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Abstract The aim of this paper is to show the use-
fulness of IFx, an extension of the IF validation toolset
for timed and complex systems, for the validation of de-
signs represented using the UML profile defined in the
IST Omega project.

This demonstration is done on hand of a realistic case
study, a model of the Ariane-5 launcher software. In this
case study, we do not address the correctness of the con-
trol algorithms, which may be specified as global trans-
actions and validated with the help of synchronous tools
such as Scade. We are rather interested in the expression
of non functional properties which allow to guarantee the
correctness of this transactional view and their valida-
tion on a model of the distributed architecture on which
the system is deployed.

We provide examples of complex properties and their
expression by UML observer state-machines, where spe-
cial attention is paid to the modelling of properties ex-
pressing time constraints and schedulability. Also, on
hand of this example, a validation methodology is demon-
strated which has been experimented already in a num-
ber of real-life examples.

This case study is representative for systems in the
aerospace domain concerning the nature and complexity
of the handled verification problems.

Code generation form the developed software model
was not part of this case study, but the obtained model
is such that it can be refined into a complete model -
including also all functional aspects - from which existing
code generation techniques may be applied.

? This work has been partially financed by the OMEGA
IST project

1 Introduction

Model-driven engineering is making its way through the
habits of software and system designers and developers,
pushed forward by the increasing maturity of modeling
languages and tools. This paradigm promotes a com-
plete re-foundation of software engineering activities on
the basis of models, as well as the use of automatic tools
for most if not all post-design activities like getting a
platform-specific implementation, generating and exe-
cuting tests, deployment, etc.

In this context, the model of a software system (or
of a system in general) gathers different views ranging
from the system requirements (in the form of use cases,
of static or dynamic properties that the system has to
satisfy, etc.), to architecture, to behavior of individual
components and/or subsystems, to platform-related in-
formation (resources and their utilization), etc. Since the
model is central to the whole development process, it is
essential for its designers and its users to be able to check
its correctness and coherence early in the development
cycle (i.e., before the availability of an implementation
on the target architecture and in the real environment)
by providing models of the functional and non functional
aspects of software, architecture and environment.

In the Omega project1, we have developed a UML
profile adapted for modelling real-time and embed-
ded systems [DJPV03,DJPV05,GOO03,GOO05] and
extended the IF validation toolset for real-time systems
[BFG+99,BGM02] for handling UML models, resulting
in the tool IFx [OGO05]. IFx allows simulating an oper-
ational UML system specification and verifying complex
behavioral properties as defined by the Omega UML pro-
file.

1 http://www-omega.imag.fr

http://www-omega.imag.fr
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The Omega UML profile emphasizes operational
models which can be further refined into complete mod-
els from which code can be generated. This profile rep-
resents an extension of the UML profile of Rhapsody2

with real time features, in particular with the notion of
timed observers for the expression of requirements.

The Omega UML profile has been used in several
case studies by industrial users for modeling real-time
and embedded systems, and the IFx toolset has been
used for validating coordination and real-time aspects3.

In this paper, we focus on the largest of these case
studies: a model obtained by reverse-engineering of a
representative part of the flight software of the Ariane-5
launcher4.

The aim of the paper is to show on hand of the cho-
sen case study the usefulness of the IFx toolset for the
validation of properties and design models provided in
the the form of UML models conforming to the Omega
profile.

Section 2 provides a short overview on the Omega
UML profile and the IF validation toolset. Comment
by Susanne: oui je suis d’accord il faut inverser; il faut
aussi surtout racourcir ou ici ou dans la methodologie;
car actuellement on raconte l’histoire deux fois. In sec-
tion 3, we describe the the problem to be solved and
discuss the modeling and specification features of the
Omega UML profile used. Section 4 discusses the expres-
sion of requirements concerning control-flow and timing
related aspects and section 5 discusses the IFx tool work-
flow and the validation results for Ariane-5. In section 7,
we show how our approach relates to other approaches
and finally, in section 8, we discuss some methodological
issues, on how results were obtained, what problems can
be encountered and how they can be solved, and what
has to be done in order to really integrate the validation
approach into the development process.

2 Preliminaries on the UML profile and the IFx
toolset

In this section, we present the toolset and the UML pro-
file used for carrying out the Ariane-5 case-study.

