by priority statements. Even
if interactions ‘A.p,B.p,C.p‘ is not enabled by brdABC, and interaction D.p is not enabled by brdDEF,
priority rule brdABC:A.p,B.p < brdDEF: D.p,E.p,F.p is deduced from maximal progress that en-
forces brdABC:A.p,B.p < brdABC:A.p,B.C.p and brdDEF: D.p < brdDEF:D.p,E.p,F.p, and
from brdABC:A.p,B.p,C.p < brdDEF: D.p.

Notice also that priority rules must only involve interactions that are defined by the connectors (i.e. by the ex-
pression provided with the statement define). As a result, if the priority rule scheduler is replaced by
brdABC:A.p,B.p,C.p < brdDEF: E.p, an error is reported when compiling the model:

[SEVERE] In /home/to/example/priorities_in_compound.bip:
Interaction not allowed as not defined by connector type :

26:
27: priority scheduler brdABC:A.p,B.p,C.p < brdDEF:E.p

--^
28: end
29: end

Dynamic priorities and invisible states

In the following example, the components A and B represent potential users of a resource which is represented by the
component R. When a user A or B reaches the place FREE, it set its variable free to 1 which is exported to inform
that it is not using the resource R. The variable free or a user is set to O when it leaves the place FREE to inform
that it reaches the place WAIT from which it may use the resource. To prevent from concurrent use of the resource, a
scheduler has been implemented using priorities, as explained as follows. It gives more priority to B provided B is in
place FREE, that is, its variable free equals to O. Notice that use of ‘*‘ in the priority rule: it gives less priority to
interactions of defined in A_utilize_R than any interaction defined in any connector except A_utilize_R.

package priorities_invisible
port type Port()

atom type Resource()
export port Port utilize()

place WAIT

initial to WAIT

on utilize from WAIT to WAIT
end

atom type UserOfRessource()
export data int free
export port Port utilize()

78 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

place WAIT, FREE

initial to WAIT
do { free = 0; }

on utilize from WAIT to FREE
do { free = 1; }

internal from FREE to WAIT
do { free = 0; }

end

connector type RDV(Port p, Port q)
define p q

end

compound type Model()
component Resource R()
component UserOfRessource A(), B()

connector RDV A_utilize_R(A.utilize, R.utilize)
connector RDV B_utilize_R(B.utilize, R.utilize)

priority scheduler A_utilize_R:* < *:* provided (B.free == 0)
end

end

When compiling and executing an instance of Model, we obtain an execution in which only component B is executing.
This comes from the fact that the transition from place FREE to place WAIT in B is internal, that is, it is the state of B
before the its execution is invisible. As a result, interactions of A_utilize_R can never executes since the visible
value of B.free is always 0.
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 interaction:
[BIP ENGINE]: [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: -> choose [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: state #1: 1 interaction:
[BIP ENGINE]: [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: -> choose [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: state #2: 1 interaction:
[BIP ENGINE]: [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: -> choose [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: state #3: 1 interaction:
[BIP ENGINE]: [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: -> choose [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
...

The problem can be fixed by using a transition labelled by an internal port instead of an internal transition. A correct
version of UserOfRessource is provided below.

atom type UserOfRessource()
export data int free
port Port notfree()
export port Port utilize()

place WAIT, FREE

initial to WAIT

7.5. Priorities 79

BIP2 Documentation, Release 2015.04 (RC7)

do { free = 0; }

on utilize from WAIT to FREE
do { free = 1; }

on notfree from FREE to WAIT
do { free = 0; }

end

The corresponding execution involves both components A and B. A can only be executed when component B is in
place FREE.
...
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 interaction:
[BIP ENGINE]: [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: -> choose [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: state #1: 1 interaction and 1 internal port:
[BIP ENGINE]: [0] ROOT.A_utilize_R: ROOT.A.utilize() ROOT.R.utilize()
[BIP ENGINE]: [1] ROOT.B._iport_decl__notfree
[BIP ENGINE]: -> choose [0] ROOT.B._iport_decl__notfree
[BIP ENGINE]: state #2: 1 interaction:
[BIP ENGINE]: [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: -> choose [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: state #3: 1 interaction and 1 internal port:
[BIP ENGINE]: [0] ROOT.A_utilize_R: ROOT.A.utilize() ROOT.R.utilize()
[BIP ENGINE]: [1] ROOT.B._iport_decl__notfree
[BIP ENGINE]: -> choose [0] ROOT.B._iport_decl__notfree
[BIP ENGINE]: state #4: 1 interaction:
[BIP ENGINE]: [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: -> choose [0] ROOT.B_utilize_R: ROOT.B.utilize() ROOT.R.utilize()
[BIP ENGINE]: state #5: 1 interaction and 1 internal port:
[BIP ENGINE]: [0] ROOT.A_utilize_R: ROOT.A.utilize() ROOT.R.utilize()
[BIP ENGINE]: [1] ROOT.B._iport_decl__notfree
[BIP ENGINE]: -> choose [0] ROOT.A_utilize_R: ROOT.A.utilize() ROOT.R.utilize()
...

7.6 Using the C++ back-end

7.6.1 Hello World using a preinstalled library

The initial Hello World example does not display anything on its own. In this example, we add such simple display by
using the common printf() from standard C library.

Change the initial example to match the following:

@cpp(include="stdio.h")
package HelloPackage

extern function printf(string)

port type HelloPort_t()

atom type HelloAtom()
port HelloPort_t p()
place START,END
initial to START
on p from START to END do { printf("Hello World!\n"); }

80 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

end

compound type HelloCompound()
component HelloAtom c1()

end
end

The annotation instructs the code generator to include the stdio.h C standard library in the generated code for this
package. This allows the use of printf().

The compilation stays the same:

$ bipc.sh -I . -p HelloPackage -d "HelloCompound()" \
--gencpp-output output

$ mkdir output/build
$ cd output/build
$ cmake ..
[...]
$ make
[...]

When running the example, you can see our printf() being executed when the transition is fired:

[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.c1._iport_decl__p
Hello World
[BIP ENGINE]: state #1: deadlock!

7.6.2 Hello World with external code

Let’s modify again our example. This time, we will also provide the code needed for printing the message to the
console instead of relying directly on a standard library.

Change the previous HelloPackage.bip by adding an extra annotation on the package definition:

@cpp(src="ext-cpp/HelloPackage.cpp",include="HelloPackage.hpp")
package HelloPackage

extern function my_print(string)

port type HelloPort_t()

atom type HelloAtom()
port HelloPort_t p()
place START,END
initial to START
on p from START to END do { my_print("Hello World!\n"); }

end

compound type HelloCompound()
component HelloAtom c1()

end
end

Along with the BIP file, you need to create the external code that will provide the my_print("....") function:

• the interface (ie. HelloPackage.hpp) that you need to put in a directory that will be included in the C++
compiler search path.

7.6. Using the C++ back-end 81

BIP2 Documentation, Release 2015.04 (RC7)

• the implementation (ie. HelloPackage.cpp) corresponding to the previous interface.

Any directory layout can be used. We propose the following as example:
.
÷-- ext-cpp
| ÷-- HelloPackage.cpp
| ‘-- HelloPackage.hpp
‘-- HelloPackage.bip

With the following content for HelloPackage.hpp:

void my_print(const char *message);

And for HelloPackage.cpp:

#include <iostream>

void my_print(const char *message){
std::cout << "Someone says: " << message;

}

Then, compile it using the following commands:

$ bipc.sh -I . -p HelloPackage -d "HelloCompound()"\
--gencpp-output output \
--gencpp-cc-I $PWD/ext-cpp

$ mkdir output/build
$ cd output/build
$ cmake ..
[...]
$ make
[...]

The --gencpp-cc-I is used to included the directory containing our .hpp file to the C++ compiler include paths
list.

And finally, run the produced system executable:

$./system
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.c1._iport_decl__p
Someone says: Hello World
[BIP ENGINE]: state #1: deadlock!

7.6.3 Hello World with data and external code

In this example, we modify again our Hello World, this time to pass some data to the external code.

The new BIP code is now:

@cpp(src="ext-cpp/HelloPackage.cpp",include="HelloPackage.hpp")
package HelloPackage

extern function my_print(string, int)

port type HelloPort_t()

atom type HelloAtom()

82 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

data int somedata
port HelloPort_t p()
place START,END
initial to START do { somedata = 0; }
on p from START to END do {my_print("Hello World", somedata);}

end

compound type HelloCompound()
component HelloAtom c1()

end
end

The my_print() is changed to accept an extra int parameter. Note that this parameter is a C++ reference: the
function has access to the real data, not a copy.

HelloPackage.hpp:

void my_print(const char *message, int &adata);

HelloPackage.cpp:

#include <iostream>

void my_print(const char *message, int &adata){
std::cout << "Someone says: " << message << " with data=" << adata << std::endl;

}

The compilation is still the same:

$ bipc.sh -I . -p HelloPackage -d "HelloCompound()"\
--gencpp-output output \
--gencpp-cc-I $PWD/ext-cpp

$ mkdir output/build
$ cd output/build
$ cmake ..
[...]
$ make
[...]

When running the executable, we can see that the value for the data is correctly display:

[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.c1._iport_decl__p
Someone says: Hello World with data=0
[BIP ENGINE]: state #1: deadlock!

7.6.4 Hello World with data modified by external code

The previous example simply shows how to read data received from BIP inside external code. The external code can
also modify this code (if called from a context that allows the modification of the data). We add a new my_modify()
function in our external code that only modifies its integer parameter.

The new BIP code:

@cpp(src="ext-cpp/HelloPackage.cpp",include="HelloPackage.hpp")
package HelloPackage

extern function my_modify(int)

7.6. Using the C++ back-end 83

BIP2 Documentation, Release 2015.04 (RC7)

extern function my_print(string, int)

port type HelloPort_t()

atom type HelloAtom()
data int somedata
port HelloPort_t p()
place START, S, END
initial to START do { somedata = 0; }
on p from START to S do { my_modify(somedata); }
on p from S to END do { my_print("Hello World", somedata);}

end

compound type HelloCompound()
component HelloAtom c1()

end
end

The new HelloPackage.hpp:

void my_print(const char *message, int &adata);
void my_modify(int &adata);

And the corresponding HelloPackage.cpp:

#include <iostream>

void my_print(const char *message, int &adata){
std::cout << "Someone says: " << message << " with data=" << adata << std::endl;

}

void my_modify(int &adata){
adata = 999;

}

The compilation is still the same:

$ bipc.sh -I . -p HelloPackage -d "HelloCompound()"\
--gencpp-output output \
--gencpp-cc-I $PWD/ext-cpp

$ mkdir output/build
$ cd output/build
$ cmake ..
[...]
$ make
[...]

When running the example, we can see that the integer is correctly modified:

$./system
[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: state #1: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.c1._iport_decl__p
Someone says: Hello World with data=999
[BIP ENGINE]: state #2: deadlock!

84 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

7.6.5 Hello World with external code called from const context

When calling function from const context (eg. connector’s up, all guards), one must take extra care when interfacing
the external code using data. Again, we extend our HelloPackage by adding a guard calling an external function
called my_guard() that accesses the component’s data.

The new BIP:

@cpp(src="ext-cpp/HelloPackage.cpp",include="HelloPackage.hpp")
package HelloPackage

extern function bool my_guard(int)
extern function my_modify(int)
extern function my_print(string, int)

port type HelloPort_t()

atom type HelloAtom()
data int somedata
port HelloPort_t p(), positive(), negative()
place START, S, END
initial to START do { somedata = 0; }
on p from START to S do { my_modify(somedata); }
on negative from S to END

provided (my_guard(somedata))
do {my_print("Positive data", somedata);}

on positive from S to END
provided (!my_guard(somedata))
do {my_print("Negative data", somedata);}

end

compound type HelloCompound()
component HelloAtom c1()

end
end

Note that the new HelloPackage.hpp includes the declaration of const_my_guard() and not my_guard().
This is because our BIP calls my_guard() from a const context:

void my_print(const char *message, int &adata);
void my_modify(int &adata);
bool const_my_guard(int &adata);

The corresponding HelloPackage.cpp:

#include <iostream>

void my_print(const char *message, int &adata){
std::cout << "Someone says: " << message << " with data=" << adata << std::endl;

}

void my_modify(int &adata){
adata = 999;

}

bool const_my_guard(int &adata){
return adata > 0;

}

The compilation is still the same:

7.6. Using the C++ back-end 85

BIP2 Documentation, Release 2015.04 (RC7)

$ bipc.sh -I . -p HelloPackage -d "HelloCompound()"\
--gencpp-output output \
--gencpp-cc-I $PWD/ext-cpp

$ mkdir output/build
$ cd output/build
$ cmake ..
[...]
$ make
[...]

When executing, we can see that the transition for the positive transition is fired:

[BIP ENGINE]: initialize components...
[BIP ENGINE]: state #0: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: -> choose [0] ROOT.c1._iport_decl__p
[BIP ENGINE]: state #1: 1 internal port:
[BIP ENGINE]: [0] ROOT.c1._iport_decl__negative
[BIP ENGINE]: -> choose [0] ROOT.c1._iport_decl__negative
Someone says: Positive data with data=999
[BIP ENGINE]: state #2: deadlock!

7.6.6 Using custom type

We will now use custom type in a simple rendez-vous example involving 3 atoms. The expected behavior is very
simple:

• each atom calls the init_data() function to initialize its internal data. All atoms get different values.

• they all synchronize and the connector takes the values from the 3rd atom and writes it in the other 2 atoms.

The atoms display their data before and after the synchronization.

For using a custom type, we need:

• to declare the type in the BIP source

• to define the type in the C++ extern code

In this example, we don’t provide serialization support (this will be demonstrated in the next example).

The source code files are given below.

HelloPackage.bip:

@cpp(src="ext-cpp/HelloPackage.cpp",include="HelloPackage.hpp")
package HelloPackage

extern data type my_custom_type
extern function init_data(int, my_custom_type)
extern function print_data(int, my_custom_type)

port type HelloPort_t(my_custom_type d)

atom type HelloAtom(int id)
data my_custom_type d
export port HelloPort_t p(d)
place START,END
initial to START do {init_data(id, d); print_data(id, d);}
on p from START to END do {print_data(id, d);}

end

86 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

connector type ThreeRendezVous(HelloPort_t p1, HelloPort_t p2, HelloPort_t p3)
define p1 p2 p3
on p1 p2 p3 down { p1.d = p3.d; p2.d = p3.d; }
end

compound type HelloCompound()
component HelloAtom c1(1), c2(2), c3(3)
connector ThreeRendezVous connect(c1.p, c2.p, c3.p)

end
end

HelloPackage.hpp:

#ifndef HP_HPP
#define HP_HPP

typedef struct {
int x,y;

} my_custom_type;

void print_data(int id, my_custom_type &adata);
void init_data(int id, my_custom_type &adata);

#endif

HelloPackage.cpp:

#include <iostream>
#include "HelloPackage.hpp"

void print_data(int id, my_custom_type &adata){
std::cout << "Data for: " << id << " = " << adata.x

<< "," << adata.y << std::endl;
}

void init_data(int id, my_custom_type &adata){
adata.x = id * 2;
adata.y = id * 8;

}

As we don’t provide any support for serializing our my_custom_type data type, we need to turn off the generation
of serialization code in atoms:

$ bipc.sh -I . -p HelloPackage -d "HelloCompound()"\
--gencpp-output output \
--gencpp-cc-I $PWD/ext-cpp \
--gencpp-no-serial

$ mkdir output/build
$ cd output/build
$ cmake ..
[...]
$ make
[...]

When executing, we get the following trace:

[BIP ENGINE]: initialize components...
Data for: 1 = 2,8
Data for: 2 = 4,16

7.6. Using the C++ back-end 87

BIP2 Documentation, Release 2015.04 (RC7)

Data for: 3 = 6,24
[BIP ENGINE]: state #0: 1 interaction:
[BIP ENGINE]: [0] ROOT.connect: ROOT.c1.p(-) ROOT.c2.p(-) ROOT.c3.p(-)
[BIP ENGINE]: -> choose [0] ROOT.connect: ROOT.c1.p(-) ROOT.c2.p(-) ROOT.c3.p(-)
Data for: 1 = 6,24
Data for: 2 = 6,24
Data for: 3 = 6,24
[BIP ENGINE]: state #1: deadlock!

7.6.7 Adding serialization support for custom type

Serialization support is useful as the data values are displayed in execution trace. In order to support serialization for
custom types, you need to provide a function for the << operator:

ostream& operator<<(ostream &o, const CustomType &value);

All the work for adding the support takes place in the external C++ code; the BIP source file is the same as the previous
example.

We provide below the modified version of the external code.

HelloPackage.hpp:

#ifndef HP_HPP
#define HP_HPP

#include <iostream>

struct __my_custom_type;

struct __my_custom_type {
int x,y;
friend std::ostream& operator<<(std::ostream &o, const struct __my_custom_type &value);

};

typedef struct __my_custom_type my_custom_type;

void print_data(int id, my_custom_type &adata);
void init_data(int id, my_custom_type &adata);

#endif

HelloPackage.cpp:

#include "HelloPackage.hpp"

void print_data(int id, my_custom_type &adata){
std::cout << "Data for: " << id << " = " << adata.x

<< "," << adata.y << std::endl;
}

void init_data(int id, my_custom_type &adata){
adata.x = id * 2;
adata.y = id * 8;

}

std::ostream& operator<<(std::ostream &o, const struct __my_custom_type &value){
o << "[" << value.x << ", " << value.y << "]";

88 Chapter 7. Tutorial

BIP2 Documentation, Release 2015.04 (RC7)

return o;
}

Compile the code without the --gencpp-no-serial:

$ bipc.sh -I . -p HelloPackage -d "HelloCompound()"\
--gencpp-output output \
--gencpp-cc-I $PWD/ext-cpp

$ mkdir output/build
$ cd output/build
$ cmake ..
[...]
$ make
[...]

We can check that our serialization code is correctly use by reading the execution trace:

[BIP ENGINE]: initialize components...
Data for: 1 = 2,8
Data for: 2 = 4,16
Data for: 3 = 6,24
[BIP ENGINE]: state #0: 1 interaction:
[BIP ENGINE]: [0] ROOT.connect: ROOT.c1.p({d}=[2, 8];) ROOT.c2.p({d}=[4, 16];) ROOT.c3.p({d}=[6, 24];)
[BIP ENGINE]: -> choose [0] ROOT.connect: ROOT.c1.p({d}=[2, 8];) ROOT.c2.p({d}=[4, 16];) ROOT.c3.p({d}=[6, 24];)
Data for: 1 = 6,24
Data for: 2 = 6,24
Data for: 3 = 6,24
[BIP ENGINE]: state #1: deadlock!

Important: In this example, we used a regular C struct type, but you can of course use C++ classes (which are
basically the same as structs).

7.6.8 Debugging at the BIP level

By using the gencpp-enable-bip-debug, it is possible to use the GDB on the BIP source code and not only on
the generated C++ code.