Detailed descriptions of Omega UML profile can be
found in [DJPV03,DJPV05] for the general profile and
in [GOO03,GOO05] concerning the real-time aspects. In
section 2.1, we introduce only the features needed for the
example where the main emphasis is on the expression
of timing related requirements.

2 http://www.ilogix.com/rhapsody/rhapsody.cfm
3 a short overview on four of these case studies can be found

at http://www-omega.imag.fr/cs/cs.php
4 Ariane 5 is the European heavy-lift launcher, with pay-

load capacity of 10,000 kg on dual launches into GTO (geo-
stationary transfer orbit). EADS SPACE Transportation, the
European space transportation and orbital systems special-
ist, is now single Prime Contractor for the Ariane 5 system.

The IFx validation toolset is described briefly in sec-
tion 2.2, and a more detailed description is available in
[OGO05].

2.1 UML features supported by IFx and semantics

The IFx toolset supports the constructs and the par-
ticular semantics of the Omega UML profile [OGO05,
GOO05,DJPV03]. This section provides a small digest
of the features of this profile, necessary to understand
the model of the Ariane-5 case study.

The architecture and the behavior of a system are
described using class diagrams, state diagrams and oper-
ation specifications. Class diagrams may use most of the
concepts available in UML, such as: attributes, different
types of associations and generalization relationships.

State diagrams may be used to define the dynamic
behaviour of reactive classes; objects react either to
asynchronous signals received from other objects, to con-
ditions (change events) or to operation calls. Operation
calls which are handled by the state machine associated
with an object are called triggered operations in Omega
UML. The behavior associated with an operation that
is not triggered (called primitive operation) is described
by an action. Actions are written in a syntax compliant
with the UML action semantics, containing imperative
constructs like assignments, operation calls, object cre-
ation, signal exchange, etc.

The profile supports the description of concurrent
and distributed systems by means of active classes. In-
stances of active classes define a partition of the sys-
tem objects; an active object together with its depen-
dent passive objects are called an activity group. Each
activity group has exactly one thread of control and
handles requests (operation calls and signals) coming
from the other groups in a FIFO run-to-completion man-
ner. Comment: [susanne: ca c’est pas vrai, la concur-
rence existe meme sans signaux, simplement parce que
chaque class active a initialement un thread] Thus, con-
currency is created by non-blocking requests (signals or
operations which do not send a return value) between
activity groups.

This execution model is presented in more detail to-
gether with its motivations in [OGO05,DJPV03]. It cor-
responds to a particular choice of semantics in the spec-
trum allowed by the UML standard [OMG03], and is an
extension of the execution model implemented by the
Rhapsody tool.

On top of the concepts mentioned above, the Omega
profile defines a set of time-related constructs [GOO05].
There are basic concepts like timers and clocks for de-
scribing time-driven behavior in an imperative style, as
well as a mechanism for defining duration constraints
which are declarative assumptions or requirements about
how system execution relates to time passing. Require-
ments to be validated are expressed by UML state ma-

http://www.ilogix.com/rhapsody/rhapsody.cfm
http://www-omega.imag.fr/cs/cs.php
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chines, with stereotype <<observer>> which are in-
terpreted as acceptors of safety properties. We use ob-
servers mainly of the expression of timing properties (see
section 4).

2.2 The IFx toolset

IFx [OGO05] is a toolset providing simulation and veri-
fication functionalities for UML models containing de-
tailed, operational designs. IFx implements the UML
features and their semantics defined in the Omega UML
profile. This profile is targeted to the designers of real-
time reactive and distributed embedded systems. For
this purpose it includes extensions for expressing tim-
ing and concurrency related information.

2.2.1 Toolset architecture and functionality The archi-
tecture of IFx is shown in Figure 1. The toolset reuses
state-of-the art validation techniques from the IF envi-
ronment [BGM02,BGO+04]. It enables the use of UML
models through a compiler that transforms them to IF
specifications. Models may be edited with any XMI-
compatible editor such as Rational Rose or I-Logix
Rhapsody. The simulation and verification functional-
ity of IF is wrapped by a UML-specific interface which
hides most of the details of the IF format and tools from
the user.

The functionalities of IF which are wrapped and pro-
vided at UML level by IFx, are the following ones:

– Simulation allows the user to execute a model and
to debug it interactively. The user can execute the
model randomly or step by step, inspect the system
state, put conditional breakpoints, and also perform
more complex operations not offered by common
implementation-level debuggers: rewind/replay an
execution, resolve non-determinism manually, control
the scheduling policy and time related parameters,
etc.

– Verification of simple consistency conditions allows
checking in a model the absence of deadlocks and
time-locks or the satisfaction of state invariants.

– Verification of behavioral properties by state-space
exploration. Linear safety properties may be ex-
pressed by observers, and verification is performed
by exploring the state space of the model and the
oberver(s) run in parallel, using state of the art
reduction techniques for efficient exhaustive explo-
ration. Diagnostic traces are generated when errors
are detected and may be replayed and explored using
the simulation facilities.
Verification may also be done off-line by inspecting
and manipulating a completely generated (possibly
abstract) model state space. This is of particular in-
terest for the extraction of properties (by minimiza-
tion modulo a bisimulation relation), as it will be
shown on the case study.

XMI
UML model

+ time
annotations

Rose,
Rhapsody,

Argo,
...

IFx  specific
reused IF tools

IF
model

IF behavioral tools

state explorer

simulator verifier

test generator

IF static
analysis

live variables

IF
exporters

UML-IF frontend

UML2IF
translator +
compliance

checker

UML
validation

driver

slicing

abstraction

Graph level tools (CADP)
minimization, comparison,

composition...

Fig. 1 Architecture of the IFx validation toolbox.

In order to scale to complex models, IF supports op-
timization and abstraction in several ways. There are
“exact” static optimizations (like dead variable factor-
ization and dead code elimination) which reduce the
state space of the model while fully preserving its be-
havior (up to bisimilarity). Another exact dynamic opti-
mization which is often very efficient is partial-order re-
duction during exhaustive state space exploration: this
reduction renders deterministic the interleaving of par-
allel components whenever the non-deterministic inter-
leaving cannot influence the verification of a given prop-
erty. Data abstraction can be done either by static anal-
ysis (computing a slice and throw away a part of the
system state which is irrelevant with respect to a set of
properties defined by some observation criterion) or by
abstract interpretation of some variables (e.g., symbolic
handling of timers and clocks). Other techniques, such
as input queue abstraction (a very efficient method for
particular object topologies such as Kahn networks) are
implemented in IF.

3 The Ariane-5 model

Ariane 5 is the European heavylift launcher. The ob-
jective of its Flight Software is to control the launcher
mission from lift-off to payload release. This software
operates in a completely autonomous mode and has to
handle both external disturbances and different hard-
ware failures that may occur during the flight.

This case study takes into account the most relevant
points required for such an embedded application and
focuses on the real time critical behaviour. This descrip-
tion abstracts away both complex functionalities such as
navigation and control algorithms and also implementa-
tion details, such as specific hardware and operating sys-
tem dependencies. Nevertheless, it is fully representative
of an operational space system.
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Fig. 2 Ariane 5 mission.

3.1 Ariane 5 Launcher presentation

The launcher is composed of 3 stages: EAP stage, EPC
stage and ECS stage Comment by Susanne: surement a
racourcir, puisque redit par la suite

– EAP stage. The two EAP boosters are ignited a few
seconds after the main stage. They deliver about 90%
of the global thrust at lift-off and the duration of
their powder combustion is about two minutes. Then,
they are separated from the main stage and fall down
into the ocean.

– EPC stage. It is the main stage and is mainly com-
posed of a LOX/ LH2 tank and an engine, which
provides the main thrust during 8 minutes to reach
the target orbit. At switch off, the stage is discon-
nected from the upper stage and falls down into the
ocean.

– ECS stage. The objective of this last propulsion stage
is to bring some additional energy to finetune the
orbit and perform the payload release. The duration
of this stage is about 15 minutes.

The mission is composed of several phases (see figure
2), each one corresponding more or less to the stabilized
behaviour of a launcher stage. At the end of a permanent
working of the launcher, a transition is performed to
reach a new permanent working.

3.2 Case study description

An embedded space software such as the one of the Ar-
iane 5 launcher consists of several modules which can
have different, strongly interacting, types of behaviours.
From the functional point of view, there are two main
types of functional behaviour:

– cyclic synchronous algorithms. These are principally
the control/command algorithms (Guidance, Navi-
gation control,..) and some monitoring algorithms.
They are obtained by discretisation of continuous
physical laws, that is, they have a specific period
and phase; they receive their inputs at the start
of their period and shall produce their output
before a given delay, not longer than their execution

period. Notice, that these algorithms as well as the
reactivity constraints are defined by the control engi-
neers and come as an input for the software engineer.