Let’s reuse previous example that makes use of external code and modify atom data:

@cpp(src="ext-cpp/HelloPackage.cpp",include="HelloPackage.hpp")
package HelloPackage

extern function my_modify(int)
extern function my_print(string, int)

port type HelloPort_t()

atom type HelloAtom()
data int somedata
port HelloPort_t p()
place START, S, END
initial to START do {

somedata = 0;
}
on p from START to S do {

my_modify(somedata);
}
on p from S to END do {

7.6. Using the C++ back-end 89

BIP2 Documentation, Release 2015.04 (RC7)

my_print("Hello World", somedata);
}

end

compound type HelloCompound()
component HelloAtom c1()

end
end

And the two externals files. HelloPackage.cpp:

#include <iostream>

void my_print(const char *message, int &adata){
std::cout << "Someone says: " << message << " with data=" << adata << std::endl;

}

void my_modify(int &adata){
adata = 999;

}

and HelloPackage.hpp:

void my_print(const char *message, int &adata);
void my_modify(int &adata);

You can ask GDB to add a breakpoint on any transation guard/action by giving the file+line number, as you would
with regular C/C++ debugging (you can use file completion):

(gdb) b HelloPackage.bip:16
Breakpoint 1 at 0x805f649:

qfile /path/to/debug_bip_level/HelloPackage.bip, line 16. (4 locations)
(gdb) r
Starting program: /path/to/debug_bip_level/build/system

Breakpoint 1, AT_HelloAtom::initialize (this=0x8082de0) at
/path/to/debug_bip_level/HelloPackage.bip:16

Current language: auto
The current source language is "auto; currently c++".

GDB displays correctly the position within BIP source code:

|12 on p from START to S do {
|13 my_modify(somedata);
|14 }
|15 on p from S to END do {

B+>|16 my_print("Hello World", somedata);
|17 }
|18 end
|19
|20 compound type HelloCompound()
|21 component HelloAtom c1()

You can of course set breakpoint in your external code:

(gdb) b HelloPackage.cpp:8
Breakpoint 2 at 0x80665a8: file /path/to/debug_bip_level/ext-cpp/HelloPackage.cpp, line 8.

90 Chapter 7. Tutorial

CHAPTER

EIGHT

BIP 2 GRAMMAR

The full grammar is given with antlr syntax. The Java code & some header have been omited for readability.

grammar Bip2;

CT_INT : ’int’;
CT_BOOL : ’bool’;
CT_FLOAT: ’float’;
CT_STRING: ’string’;

TRUE : ’true’;
FALSE : ’false’;
REFINE : ’refine’;
EXTERN : ’extern’;
EXPORT : ’export’;
FUNCTION : ’function’;
OPERATOR : ’operator’;
DEFINE : ’define’;
DATA : ’data’;
PACKAGE : ’package’;
END : ’end’;
USE : ’use’;
AS : ’as’;
ATOM : ’atom’;
COMPOUND: ’compound’;
COMPONENT

: ’component’;
ON : ’on’;
INTERNAL : ’internal’;
DO : ’do’;
PROVIDED: ’provided’;
INITIAL : ’initial’;
PLACE : ’place’;
FROM : ’from’;
TO : ’to’;
PRIORITY: ’priority’;
CONNECTOR

: ’connector’;
UP_ACTION : ’up’;
DOWN_ACTION : ’down’;
PORT : ’port’;
TYPE : ’type’;
CONST : ’const’;
LPAREN : ’(’;
RPAREN : ’)’;
LBRACE : ’{’;

91

BIP2 Documentation, Release 2015.04 (RC7)

RBRACE : ’}’;
COMMA : ’,’;
QUOTE : ’\’’;
DOT : ’.’;
SEMICOL : ’;’;
COLON : ’:’;
AT : ’@’;

IF : ’if’;
THEN : ’then’;
ELSE : ’else’;
FI : ’fi’;

ID : (’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’0’..’9’|’_’)*
;

INT : ’0’..’9’+
;

FLOAT
: (’0’..’9’)+ DOT (’0’..’9’)* EXPONENT?
| DOT (’0’..’9’)+ EXPONENT?
| (’0’..’9’)+ EXPONENT
;

COMMENT
: ’//’ ~(’\n’|’\r’)* ’\r’? ’\n’ {$channel=HIDDEN;}
| ’/*’ (options {greedy=false;} : .)* ’*/’ {$channel=HIDDEN;}
;

WS : (’ ’
| ’\t’
| ’\r’
| ’\n’
) {$channel=HIDDEN;}

;

STRING
: ’"’ (ESC_SEQ | ~(’\\’|’"’))* ’"’
;

fragment
EXPONENT : (’e’|’E’) (’+’|’-’)? (’0’..’9’)+ ;

fragment
HEX_DIGIT : (’0’..’9’|’a’..’f’|’A’..’F’) ;

fragment
ESC_SEQ

: ’\\’ (’b’|’t’|’n’|’f’|’r’|’\"’|’\’’|’\\’)
| UNICODE_ESC
| OCTAL_ESC
;

fragment
OCTAL_ESC

: ’\\’ (’0’..’3’) (’0’..’7’) (’0’..’7’)

92 Chapter 8. BIP 2 Grammar

BIP2 Documentation, Release 2015.04 (RC7)

| ’\\’ (’0’..’7’) (’0’..’7’)
| ’\\’ (’0’..’7’)
;

fragment
UNICODE_ESC

: ’\\’ ’u’ HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT
;

LT_OP : ’<’;
GT_OP : ’>’;
LE_OP : ’<=’;
GE_OP : ’>=’;
EQ_OP : ’==’;
NE_OP : ’!=’;
AND_OP : ’&&’;
OR_OP : ’||’;
NOT_OP : ’!’;

PLUS_OP : ’+’;
MINUS_OP: ’-’;
MULT_OP : ’*’;
DIV_OP : ’/’;
MOD_OP : ’%’;

BWISE_AND_OP : ’&’;
BWISE_OR_OP : ’|’;
BWISE_XOR_OP : ’^’;
BWISE_NOT_OP : ’~’;

ASSIGN_OP : ’=’;

binary_operator
: comparison_operator
| arithmetic_binary_operator
| bwise_binary_operator
| logical_binary_operator
;

unary_operator
: arithmetic_unary_operator
| bwise_unary_operator
| logical_unary_operator
;

comparison_operator
: EQ_OP | NE_OP | GT_OP | GE_OP | LT_OP | LE_OP
;

arithmetic_binary_operator
: PLUS_OP | MINUS_OP | MULT_OP | DIV_OP | MOD_OP
;

arithmetic_unary_operator
: PLUS_OP | MINUS_OP
;

bwise_binary_operator

93

BIP2 Documentation, Release 2015.04 (RC7)

: BWISE_AND_OP | BWISE_OR_OP | BWISE_XOR_OP
;

bwise_unary_operator
: BWISE_NOT_OP
;

logical_binary_operator
: AND_OP | OR_OP
;

logical_unary_operator
: NOT_OP
;

fully_qualified_name
: ID (DOT ID)*
;

simple_name
: ID
;

bip_package
: annotation*
PACKAGE fully_qualified_name
(USE fully_qualified_name)*
annotated_const_data_declaration*
annotated_extern_data_type*
annotated_extern_prototype*
annotated_type_definition*
END

;

annotated_extern_prototype
: annotated_extern_function_prototype
| annotated_extern_binary_operator_prototype
| annotated_extern_unary_operator_prototype
;

annotated_extern_data_type
: annotation* EXTERN DATA TYPE simple_name
(REFINE data_type_name (COMMA data_type_name)*)?
(AS STRING)?

;

annotated_extern_function_prototype
: annotation* EXTERN FUNCTION
data_type_name? simple_name LPAREN data_types_params? RPAREN

;

annotated_extern_binary_operator_prototype
: annotation* EXTERN OPERATOR data_type_name binary_operator

LPAREN data_type_name COMMA fully_qualified_name RPAREN
;

annotated_extern_unary_operator_prototype
: annotation* EXTERN OPERATOR data_type_name unary_operator

94 Chapter 8. BIP 2 Grammar

BIP2 Documentation, Release 2015.04 (RC7)

LPAREN data_type_name RPAREN
;

data_types_params
: data_type_name (COMMA data_type_name)*
;

annotated_const_data_declaration
: annotation*
CONST DATA native_data_type_name simple_name ASSIGN_OP logical_or_expression

;

places_declaration
: PLACE simple_name (COMMA simple_name)*
;

transition_action
: LBRACE! ((statement SEMICOL!)| if_then_else_expression)* RBRACE!
;

transition_guard
: LPAREN logical_or_expression RPAREN
;

transition
:
annotation*
(ON simple_name | INTERNAL)
FROM simple_name (COMMA simple_name)*
TO simple_name (COMMA simple_name)*
(PROVIDED transition_guard)?
(DO transition_action)?
;

compound_interaction
: simple_name COLON (fully_qualified_name (COMMA fully_qualified_name)*|MULT_OP)
;

compound_interaction_wildcard
: compound_interaction | MULT_OP COLON MULT_OP;

compound_priority_guard
: LPAREN logical_or_expression RPAREN
;

compound_priority_declaration
: PRIORITY simple_name

compound_interaction_wildcard LT_OP compound_interaction_wildcard
(PROVIDED compound_priority_guard)?

;

initial_transition
: INITIAL TO simple_name (COMMA simple_name)* (DO transition_action)?
;

95

BIP2 Documentation, Release 2015.04 (RC7)

comp_type_data_params
: native_data_type_param (COMMA native_data_type_param)*
;

atom_priority_guard
: LPAREN logical_or_expression RPAREN
;

port_name_wildcard
: simple_name | MULT_OP
;

atom_priority_declaration
: PRIORITY simple_name port_name_wildcard LT_OP port_name_wildcard

(PROVIDED atom_priority_guard)?
;

atom_type_definition
: ATOM TYPE simple_name

LPAREN (comp_type_data_params)? RPAREN
(multi_data_declaration_with_modifiers)*
(multi_port_declaration_with_modifiers)*
places_declaration
initial_transition
transition+
atom_priority_declaration*
END

;

fragment_component_declaration
: simple_name

LPAREN (logical_or_expression (COMMA logical_or_expression)*)? RPAREN
;

multi_component_declaration
: annotation*
COMPONENT fully_qualified_name fragment_component_declaration
(COMMA fragment_component_declaration)*

;

fragment_connector_declaration
: simple_name

LPAREN fully_qualified_name (COMMA fully_qualified_name)* RPAREN
;

multi_connector_declaration
: CONNECTOR fully_qualified_name fragment_connector_declaration

(COMMA fragment_connector_declaration)*
;

export_inner_port
: annotation*
EXPORT PORT fully_qualified_name (COMMA fully_qualified_name)* AS simple_name

;

export_inner_data
: annotation*
EXPORT DATA fully_qualified_name AS simple_name

96 Chapter 8. BIP 2 Grammar

BIP2 Documentation, Release 2015.04 (RC7)

;

compound_type_definition
: COMPOUND TYPE simple_name

LPAREN (comp_type_data_params)? RPAREN
multi_component_declaration+
multi_connector_declaration*
compound_priority_declaration*
export_inner_port*
export_inner_data*
END

;

native_data_type_name
: CT_INT
| CT_BOOL
| CT_FLOAT
| CT_STRING
;

data_type_name
: fully_qualified_name
| native_data_type_name
;

native_data_type_param
: native_data_type_name simple_name
;

any_data_type_param
: data_type_name simple_name
;

multi_data_declaration_with_modifiers
: annotation*
EXPORT? multi_data_declaration

;

multi_data_declaration
: DATA data_type_name simple_name (COMMA simple_name)*
;

port_type_data_params
: any_data_type_param (COMMA any_data_type_param)*
;

port_type_definition
: PORT TYPE simple_name

LPAREN (port_type_data_params)? RPAREN
;

port_primary_expression
: simple_name QUOTE?
;

port_nested_expression

97

BIP2 Documentation, Release 2015.04 (RC7)

: LPAREN connector_port_expression RPAREN QUOTE?
;

connector_port_expression
: (port_primary_expression | port_nested_expression)+
;

port_type_param
: fully_qualified_name simple_name
;

fragment_port_declaration
: simple_name LPAREN (simple_name (COMMA simple_name)*)? RPAREN
;

multi_port_declaration_with_modifiers
: annotation*
(EXPORT)? multi_port_declaration (AS simple_name)?

;

multi_port_declaration
: PORT fully_qualified_name fragment_port_declaration

(COMMA fragment_port_declaration)*
;

single_port_declaration
: PORT fully_qualified_name fragment_port_declaration
;

connector_provided_expression
: LPAREN logical_or_expression RPAREN
;

connector_action
: ((statement SEMICOL!)| if_then_else_expression)+
;

connector_interaction
: annotation*
ON simple_name+
(PROVIDED connector_provided_expression)?
(UP_ACTION LBRACE connector_action? RBRACE)?
(DOWN_ACTION LBRACE connector_action? RBRACE)?

;

connector_type_definition
: CONNECTOR TYPE simple_name

LPAREN (port_type_param (COMMA port_type_param)*) RPAREN
multi_data_declaration*
(EXPORT single_port_declaration)?
DEFINE connector_port_expression
connector_interaction*
END

;

annotation_param
: ID (ASSIGN_OP (ID|TRUE|FALSE|STRING))?
;

98 Chapter 8. BIP 2 Grammar

BIP2 Documentation, Release 2015.04 (RC7)

annotation
: AT ID (LPAREN annotation_param (COMMA annotation_param)* RPAREN)?
;

annotated_type_definition
: annotation* type_definition
;

type_definition
: atom_type_definition
| compound_type_definition
| port_type_definition
| connector_type_definition
;

primary_expression
: fully_qualified_name
| INT
| FLOAT
| STRING
| TRUE
| FALSE
| LPAREN! logical_or_expression RPAREN!
;

statement
: assignment_expression
| postfix_expression
;

if_then_else_expression
: IF LPAREN logical_or_expression RPAREN

THEN ((statement SEMICOL)|if_then_else_expression)+
(ELSE ((statement SEMICOL)|if_then_else_expression)+)?
FI

;

assignment_expression
: postfix_expression ASSIGN_OP^ logical_or_expression
;

logical_or_expression
: (logical_and_expression)

(OR_OP logical_or_expression)?
;

logical_and_expression
: (inclusive_or_expression)

(AND_OP logical_and_expression)?
;

inclusive_or_expression
: (exclusive_or_expression)

(BWISE_OR_OP inclusive_or_expression)?
;

exclusive_or_expression

99

BIP2 Documentation, Release 2015.04 (RC7)

: (and_expression)
(BWISE_XOR_OP exclusive_or_expression)?

;

and_expression
: (equality_expression)

(BWISE_AND_OP and_expression)?
;

equality_expression
: relational_expression ((EQ_OP^|NE_OP^) relational_expression)?
;

relational_expression
: additive_expression ((LT_OP^|GT_OP^|LE_OP^|GE_OP^) additive_expression)?
;

additive_expression
: subtractive_expression

(PLUS_OP additive_expression)*
;

subtractive_expression
: multiplicative_expression

(MINUS_OP subtractive_expression)*
;

multiplicative_expression
: unary_expression ((DIV_OP^|MOD_OP^|MULT_OP^) unary_expression)*
;

unary_expression
: (MINUS postfix_expression)
| (bwise_unary_operator | logical_unary_operator)? postfix_expression
;

postfix_expression
: primary_expression
| function_call_expression
;

function_call_expression
: fully_qualified_name LPAREN argument_expression_list? RPAREN
;

argument_expression_list
: logical_or_expression (COMMA logical_or_expression)*
;

100 Chapter 8. BIP 2 Grammar

CHAPTER

NINE

DEVELOPER REFERENCE FOR COMPILER

9.1 Compiler design

Goals:

• users/devs usually write different code generator : adding a new code generator should be as easy as possible

• users/devs usually enrich the input language for driving the code generator. Avoid the burden of changing the
core grammar as this is very often overkill.

Big picture:

• front-end : any to BIP-EMF transformation. Takes any source code in a given language and translate it to
BIP-EMF

• middle-end :BIP-EMF to BIP-EMF. Apply operations on a BIP-EMF input (operations can be read and/or
write).

• back-end : BIP-EMF to any. Generates source code in a given language from a BIP-EMF input.

The current BIP compiler is developed with eclipse, but this is not a hard requirement. Not using eclipse can be a
bit hard because of the compiler use of some eclipse technologies (in particular, EMF). The compiler is composed of
more than 10 different modules, each module being a single eclipse project. The layout must be the following one:
.
÷-- Middleend
| ÷-- ujf.verimag.bip.middleend
| ‘-- ujf.verimag.bip.middleend.example
÷-- Backend
| ÷-- acceleo.standalone.compiler
| ÷-- ujf.verimag.bip.backend
| ÷-- ujf.verimag.bip.backend.aseba
| ÷-- ujf.verimag.bip.backend.bip
| ÷-- ujf.verimag.bip.backend.cpp
| ÷-- ujf.verimag.bip.backend.example
| ‘-- ujf.verimag.bip.backend.tests
÷-- Common
| ÷-- ujf.verimag.bip
| ‘-- ujf.verimag.bip.error
‘-- Frontend

÷-- ujf.verimag.bip.frontend.tests
÷-- ujf.verimag.bip.instantiator
÷-- ujf.verimag.bip.metamodel
÷-- ujf.verimag.bip.parser
‘-- ujf.verimag.bip.userinterface.cli

We give here a very brief description of each module. Full description is given in the following sections.

101

BIP2 Documentation, Release 2015.04 (RC7)

9.1.1 Middle-end

The middle-end only contains the needed mechanics so that filters can be executed. One simple example is provided.

9.1.2 Common

• ujf.verimag.bip : contains elements shared by every parts of the compiler (mainly a java interface for
plug-in mechanism)

• ujf.verimag.bip.error : the base of the error handling in all the compiler

• ujf.verimag.bip.exception : contains a single unchecked CompilerErrorException excep-
tion. This exception can be raised without having to explicitely declare it. It must be used only when a bug
in the compiler has been detected. No recovery mechanism is present. The only handling done is to display a
message to the user with the bare minium information to provide the developpers.

9.1.3 Front-end

• ujf.verimag.bip.metamodel : defines the BIP2 meta-model used in every bits of the compiler.

• ujf.verimag.bip.parser : defines the BIP2 grammar and the rules to build a BIP-EMF model from a
BIP source

• ujf.verimag.bip.instantiator : builds an instance model from a type model and a root component
definition

• ujf.verimag.bip.userinterface.cli : interacts with the user and instantiate all parts of the com-
piler and bind them together to form a coherent compiler

• ujf.verimag.bip.frontend.tests : JUnit tests for the previous parts

9.1.4 Back-end

• ujf.verimag.bip.backend : contains code shared by all back-ends (eg. some acceleo templates, back-
end specific errors)

• ujf.verimag.bip.backend.aseba : ASEBA back-end

• ujf.verimag.bip.backend.bip : BIP back-end

• ujf.verimag.bip.backend.cpp : C++ back-end

• ujf.verimag.bip.backend.example : an example back-end, intended to be copied and used as a basis
for new back-end development

• ujf.verimag.bip.backend.tests : JUnit for the previous parts

• acceleo.standalone.compiler : acceleo standalone compiler used to build the BIP compiler outside
eclipse

9.2 Generalities

Before describing every internal parts of the compiler, we need to describe how the build system works and how to
setup a correct development environment.