– aperiodic, event- or datum-driven algorithms, corre-
sponding mainly to the spacecraft mission manage-
ment (motor ingnition and stop, stage release ...)
or error recovery algorithms, which interact strongly
with the control command algorithms.

When designing the software architecture, the soft-
ware engineer has to take into account a number of con-
straints

1. The application software has to be statically proven
correct.

2. In the case of Ariane-5, all parts of the application
software will finally be executed on the same pro-
cessor5 and share a common bus for aquiring sensor
data from and sending commands to a set of physi-
cally distributed equipments

3.

In addition to these external constraints, there are
additional constraints which provide a kind of standard
framework for solving the initial problem

1.

The proof of the correctness of the implemented al-
gorithms is done using a synchronous reactive view, that
is under the assumption that at the beginning of each
global cycle, all the data required by all the algorithms
activated in this cycle are available and that the outputs
are produced at the end of the cycle.

In a distributed architecture, several problems may
arrise for guaranteeing the above assumptions.

– a data produced in a given cycle, may not be ready
at the beginning of the next cycle because of a com-
munication delay.

–

In the case where the reactivity constraints are re-
laxed enough Depending on the required reactivity, their
implementation may be integrated into the cyclic syn-
chronous process or not.

The software model contains 6 main classes, each
having a single instance. To simplify the description, no
distinction will be made between classes and instances
in the following description.

– Acyclic: It is the main class of the software. This
class manages the start of the software and the flight
sequence and the associated automaton. The transi-
tions of the automaton can be triggered
1. on event reception from the GNC algorithm (e.g.

end of thrust detection)

5 in fact, a set of replicated processors, but this is out of
the scope of our case study
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2. on event reception from the environment
3. on timed conditions including time windows pro-

tection (allowing to assure that the treatment as-
sociated to an external event will be performed at
coherent time, even in case of failure of the event
detection mechanism)

– EAP : This class manages the behaviour of the EAP
stage: ignition and release. The sequences described
in this class are driven by events received from other
classes and by internal time constraints.

– EPC : This class manages the behaviour of the EPC :
ignition, monitoring of correct working, alarm raising
and stop. The sequences described in this class are
driven by events received from other classes and by
internal time constraints.
[IO]: il me semble que EPC est purement time-driven
dans notre modle. Je me trompe?

– Cyclics: This class manages the activation of the
cyclical control command algorithms. These algo-
rithms are related to navigation, guidance, control,
thermal control, etc. The algorithms are executed in
a predefined order (depending on the current state
of the launcher, given by the Acyclic class). Its state
machine appears in an example later on in Figure 9.

– Thrust Monitor: This is one of the algorithmic
classes. It is responsible for the monitoring of the
EAP thrust. It is activated by the Cyclics class.

– Guidance Task : This is another algorithmic class ac-
tivated by Cyclics. It has the particularity that its
activation frequency is very low. In the real system,
it is implemented in a specific ADA task.

In order to validate (by simulation or by proof) the
software behaviour, a part of the environment is de-
scribed. The environment can contain parts of the space-
craft as defined in the spacecraft design, the physical
environment (ground control centre, wind for an atmo-
spheric phase, other spacecraft behaviour, etc.), as well
as abstractions of parts of the software which are not
described in the model (such as: a numerical algorithm,
a bus protocol, etc). In our model, we have used the
following environment elements:

– Ground : It is the main class of the model. This class,
representing the control centre, sends the start signal
toward the launcher (and its software).

– Bus: This class describes the behaviour of the 1553
MIL bus allowing the communication between the
main software and the equipment.

– Valve: This class describes a specific type of equip-
ment. The hardware failures are modeled by an non-
deterministic choice in order to verify the correct
management of such a failure by the flight software.

– Pyro: This class describes another specific type of
equipment.

The multitasking policy and the CPU consumption
of each function is also modeled (see details section 4.3).

4 Capturing functional and non-functional
requirements

In the initial phases of a project, functional and non-
functional requirements are captured through use cases,
through high-level activity diagrams, using domain-
specific notations or just informally. As the system model
becomes more precise requirements can be refined, for-
malized and used for validating the design model.