102 Chapter 9. Developer reference for Compiler

BIP2 Documentation, Release 2015.04 (RC7)

9.2.1 ivy

Ivy is used to define the dependencies between all modules and in conjunction with ant or eclipse, for the correct
building of the compiler. Each module contains the following files:

ivy.xml

This file simply contains information on the dependencies of the module. When a module depends on another module,
ivy automatically computes the transitive dependencies. When a module depends on an external library (eg. a jar file),
it simply declares this dependency and ivy will take care of not uselessly duplicating this jar file because of transitive
dependencies.

The following excerpt from ujf.verimag.bip module in Common shows the 2 types of dependencies:

<dependency name="joptsimple" rev="3.2">
<artifact name="joptsimple" type="jar"

url="file://${basedir}/externals/jopt-simple-3.2.jar" />
</dependency>
<dependency name="ujf.verimag.bip.error"

rev="latest.integration"></dependency>

It defines 2 dependencies:

• the first one, named joptsimple, at version 3.2. This dependencies is direct as we also provide the corre-
sponding artifact (a path to the jar file).

• the second one, named ujf.verimag.bip.error. As there is no more information, ivy will have to find
the provider for this dependency (in this case, the ujf.verimag.bip.error module).

A single dependencies can have several artifacts, as is the case of the EMF in ujf.verimag.bip.metamodel
module:

<dependency name="org.eclipse.emf" rev="2.7.0">
<artifact name="org.eclipse.emf" type="jar"

url="file://${basedir}/externals/org.eclipse.emf_2.6.0.v20110913-1156.jar"/>
<artifact name="org.eclipse.emf.common" type="jar"

url="file://${basedir}/externals/org.eclipse.emf.common_2.7.0.v20110912-0920.jar"/>
<artifact name="org.eclipse.emf.ecore" type="jar"

url="file://${basedir}/externals/org.eclipse.emf.ecore_2.7.0.v20110912-0920.jar"/>
<artifact name="org.eclipse.emf.ecore.xmi" type="jar"

url="file://${basedir}/externals/org.eclipse.emf.ecore.xmi_2.7.0.v20110520-1406.jar"/>
<artifact name="org.eclipse.emf.mapping.ecore2xml" type="jar"

url="file://${basedir}/externals/org.eclipse.emf.mapping.ecore2xml_2.7.0.v20110331-2022.jar"/>
</dependency>

The full documentation on ivy can be found at http://ant.apache.org/ivy/

build.xml

This file is used by ant to schedule the build. This includes the actual compilation of source files (acceleo templates,
antlr grammar, java code, ...) and the use of ivy to resolve each module’s dependencies.

Module with only java code in the src/main/java directory have a 3 liner as build.xml:

<project name="ujf.verimag.bip.FOO" default="compile">
<property file="build.properties" />
<import file="${distribution.dir}/common.xml" />

</project>

9.2. Generalities 103

http://ant.apache.org/ivy/

BIP2 Documentation, Release 2015.04 (RC7)

When the module needs to do other actions, you need to override the compile target. This is the case for the
metamodel, as java code is located in two different directories:

<target name="compile" depends="resolve" description="--> compile the project">
<mkdir dir="${classes.dir}" />
<javac srcdir="${src.dir}" destdir="${classes.dir}"

classpathref="lib.path.id" debug="true">
<src path="${src.dir}" />
<src path="src/main/emf-generated" />

</javac>
</target>

9.2.2 Eclipse

In order for all modules to be correctly imported in eclipse, you need to install the following plug-ins:

• Eclipse Modeling Framework (EMF): its part of eclipse and directly available in the plug-ins list.

• IvyIDE : you need to install this plug-in by following instructions available on the project webpage:
http://ant.apache.org/ivy/ivyde/

• Acceleo : also available from the eclipse plug-ins list

Then, you simply need to use the import existing project of eclipse and point it to the directory containing the Common,
Frontend and Backend directories. Eclipse should see all sub-project and import them.

Important: If you import projects from a fresh source tree, eclipse will fail at building the compiler because of
missing java code in the parser project. Indeed, you need to build the ant target gencode-for-eclipse. See the
description of the parser module for more details.

Important: It is normal that under the projects tab in the build path configuration windows, the list is empty. It
should always be empty, as project dependencies are handled by the ivy pluggin. The only case where you need to add
a dependency is when debugging a filter or back-end. This change must never be pushed to the code repository.

9.3 Front-end

9.3.1 u.v.b.metamodel

This module defines the BIP2 meta-model used by all parts of the compiler, as the meta-model is the intermediate
representation of BIP models. It contains:

• the meta-model itself, as an .ecore file

• the constraints on the models of this meta-models

The bip2.ecore file is located in the model/ sub-directory. This is the file you need to use with tools dealing with
EMF models. It comes with 2 other files:

• bip2.ecorediag : it is tied to the ecore and allows the graphical editing of the meta-model with EMF
editor. Opening this file and editing the displayed model will modify automatically the ecore accordingly.

• bip2.genmodel : this file is used by the EMF code generator. In BIP, we use only the Java code generation
mechanism.

The regular work-flow when touching the meta-model is given below:

104 Chapter 9. Developer reference for Compiler

http://ant.apache.org/ivy/ivyde/

BIP2 Documentation, Release 2015.04 (RC7)

• modify the meta-model by editing the ecorediag (or the ecore directly).

• generate Java code (see below)

• implement constraints (if needed)

Meta-model organization

The meta-model is split in two parts:

• the type model is used to describe a BIP source code and nothing more: collections of types organized in
packages.

• the instance model is used to describe a deployed system: instances of BIP types. This model points to the type
model.

The instance model lives under the instance package. Everything else is related to the type model.

Generating Java code from the meta-model

Open the bip2.genmodel file in Eclipse, right-click on the single line named Bip2 and select Generate Model
code. This will generate code in the src/main/emf-generated directory.

Important: The directory src/main/emf-generated is versioned, please review the changes before commiting
!

Constraints

A constraint is added on an element of the meta-model by adding an annotation:

• the source field for the annotation must be http://www.eclipse.org/emf/2002/Ecore

• then, an item with the key constraints contains a space separated list of constraint names.

When the java code is generated, EMF will create empty stubs that must be completed by the actual constraint code.
In order to keep these changes even when the code generator is executed again, you must modify the comment before
the constraint method. The convention adopted by most project is to add NOT (in capitals) after the @generated:

/**
* Validates the constraintName constraint of ’Elt Name’.

* <!-- begin-user-doc -->

* <!-- end-user-doc -->

* @generated NOT

*/

Omitting this will end up in the loss of your changes during the next code generation execution.

The default code for error handling (ie. when a constraint is violated) must be changed to integrate well with the
compiler error handling. By default, EMF produces the following code:

diagnostics.add(createDiagnostic(Diagnostic.ERROR,
DIAGNOSTIC_SOURCE, 0,
"_UI_GenericConstraint_diagnostic",
new Object[] {
"exportedDataListsSynchronized",
getObjectLabel(theElementWithAConstraint, context)

},
new Object[] {

9.3. Front-end 105

BIP2 Documentation, Release 2015.04 (RC7)

theElementWithAConstraint,
}
context));

You must add an extra information to identify precisely the exact error detected by the constraint (codes are defined in
ujf.verimag.bip.error module : u.v.b.error). This code must be added in the array of Object created near
the end of the previous excerpt:

diagnostics.add(createDiagnostic(Diagnostic.ERROR,
DIAGNOSTIC_SOURCE, 0,
"_UI_GenericConstraint_diagnostic",
new Object[] {
"exportedDataListsSynchronized",
getObjectLabel(theElementWithAConstraint, context)

},
new Object[] {
theElementWithAConstraint,
/*
* BIP Error code corresponding to this constraint

*/
ErrorCodeEnum.constraintXYViolation,

},
context));

EMF allows the use of different level for each Diagnostic object created. In the BIP compiler, we only use the
ERROR when the constraint violation is fatal (ie. the compiler must stop) and WARNING when the violation is a sign
of potential error (in general, these can only be detected at runtime).

Versionning generated code

As we need to implement our constraints in the generated code, we need to add it in the code repository. In order to
differentiate handwritten code (that we really need to keep track of) from automatically generated code (thousands of
lines), split your commits ! Use the following steps :

• add constraints in the meta-model

– commit changes in .ecore and .ecorediag files with regular comments.

• generate java code

– commit only the generated code and state that this is generated code for new constraints

• implement the constraints

– commit your changes with [MODEL CODE MODIF] with the names of the constraints you’ve modified.

Important: When adding a new constraint, always always create the corresponding error message and JUnit test at
the same time. Never commit the constraint code if you don’t have the tests and errors ready. If you do so, you will
forget about them and hit problems later. See corresponding sections for adding error and tests.

9.3.2 u.v.b.parser

For historical reasons (ie. no real technical reasons), the parser modules contains not only a parser, but also the
code for the package loader and its package registry.

106 Chapter 9. Developer reference for Compiler

BIP2 Documentation, Release 2015.04 (RC7)

Parser

The parser is using the antlr tool. You can find many GUI for helping in the development of antlr grammar.

The BIP compiler follows the antlr recommended work-flow:

• Bip2.g: a regular grammar is used to read a BIP source code. This pass creates an abstract syntax tree (aka.
AST) by using antlr automatic tree building.

• Bip2Walker.g: a second grammar expressed on tree is used to recognize the AST created by the previous
pass. Rules embed the necessary java code for building a BIP-EMF model. This model describes only the types
found in the parsed BIP code; instances are handled later.

The goal of this split is to have the grammar part as language agnostic as possible: rules do not embed any java
code. The file grammar/Bip2.g could be used to build parsers for other languages supported by antlr (eg. ruby or
python).

Important: The previous statement is not 100% true, as we want to plug the compiler’s error management inside the
parser to be able to rewrap parser’s errors and display present them to the user in a coherent way. There are few lines
of java in the header of the grammar file: these lines can be safely removed if the grammar is to be used for a different
target language than java.

The java code generated by antlr from the previous two grammar files is not in the code repository. You need to
generate it first. Invoking the ant target gencode-for-eclipse should do the job are generate java code in
build/generated-src directory.

Important: When you change one of the grammar files, you must regenerate the code.

Important: You must not use directly the gencode ant target as it’s used for packaging the compiler. The generated
code won’t be in the correct location for eclipse developement.

Package Loader & Package registry

The package loader is a simple object that uses:

• a classloader to locate BIP files across different directories with the dotted package naming.

• a registry, that is nothing more than a hash table, used to store the BIP packages already loaded.

It is the package loader that takes care of running the parser when a BIP file needs to be parsed.

The loader has a very simple interface, mainly consisting of the method:

• Package getPackage(String package_name) : returns the type model corresponding to the pack-
age named after the package_name parameter.

9.3.3 u.v.b.instantiator

The instantiator is responsible for creating an instance model from a set of BIP packages and a root component
declaration. Its result is a DAG with instance of *Instance java classes as nodes. The entry point is the method:

• ComponentInstance instantiate(ComponentDeclaration declaration)

It reads the declaration, search for the corresponding type in the loaded types and returns a ComponentInstance
object describing an instance of a component. This call will recursively invoke other *Instance

9.3. Front-end 107

http://www.antlr.org

BIP2 Documentation, Release 2015.04 (RC7)

instantiate(*Declaration declaration) methods while browsing the types found for all sub-
declarations (eg. taking an instance of a compound triggers the instantiation of sub-components, connectors, priorities,
ports).

More details on the instantiation of component

The entry point of the instantiator is the the ‘’instantiateTopLevel(ComponentDeclaration declaration)” method. The
component declaration must be a compound, else it will fail. This method will simply unroll the hierarchy starting
from the root compound and build an instance tree. Each encountered declaration (port, data, connector, component,
priority, etc) will trigger the creation of an instance object in the tree (the instance objects make a tree). It is important
to note that components parameters need special handling.

Parameters for a component declaration can only involve the following:

• direct values: 3, 18.5

• data references to container’s data parameters

• data references to constant data declaration

There is a need when instantiating a parameterized component declaration to resolve the data references, in particular
for reference to container’s parameters. What we do is that we duplicate the expressions found in the declaration
(involving only objects within the type graph) and then we resolve data references to point to instance objects instead
of pointing to type objects.

9.3.4 u.v.b.userinterface.cli

Any user interface is expected to instantiate compiler’s building blocks and assemble them to create a working com-
piler. This module contains a command line interface.

It basically does the following steps:

• initializes the command line parsing tool:

• with common arguments (package, verbosity, search paths, root declaration, etc)

• with arguments from back-ends (this is achieved by introspecting the back-ends classes)

• creates a package loader

• loads the package requested from the command line

• if a root declaration was given, instantiate it

• executes all back-ends in turn.

All steps may fail and should report the cause by transmitting an Error object. The actual class and mean of transmis-
sion depends on the step failing.

9.3.5 u.v.b.frontend.tests

Tests are using JUnit and follow the conventions:

• classes with tests are named SomethingTests, with Something being explicit enough about the content.
The class name can’t start with Abstract.

• tests that need the package loader are located in the package loader. Store other tests in separate packages:
keep tests tidy!

108 Chapter 9. Developer reference for Compiler

BIP2 Documentation, Release 2015.04 (RC7)

• resources needed by tests must be stored in sub-directories of src/tests/resources/. Name the sub-
directories so that it is easy to match the files to their corresponding test classes.

9.4 Common

9.4.1 u.v.bip

This module contains parts that may be shared by every part of the compiler. Currently, it only contains the needed
interface and library to parse command line arguments. The Configurable interface is used for plug-in after
command line has been parsed: arguments are passed to the plug-in so that it can configure itself.

9.4.2 u.v.b.error

The error module is the base of all error handling in the compiler. The main idea behind it is the following:

• an error type has a unique identifier across all compiler: all identifiers are defined in this module. This is a major
problem concerning modularity as a plug-in must have its specific errors defined in the base of the compiler.

• error messages are not hardcoded and are shipped as properties. Currently, only an English version is available,
but translating the few dozens of message is straightforward.

All errors must inherit from the GenericError class. This class defines the most common attributes needed to
handle error and display useful error message to the user:

• the error code

• when possible, the location in the BIP source file

The error identifiers are defined as an enumerated type in ErrorCodeEnum.

The class ErrorMessage must be used to get human readable error messages. Its getMessage() method takes
an error identifier and returns the corresponding error message from the property file used when starting the compiler
(by default, it uses the english-messages.properties file.

If you need the user to designate a given warning, you should use the helper mapping ‘’userFriendlyNames” provided
within ‘’ErrorCodeEnum’‘. It maps names that the user can easily understand to internal names that maybe too verbose
to be user friendly. This is what is used by the ‘’@SuppressWarning‘’ annotation.

Important: Having a pluggable system for error handling is completely possible. It has not been implemented yet
for simplicity and because of limited development resources. It may be fixed in future versions, if needed.

9.4.3 u.v.b.exception

This package only contains a single class called CompilerErrorException. This exception class is unchecked
and must be used if and only if a bug in the compiler has been found. This class is very minimalist and contains
members that could be useful to track the origin of the bug.

9.5 Middle-end

This module contains currently 2 elements:

• the common part that contains the interface between the middle-ends and the user interfaces: the Filterable
java interface and the necessary classes/enums for error handling.

9.4. Common 109

mailto:''@SuppressWarning

BIP2 Documentation, Release 2015.04 (RC7)

• an example

Hint: The pipe like syntax used to chain the filters from the command line is handled in the command line user
interface, not in this module.

9.6 Back-end

9.6.1 u.v.b.backend

This module contains 3 elements shared by all the back-ends and needed for interacting with the other parts of the
compiler:

• the Backendable interface that back-ends must implement.

• the acceleo runtime, that is meant to be used by all back-ends (even though a back-end can be in pure Java)

• some acceleo template/queries that are useful for all back-ends (eg. extracting information from annotations,
some other common operations, ...)

Important: As of this writing, acceleo has some limitation (bug) that prevent the real sharing of common tem-
plates/queries. The templates/queries provided here are currently copied in all back-ends modules that need them.
This is a work-around.

9.6.2 u.v.b.backend.aseba

This back-end is used to generate Aseba code. It is highly experimental and does not cover all the BIP language.

9.6.3 u.v.b.backend.bip

This back-end produces BIP code. It is very simple, as templates are used to translate the BIP-EMF to the textual BIP
representation, with both being by construction very close.

There are 6 templates:

• 4 BIP types (ie. port, connector, atom, compound)

• 1 for the package

• 1 for the port declarations

• 1 for the annotations

This backend can be a good starting point for understanding the internals of the backends using acceleo templates.

Warning: When writing unit test for BIP, we mainly use the EMF equals() method to check that bip(bip(a-test-
source)) == bip(a-test-source). EMF models are sensitive to order, meaning that even if some model are equivalent
from the BIP point of view, they are not from EMF point of view. For example, the generated code will always
have : data types, port types, connector types, atom types, compound types. Same goes for atom internals, where
data comes before export port, that comes before internal ports.

110 Chapter 9. Developer reference for Compiler

BIP2 Documentation, Release 2015.04 (RC7)

9.6.4 u.v.b.backend.cpp

This back-end is the most complex (and used) available in the compiler. It uses both the type model and the instance
model to generate a set of C++ source file along with the cmake scripts used to build everything.

The type model is used to generate C++ classes. All these classes inherit from classes in the BIP engine interface.

The instance model is used to create the needed statements and variable creation for the deployment of the system.

Entry points for this back-ends are:

• the GeneratePackage class that is the interface between the java code and the acceleo engine that applies
the templates for the generation of classes corresponding to BIP types. From the outside (java world), it is
only possible to generate something from a package (ie. it is not possible to generate simply the C++ code
corresponding to an atom type).

• the GenerateDeploy class is the interface between java code and the acceleo engine for the creation of the
deploy code.

• the Cmake class is used to generate all the necessary files for cmake to build all the generated code.

More details are given in the separate C++ back-end.

9.6.5 u.v.b.backend.example

This back-end is empty and its only use is to be a starting point for creating new back-end.

9.6.6 u.v.b.backend.tests

All JUnit tests are stored in this module. As for the front-end tests:

• test classes must be named SomethingTests with Something being a descriptive name that does not start
with Abstract

• tests resources must be placed in sub-directories of src/tests/resources/. The current convention is to
store C++ backend related resources in a cpp/ subdirectory.

9.6.7 acceleo.standalone.compiler

A back-end is a black box that is used for generating something from a BIP-EMF model. Typical lifecycle of a
back-end:

• configuration (eg. output directory, optimization level, ...)

• if the back-end is able to generate something from a type model, then it is called with the type model at the end
of the compilation process

• if the back-end is able to generate something from an instance model and an instance model has been build
during compilation, the it is called with the instance model.