Formalization of properties in the Omega UML
framework is based on the concept of observer. Require-
ments which are purely concerned with timing can also
be specified using a form of declarative constraints. In
this section we discuss (briefly) these concepts, and we
insist on how they can be put to work – with examples
from the Ariane-5 model and some methodological hints.

4.1 Expressing complex behavioral requirements

Observers are special objects which monitor the execu-
tion of the model and give verdicts when a requirement is
satisfied or violated. Observers may have their own local
memory (attributes), and their behavior, which has the
purpose to give verdicts, is described by a special kind
of state machine, in which some states may be labeled
with the stereotypes � success� or � error �.

Monitoring model execution is done either by observ-
ing events like signal outputs, operation calls or returns,
state changes, etc., or by observing the state of the sys-
tem, like attribute values, contents of queues, states of
the state machines, etc.

In the following we discuss some of the properties
verified on the Ariane-5 example and alongside we give
some methodological guidelines for writing observers.

Property 1. The software shall not send an Open com-
mand to an already open valve.

Valves are used in the main engine of the launcher
to command the required thrust. Opening an already
opened valve is usually an error in the software logic.
This is one of the simplest safety properties that may
be expressed with an observer. It requires that a cer-
tain condition never occurs during the system execution:
software sends Open command to valve v and v is open.
The only problem raised by this property, which comes
back in every other formalized requirement, is to relate
the informal condition expressed above with some formal
event or condition occurring in the system.

In our case, the sending of an Open command means
the call of the triggered operation Open defined in the
class Valve (from package Environment). The “match”
clause visible in Figure 36 matches the invocations of

6 Because the properties presented in this section are taken
directly from the UML model developed with Rational Rose
(v.7.0), they are not completely conforming to the UML stan-
dard. In particular, we note the use of a branch symbol in-
stead of a choice pseudo-state.
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ok

ko
<<error>>

match invoke ::EADS::Environment::Valve::Open()
on v

[ v @ Open ]

[ not(v @ Open) ]

valve_not_open_in_open

v : Valve

<<Observer>>

Fig. 3 Property 1.

this operation, and every time the operation is invoked
the reference to the callee object is stored in attribute v.

Then the Valve v is tested if open by simply test-
ing whether its state machine is in state open (guard
v@open). The state ko labeled with � error � is en-
tered if the above event occurs while the above condition
is true.

Property 2. The software shall not send two commands
to the same valve at less than 50ms of interval.

This property, required by electrical constraints on
the hardware, needs a more complex formalization, since
it talks about the distance between pairs of events cor-
responding to each of the instances of class Valve. A
first idea is to use a different observer for each instance
of class Valve, which measures the distance between ev-
ery two consecutive commands on that Valve. This so-
lution is very impractical, especially if we imagine that
instances of class Valve could be created dynamically
(although this is not the case in our model), or if the
number of such instance becomes too important.

However, the following remark helps us designing a
very simple observer for property 2: if several transi-
tions are enabled in an observer at the same time, all
the possibilities will be explored by the model checker.
This obvious remark helps in writing properties over a fi-
nite sequence of events which occurs several times in the
execution of the system: non-determinism can be used
to pick each particular occurrence at a time and verify
it.

The observer in Figure 4 works as follows: in state
initial it waits for a command to be sent to a Valve,
stores the reference of the concerned Valve in v1 and
proceeds to state nondet.

In state nondet the observer chooses non-
deterministically whether to proceed by verifying
the timing of the next command sent to v1, or to return
to initial and wait for another command to any Valve.
Thus, when the observer is model-checked against the
system specification, both options will be explored and
all pairs of commands sent to any Valve will be covered.

The rest of the observer tests a simple safety con-
dition: the second command sent to the Valve v1 will

valve_not_abused

t : Timer

v1 : Valve

v2 : Valve

<<Observer>>

initial

wait

KO
<<error>>

nondet

match invoke ::EADS::Environment::Valve::Close() on v1

match invoke ::EADS::Environment::Valve::Open() on v1

[ true ]

[ true ] / t.set(0)

[ v1 <> v2 ]

[ v1 = v2 ]

OK
<<success>>

[ t >= 50 ] / t.reset()

match invoke ::EADS::Environment::Valve::Close() on v2

match invoke ::EADS::Environment::Valve::Open() on v2

Fig. 4 Property 2.

not come before 50ms. The clock t is used to measure
the 50ms. In state wait, other commands may come, but
they cause an error only if they concern the same valve
v1. If more than 50ms elapse without error, the observer
may go to a success state and consider the property ver-
ified for this particular occurrence of the first command
in the pair.