9.7 C++ back-end

The back-end must be fed with both the type model and the instance model. The type model is used to create C++
classes and the instance model to create a deployment script (ie. creates instances of previously created classes, in a
correct order).

9.7. C++ back-end 111

BIP2 Documentation, Release 2015.04 (RC7)

Important: The limitation only exists for simplification purposes. It is completely possible to compile only BIP
types into C++ classes and package the result as a library, but our current compilation flow does not support the use of
precompiled BIP package. This feature will be handled in later version.

9.7.1 Type code generation

All type templates (ie. template for any sub-class of the BipType class in the meta-model) must conform to
the following interface (not conforming templates won’t raise any compilation error, but will most certainly pro-
duce wrong code in an unspecified manner), with XXXXType the sub-class name. The interface is defined in
generateBipType.mtl:

• generateHeaderBody(anElt: XXXXType, disableSerialization : Boolean),
mandatory. The content of the main header file. No need to handle the multiple-inclusion guards. Always
include only the minimum set of files: never use the include everything as it’s easier to implement strategy as
you’ll quickly introduce loops.

• generateImplemBody(anElt : XXXXType, disableSerialization: Boolean),
mandatory. The content of the cpp file. No need to include the corresponding hpp. Only implement class’s
members or static functions. Avoid non-static functions as it violates the design principles.

• generateSubClasses(anElt : XXXXType, aCMakeList : String,
disableSerialization: Boolean), optional. When the generation process needs to produce
more than 1 class for a given BIP type, you need to hook your other templates in this template. The
aCMakeList is the filename to use to append cmake instructions relative to the other classes produced.

The disableSerialization parameter can be set true when all serialization mechanisms should be skipped.
This parameter should be moved to some higher global context instead of being part of all template interfaces.

Examples of templates using the sub-class generation include: generatePortType.mtl and
generateConnectorType.mtl.

9.7.2 Instance deployment code generation

The generateDeploy.mtl template is responsible for walking the instance model, that can be seen as a tree if
you omit type references that point to the type model. It uses the recursive aspect of the component hierarchy to unroll
the instance tree and create C++ object declaration in an order that meets all the classes constructors requirements (eg.
a compound constructor expects references to all its connectors, priorities, components, exported data and exported
ports). As much as possible, the template uses static initializations to minimize runtime initializations and allow for
better optimization from the C++ compiler. It means that there is no new calls in the generated code for deployment:
the size of the system can be statically known after the C++ compiler is done (it does not include, of course, runtime
data like interactions objects) and everything is allocated in the heap.

The generated code includes a Component* deploy(int argc, char **argv); function that is the entry
point that standard engine use. Currently, argc and argv are not used. This function returns a pointer to the root
component instance.

9.7.3 CMake

The template generateMasterCMakeLists produces the main CMakeLists.txt file that will be used to
configure and compile all C++ code produced by the compiler (ie. packages and deployment). It expects a set of
parameters from the user interface. Some of these parameters are directory lists and should be given as absolute path.
Using relative path may or may not work depending on the specific setup: it is not supported and should not be used.

112 Chapter 9. Developer reference for Compiler

BIP2 Documentation, Release 2015.04 (RC7)

The templates startPackageCmake/endPackageCmake must be called respectively at the beginning/ending of
a package.

9.7.4 Misc

The C++ back-end includes 2 utility templates:

• traceBip.mtl: contains the needed queries/templates for injecting in the C++ code back-links to the BIP
code. Some templates can be used to drive the GNU Debugger (aka. gdb) so that it displays the BIP source code
instead of the generated C++ code. This features has been prototyped only and has been put on hold in favor of
other developments.

• gcc.mtl : used to store everything specific to the GNU Compiler Collection (aka. gcc). It is currently
nearly empty as it only includes a query for asking the compiler not to raise a warning when a specific variable
declaration is never used.

9.8 Tutorial

9.8.1 Debugging a Filter or a Backend

The way the compiler is built and configured by default in eclipse won’t let you use any of your filters or backend.
The compiler will load dynamically the classes for your filters/backends provided they are in the java classpath.

9.8.2 Adding a new constraint

You must always follow all the folowing steps. Do not leave some steps as todo tasks, you will always forget to do
them, leading to future bugs, longer misunderstanding, etc.

• add constraint in the meta-model. Choose a name as discriminant as possible. You should include ev-
erything possible in the name as the constraint name will also be used in error handling. Better use
ConnectorParameterHasBadType than BadType.

• commit the change in the ecore file.

• generate the code. This will create an empty method with a FIXME inside (look in the Tasks perspective in
eclipse, the new method should appear here).

– open the genmodel file, right click on Bip2 and run the Generate model code

• commit the generated code corresponding to the new constraint. In the comment, add explicitly that it is only
automatic code

• add the corresponding error message and error code in the u.v.b.error module:

– add a new enumeration item in the ErrorCodeEnum Enum type: item name must match the constraint
name

– if needed, add one more mapping in the ‘’ErrorCodeEnum.userFriendlyNames” map to map your newly
verbose name to some shorter names.

– add a new string in the error message file english-strings.properties. The new string name
must match the constraint name

• implement the constraint.

– add NOT after the @generated in the comment before the method.

9.8. Tutorial 113

BIP2 Documentation, Release 2015.04 (RC7)

– implement the check. If you need to create error or warning, do the following:

* choose between error or warning by changer (or leaving) the Diagnostic.ERROR as the first
parameter of the createDiagnostic() method call

* the 6th parameter is an array of Object. Add the error code corresponding to the error/warning in
second position of this new array.

• commit the handwritten code and add [MODEL CODE MODIF] in the commit message and give as much info
as you can (which constraint, which ticket, ...)

• implement a new unit test

You can see this kind of hack in commits r5062 though r5068 of the BIP2 subversion repository.

9.8.3 Changing the syntax

A change in the syntax can impact the compiler in various ways:

• only the first parser pass: most likely, the change is syntatic-suggar related. The change is invisible after the first
parser (ie. the AST structure given to the walker is unchanged).

• only the parser: the AST produced is different, and the walker needs to be adapted as well, but the resulting
model still uses the same metamodel (ie. still dealing with syntactic suggar).

• parser and meta-model are impacted: this means that you need to change the grammar, the walker, the meta-
model and also all middleends & backends.

Important: Do not forget to add corresponding tests in the unit test database! Run theses tests as much as possible
to check that you are not breaking something.

Grammar modification

Change the ‘’Bip2.g” to match your syntax change. If your changes do not change the kind of AST the parser produces,
it’s really easy and quick: you’re done (run the ‘’gencode-for-eclipse” ant target if you need these changes to be visible
in your eclipse).

If your changes DO change the produced AST, you need to add the imaginary nodes at the top of the ‘’Bip2.g” file
and proceed with the next section.

Walker modification

If you changed the AST produced by the first pass or if you need to change the model produced, you need to modify
‘’Bip2Walker.g’‘.

You need to take extra care about the asumptions (often implicit) made at the interface between the 2 passes. Some
abstractions can be safely made in the walker, but your change may change this: be extra-careful. For example, in the
first pass, the rules will forbid some expressions in some context. No indirect data reference can be made in an atom
transition. But this restriction does not exist in the walker: the walker trusts the first pass.

Meta-model modification

If you need to change the meta-model, you should make these changes before changing the walker (you won’t be able
to change the walker before...).

114 Chapter 9. Developer reference for Compiler

BIP2 Documentation, Release 2015.04 (RC7)

Middleends & Backends modifications

After the previous changes are working (you can run the compiler without executing any middlend/backend to check
that everything is fine), you can proceed with their modifications.

9.8.4 Updating dependencies

You should always try to stick to latest stable version of all dependencies. Not doing so may lead to big problems
when you will try to update from very old libraries. It’s easier to fix little API change from one version to the next
than fixing a large set of changes.

Usually, you should simply follow these simple steps. Beware that sometimes, some dependencies must be added or
can be removed. For a given compiler module:

• list jar files located in the ‘’external/” directory

• check if you have more recent version of these jar files inside your ‘’plugins/” subdirectory in your eclipse
installation.

• for all jar with more recent version, replace old version by the newest version

• run the ‘’Tools/helper-scripts/gen-ivy-deps2.py’‘:

externals/ $ ls *.jar | Tools/helper-scripts/gen-ivy-deps2.py

• copy the result inside the ‘’ivy.xml” file (first remove the old dependencies related to jar files)

That’s it. Always run all the test before merging. It is very important, as it has happened that some class moved from
one jar to another and the compiler crashes in very specific cases.

9.8. Tutorial 115

BIP2 Documentation, Release 2015.04 (RC7)

116 Chapter 9. Developer reference for Compiler

CHAPTER

TEN

DEVELOPPER REFERENCE FOR BUILDING AND PACKAGING

10.1 Building a distribution

Building a distribution consists of the building of both the compiler & the different engines. The distribution must
meet the following goals:

• contains only the code we want to distribute (ie. no source code)

• requires as less installation steps as possible for the user

• ability to keep track (version) of distributed files

The distribution scripts involve several steps:

• compute a distribution version number and inject it in all following steps

• compile the compiler: it uses ant/ivy

• compile the different engines (eg. reference engine, optimized engine)

• provide install/setup script

• package compiler & engines in archives to be distributed

All these steps are scheduled from the script called wrap.sh located, as everything related to the distribution, in the
distribution directory.

Important: Please be aware that all steps needed in the release process are not automated in scripts. You still need
to do manual steps (see below) in order to build a complete release. Failing to do so will lead to incoherence and most
probably headaches for solving problems.