Stereotyping the OK state with � success � also
allows to make the model checking more efficient: the
execution of the system after the observer has reached
OK cannot lead to an error anymore and may safely be
ignored by the model checker.

This suggests a more general methodological issue:
very often a safety property has the form P ⇒ Q where
P is an invariant or a simpler safety pre-condition on the
prefixes of execution traces. For example, the property
can be ”if event A never happens, then an event B is
never preceded by a C”. P is in this case the predicate
”if event A never happens”. In this case, ignoring irrel-
evant scenarios in which P is not satisfied may strongly
improve the performance of model checking. One can
do that by introducing a sink state stereotyped with
� success � in which the observer goes every time
P is broken (e.g., when an event A occurs), as shown in
Figure 5.

Property 3. The launcher shall not lift-off if an
anomaly is detected during the Vulcain engine ignition.
In case of lift-off abort, the valves shall all be closed and
the pyrotechnic command shall not be ignited.
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state machine that checks
property Q: a B is never

preceded by  a C

<<success>>
irrelevant

A

Fig. 5 Example of using a � success � state to cut off
irrelevant parts of the state space

ok

[ v @ Open ]

aborting

aborted

not_yet

aborted

not_yet

 / t.set(0)

[ t >= 2000 ]

[ v @ Failed_Open ]

ko
<<error>>

[ v.EPC.EAP.Pyro1 @ Ignition_done or
v.EPC.EAP.Pyro2 @ Ignition_done or
v.EPC.EAP.Pyro3 @ Ignition_done ]

match send ::EADS::Signals::Request_EAP_Preparation()

match send ::EADS::Signals::Request_EAP_Release()

[ (v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or
(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or
(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or
(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or

(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open) ]

match accept ::EADS::Environment::Valves::Open() by v

liftoff_aborted_right

v : Valve
t : Timer

<<Observer>>

Fig. 6 Property 3.

An anomaly on the Vulcain ignition corresponds, in
our modeling of the environment, to a Valve object en-
tering the Failed Open state. This failure shall be de-
tected by the software, which shall then abort the lift-off
and secure the launcher. Thus, this property is expressed
more precisely as follows:
If any instance of the valve class enters one of the states
Failed Open or Failed Close, then:

– All the instances of the Pyro class shall stay forever
in the state Wait ignition.

– 2 seconds after the valve failure, all instances of the
Valve class shall be in state Close or Failed Close,
and then remain in this state forever.

This property is expressed in a purely black-
box way. However, since several components are in-
volved in aborting the lift-off, the observation of
the internal signals Request EAP Preparation and Re-
quest EAP Release, which is supported in our frame-
work, allows performing on the model level the equiva-
lent of a mixed white-box and black-box testing activity.

We complete thus the previous property in the following
way:

– The events Request EAP Preparation and Re-
quest EAP Release are never emitted.

The formal description of this property is shown
in Figure 6. The observer functions as follows: ev-
ery time an Open command is handled by a valve
v, we test whether v reaches the state Open or
Failed Open. In the latter case, the observer enters state
aborted, in which Pyro ignition (i.e. Pyro objects en-
tering state Ignition done) as well as the signals Re-
quest EAP Preparation and Request EAP Release are
prohibited. After 2 seconds from entering state aborting,
the observer goes to the inner state aborted in which,
additionally, Valves are required to remain closed (i.e.
never reach the states Open or Failed Open).

Property 4. If the lift-off is performed, all the valves
shall be opened, and the EAP stage shall be released on
time.

The lift-off is characterised by the ignition of the py-
rotechnic command Pyro1 (implying the booster igni-
tion), i.e. object entering state Ignition done. The sepa-
ration on the EAP stage involves the ignition of Pyro2
and Pyro3 in a very precise timing.

This property can be broken into four separate ob-
servers which check that, if the Pyro1 object enters state
Ignition done, then respectively:

– All the instance of the Valve class shall be in the
Open state 2 seconds after, and then remain in this
state forever.

– The instance Pyro2 of the class Pyro shall enter Ig-
nition done in a predefined time window (relative to
the start date H0).

– The instance Pyro3 shall enter Ignition done in a
predefined time window (relative to the start date
H0).

– The duration between the entry of Pyro2 in the state
Ignition done and the entry of Pyro3 in the state Ig-
nition done shall also be in a predefined time win-
dow.

We present in Figure 7 only the observer which
checks the last of the four properties.

Although this feature is not used in the Ariane-5
model, let us note that it is possible for very complex
properties to be described using a set of communicat-
ing observers. Communication is then done by shared
(public) observer attributes.

4.2 Timing requirements

For a real-time system like the Ariane-5 software, cer-
tain system requirements are concerned purely with the
timing of some events during the execution. This is the
case for example in the Property 2 introduced in section
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liftoff_performed_right4

g : Ground
t23 : Timer

<<Observer>>

wait_start

wait_ign_p1

match send ::EADS::Signals::Start(void) by g

wait_ign_p
2

[ g.Acyclic.EAP.Pyro1 @ Ignition_done ]

wait_ign_p
3

[ g.Acyclic.EAP.Pyro2 @ Ignition_done ] / t23.set(0)

ok

ko
<<error>>

[ g.Acyclic.EAP.Pyro3 @ Ignition_done ]

[ t23 >= 10000 ]

[ g.Acyclic.EAP.Pyro3 @ Ignition_done ]
[ t23 < 5000 ]

[ t23 >= 5000 ] / t23.reset()

Fig. 7 Property 4.

4.1: The software shall not send two commands to the
same valve at less than 50ms of interval. Such simple
duration conditions may be more easily specified using
the declarative constructs of the Omega UML profile.

4.2.1 Some background on timing constraints The ba-
sic concept behind specifying constraints is the event
type. An event type defines a pattern for matching sig-
nificant events in the system execution, like an opera-
tion invocation, an object creation, etc. (the event kinds
are actually the same ones that can be observed by ob-
servers, see section 4.1).

Based on an event type, one can define an event in-
stance, which will capture all events matching the type
or just a subset, depending on the scope in which the
event instance is defined. Finally, at execution time, an
event instance will represent the list of event occurrences
that are captured.

Event instances are used to write duration con-
straints of the form durationtype(ei1, ei2). There are sev-
eral ways of pairing event occurrences to be constrained,
each one represented by a specific type of operator. The
simplest one (simply denoted duration(ei1, ei2)) con-
strains the time passed between the last occurrence of
ei1 and the last occurrence of ei2.

For further detail on Omega timing constraints and
their semantics, the reader is referred to [GOO05].

Valve

<<Triggered>> Open()
<<Triggered>> Close()

(from Environment)

<<Active>>

timeevents {
  eo : EInvOpen;
  ec : EInvClose;
}
timeconstraints {
  duration(eo,ec) >= 50;
  duration(ec,eo) >= 50;
}

EInvOpen
<<TimedEvent>> match invoke

EADS::Environment::Valve::Open()

EInvClose
<<TimedEvent>> match invoke

EADS::Environment::Valve::Close()

Fig. 8 Property 2 as a timing constraint.

4.2.2 Property 2 as a local constraint Property 2 can
be formalized as a local constraint attached to the Valve
class, as shown in Figure 8.

The event types are EInvOpen and EInvClose, de-
fined by a matching clause identical to the one used in
observer transitions. Event instances eo and ec are de-
clared within the scope of the class Valve. In this case,
the runtime semantics is that there will be one instance
of EInvOpen and one instance of EInvClose for every
object of class Valve, and these two event instances will
capture only event occurrences concerning their “par-
ent” Valve object. This solves automatically the prob-
lem of matching events concerning the same valve that
we had in the specification of property 2 by an observer
(Figure 4).

Finally, the requirement that consecutive commands
do not come at less than 50ms of interval is described by
two declarative constraints: duration(eo, ec) >= 50 and
duration(ec, eo) >= 50 (this is based on the hypothesis
that there are no two consecutive Open commands or
two consecutive Close commands, as required by prop-
erty 1 from section 4.1).

4.3 Scheduling constraints and objectives

During the design of the Ariane-5 software, an archi-
tecture of tasks (or threads) has been constructed. Each
function is assigned to a specific task. Let us note that in
this system there are both cyclic control functions and
sporadic regulation and configuration functions which
are triggered by some event.

The tasks are all executed on the same processor,
using a pre-defined fixed-priority preemptive scheduling
policy. One of the goals of the model-based validation
was to verify that the scheduling policy meets some con-
sistency constraints, for example that the cyclic control
functions finish in time at each cycle.