10.1.1 Invoking wrap.sh script

The wrap script accepts several command line parameters:

-r When building a revision to release :)
-v Give the version name instead of it being generated
-p Build profile for engine (default: Release)
-s Skip directly to engine building, no compiler
-h This help

If the -r flag is used, then the version used throughout the build uses the pattern YYYY.MM. It has the nice property
of being easy to compute, to understand and is always increasing.

The -v allows the specification of the full version string. It has priority over -r.

If none of -v and -r are used, then the pattern used is YYYY.MM.HHmmSS-DEV.

117

BIP2 Documentation, Release 2015.04 (RC7)

The -s can be used to skip the compiler compilation, which is responsible for most of the build time. The remaining
steps are still executed.

The last parameter, -p, is used to set the cmake build profile used when building the engines. Default is Release,
meaning that the code may be optimized and debugging symbols stripped. If you need to build a debugging release,
use the Debug profile. Please note that this profile is only used for building the engines, it has nothing to do with the
build of the code that may be generated by the bip compiler later.

10.1.2 What wrap.sh does

It starts by cleaning everything : its own build directory along with the separate build directories for the difference
parts of the compiler. And immediately starts the building of all parts of the compilers. It does that by using ant with
the following targets:

• clean: to remove previous build artefacts

• publish-local-all: build the compiler

The publish-local-all target is a frontend target that uses ivy.

After the compiler has been successfully built, the wrap script continues by copying the resulting artefacts (jar files)
and the frontend script that will be used by the users (ie. bipc.sh).

At this point, the bip compiler is ready. The wrap script now compiles the different engines found in the Engines/
directory. The result of the engine compilation is directly a self-contained archive.

10.1.3 What wrap.sh produces

After everything has been executed, you can find the distribution in the build/ directory:

build
+-- bipc-2012.04.110853-DEV.FILES
+-- bipc_2012.04.110853-DEV.tar.gz
+-- BIP-optimized-engine-2012.04.110853-DEV_Linux-i686.tar.gz
‘-- BIP-reference-engine-2012.04.110853-DEV_Linux-i686.tar.gz

The .FILES file should be kept as it contains all the filenames included in the compiler distribution archive. It is
useful, as the compiler contains several external dependencies whose versions are not encoded in the distribution
version.

10.1.4 Single archive distribution using single-archive-dist.sh

For even easier distribution, the single-archive-dist.sh script can be used. It produces a single archive with
the compiler and the engines inside. Installation is only a matter of extracting and running a script that sets up the
environment correctly. It relies on wrap.sh and simply rearrange the products of the latter. The script accepts only
-r and -v command line parameters, which are exactly the same as for wrap.sh.

The result of running this script is a single archive called bip-full_<ARCH>.tar.gz. It contains the compiler
and the engines. It also has a setup.sh script that can be used to setup the environment correctly. By default, the
script configures the environment for using the reference-engine, but you can give it any engine (provided it is shipped
in the archive) name:

$. ./setup.sh optimized-engine
Environment configured for engine: optimized-engine
$. ./setup.sh
Environment configured for engine: reference-engine

118 Chapter 10. Developper reference for building and packaging

BIP2 Documentation, Release 2015.04 (RC7)

Do not forget the leading . in the command above.

10.2 Publishing a distribution

Publishing a distribution must always includes the following steps:

1. compute a new version name. You must never reuse a previous version name. Never! If you have published
a distribution with a huge bug inside, it’s already too late, you need a new version. Commonly, a version has a
major part and a minor or revision part. The major corresponds to a new release, and the minor can be changed
when you want to distribute a new revision for the same release (eg. with bug fixes).

2. build the compiler using the previously computed version name

3. build the engines using the previously computed version name

4. build the document. The documentation should always match the distributed software. Never provide outdated
documentation. If you can’t update the documentation (it’s a shame), outdated part must be explicitly marked.

5. tag all the different parts of the software, script, documents in the SCM (ie. subversion).

6. publish !

The scripts presented in previous paragraphs can help for steps 1,2,3. Steps 4,5 and 6 must be done carefully by hand.

10.2.1 Manual steps

Building the documentation

Building the documentation is simple. 2 documentations can be built and published: APIs & user/dev documentations.
As of this writing, only the user/dev documentation is published though, as APIs still need some work (they are based
on javadoc & doxygen).

The user/dev documentation are using Sphinx.

First, you need to configure the documentation build to include the correct version number and release name. Edit the
file source/conf.py to include the matching version/name:

The short X.Y version.
version = ’2012.04’
The full version, including alpha/beta/rc tags.
release = ’2012.04 (RC3)’

Building is as easy as running:

$ make html latexpdf

The targets are self-described and produce static HTML pages and a PDF. The script sync-to-www.sh provides an
easy way to build and publish the user/dev documentations. The script also creates a tree-hugger-friendly PDF with 2
pages per side and publishes the example files.

Tagging

You must tag all parts (compiler, engines, documentation, distribution scripts), even the ones that have not moved
since the previous release. use the tag command:

$ svn tag version-name

10.2. Publishing a distribution 119

http://sphinx.pocoo.org/

BIP2 Documentation, Release 2015.04 (RC7)

Of course, replace version-name by the release version name. You must repeat this operation for all svn module
that need to be tagged.

Publishing

Publishing means copying files in the web directory. The sync-to-www.sh moves the documentations in the doc/
subdirectory:

/doc
+-- examples
+-- html
‘-- pdf

Compiler & engines releases must be copied by hand.

10.3 Things to keep in mind

Unless you know exactly what you are doing (and why!), you should:

• never commit u.v.b.userinterface.cli/src/main/java/u/v/b/userinterface/cli/Version.java
: it is modified when building a distribution but these modifications should never make their way into the code
repository.

• never commit any .project, .classpath or any other eclipse dot-files. Having local modifications is also
often a sign of wrong configuration (but not always). Be careful to never commit these as this will break other
developer setup.

• never commit Documents/sphinx-doc/source/conf.py if you’ve only changed the version/release
information.

120 Chapter 10. Developper reference for building and packaging

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• search

121

BIP2 Documentation, Release 2015.04 (RC7)

122 Chapter 11. Indices and tables

INDEX

A
action language

constant context, 9
function call, 11
if, 12
non-constant context, 9
operators, 11

atom, 5, 12
priority, 15, 72
type, 12

atom type, 5, 7
automaton, 5, 14

B
back-end, 28
bip2bip, 28
broadcast, 61

C
C++

const context, 85
external code, 82
external data type, 86
serialization, 88

component, 5
interface, 5

compound, 5
priorities, 21
type, 21

compound type, 5, 7
connector, 5, 17

exported port, 17
hierarchical, 17
interaction, 17
synchron, 17
top-level, 18
trigger, 17
type, 17

connector type, 5, 7
const context

C++, 85
constant context

action language, 9

E
engine, 29
execution

interaction, 24
transition, 24

execution sequence, 24
external code

C++, 82
external data type

C++, 86
external type, 7

F
front-end, 27
function call

action language, 11

G
guard, 14, 15, 18

I
if

action language, 12
interaction, 17

enabled, 20
execution, 24
guard, 18

interface, 5
ivy, 103

L
labeled transition system, 24
LTS, 24

M
marking, 14
maximal progress, 21, 77
meta-model, 104
middle-end, 28
model, 5

123

BIP2 Documentation, Release 2015.04 (RC7)

semantics, 24
state, 24

N
non-determinism, 14, 15

O
operators

action language, 11

P
package, 5, 7
parser, 106

antlr, 106
Petri net, 5, 14, 71

1-safe, 14
marking, 14
non-determinism, 15
place, 14
transition, 14

place, 14
port, 5, 12, 13

enabled, 15, 20, 22
exported, 13
internal, 13
merged export, 13
synchron, 17
trigger, 17
type, 12

port type, 5
priorities, 5, 21
priority, 15, 72

‘‘*‘‘, 21
atom, 15, 72
compound, 21
cycle, 15
dynamic, 75
maximal progress, 21, 77
rule, 15, 21

R
rendez-vous, 60

S
semantics, 24
serialization

C++, 88
state, 24
syntax

compound type, 23
connector type, 20
package, 7

T
transition, 14

enabled, 14
execution, 24
guard, 14
initial, 14
internal, 14
invisible, 14
maximal, 15
visible, 14

transitive closure, 15
type

atom, 12
compound, 21
connector, 17
variable, 8

V
variable, 8, 12

exported, 12
type, 8

external, 8
native, 8

visible state, 15

124 Index

	Introduction
	Conventions used in this documentation

	The BIP2 Language
	Introduction
	Quick overview of the language
	Execution sequences

	Compiler and Engines presentation
	The compiler
	The engines
	The interactions between the engines and the compiler

	Installing & using the BIP compiler
	Requirements
	Downloading & installing
	Front-end checks for BIP model correctness
	Using middle-ends (aka. filters)
	Using back-ends (code generators)

	More about C++ code generator
	Presentation & prerequisites
	Usage
	Interface BIP/C++
	Parameters
	Optimisation
	Debugging
	Annotations
	What you should never do
	Troubleshooting

	Installing & using available engines
	Requirements
	Downloading & installing
	Using the reference engine
	Using the optimized engine
	Using the multithread engine (beta version)
	Troubleshooting

	Tutorial
	Hello world
	Synchronizing components using interactions of BIP2
	Hierarchy in BIP2
	Petri nets
	Priorities
	Using the C++ back-end

	BIP 2 Grammar
	Developer reference for Compiler
	Compiler design
	Generalities
	Front-end
	Common
	Middle-end
	Back-end
	C++ back-end
	Tutorial

	Developper reference for building and packaging
	Building a distribution
	Publishing a distribution
	Things to keep in mind

	Indices and tables
	Index