The main difficulty in using classical scheduling anal-
ysis methods such as RMA[?] to analyze this system
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comes from the intervention of sporadic tasks. One can-
not simply consider at each cycle the worst case exe-
cution time of sporadic tasks, as this would lead to a
big over-approximation of resource occupation. What we
propose instead is to take into account in the analysis
the functional behavior of the system and its impact on
resource consumption.

4.3.1 The problem The scheduling policy that is used
is a 3-level fixed priority preemptive scheduling:

– Functions of the Regulation components have the
highest priority. They are sporadic and take about
2 to 5 ms each time a command is executed (open a
valve, ignite a pyro, etc.)

– Functions of the Navigation-Control components
have middle priority. They are periodic, with a period
of 72ms and take 37 to 64ms to execute depending on
the current phase of the flight and other parameters.

– Functions of the Guidance components have the low-
est priority. They execute every 576ms. One of the
goals of scheduling analysis was to determine how
much processor time they can take in each cycle in
order for the system to remain schedulable.

There are several objectives that have to be attained
by the scheduling:

– The Navigation-Control functions have to finish
within the 72ms cycle and the Guidance functions
have to finish within the 576ms cycle.

– The application uses a 1553 MIL bus. In this proto-
col, all the data transfers are performed under the
supervision of a bus controller (the main onboard
computer in the case of the Ariane 5 case study).
The software components read and write data in an
exchange memory which is transferred via the bus
to the equipment (also called remote terminal) at
specific time frames (this process is called low-level
transfer). A consistency condition is that the software
components do not read or write the bus during the
low-level transfer time frames.

The difficulty in analyzing the scheduling of Ariane-
5 lies in that the execution time of the different tasks
varies depending on the current flight phase. Figure 9
shows the statechart of the control cycle. One can see
that there are optional paths which take a lot more time
than others. The worst case execution time of this cycle
is 64ms, while the best case is 37ms and the average
measured by simulation is around 42ms.

4.3.2 Modeling the scheduling policy in Omega UML It
has been possible to model the scheduling policy and re-
source consumption using the low level constructs of the
Omega profile (clocks). The IFx tool provides models
for different types of schedulers as elements of a pre-
defined library Scheduling. This solution is reusable and

open, the modeler can use the predefined scheduler mod-
els and ignore the internals of the Scheduling library, or
alternatively extend the library with new schedulers.

The Scheduling library (see Figure 10) contains two
types of classes organized in two hierarchies:

– Task classes used to annotate the System with re-
quests for execution time, parameterized depending
on the scheduling policy. Each object of the system
that executes actions which take up a significant pro-
cessing time, will use an instance of the class Task on
which it will call the operation exec with a duration
parameter. Depending on the scheduling policy, other
parameters may have to be passed to exec, e.g., prior-
ity for fixed priority scheduling (FPPS), or deadline
for earliest deadline first scheduling (EDF).
Note that instances of class Task can be shared by
several objects and can be used multiple times to
consume processor time with exec. The only restric-
tion is that there are no re-entrant calls to exec on
the same Task.

– Scheduler classes are used to model the different
scheduling policies. The behavior of these classes is
transparent to the designer, who has to create an
instance of a Scheduler class for each processing re-
source used by its system. Furthermore, each created
Task has to be mapped to a Scheduler (when the
Task is created). Subsequently, every time a Task is
requested to consume processing time using exec, it
will communicate with its Scheduler in order to de-
termine the time when exec will finish based on the
task duration and on the state of the Scheduler – i.e.
the scheduling policy and the charge at that moment.

As an example, we describe in the following the be-
havior of the fixed priority preemptive scheduler. We use
the scheme proposed in [?] (see also Figure 11). The
scheduler works for a predefined range of priority from
0 (highest priority) to a constant N (lowest priority). At
any time, there is at most one task executing on each
level of priority; if a request comes on a level which is
already occupied, this leads to an error. The scheduler
keeps track of the following information:

– An array ti of clocks measuring the time since the
task on level i started its execution, including time
when it was preempted.

– An array di with the foreseen end time for task i.

The data is updated as follows:

– when a new task i arrives:
– di stores its duration
– let j be the currently executed task

• if i < j or j is inexistent then ti is set to 0.
• ∀k > i, if tk is started then dk is increased

with the value of di.
– when the highest priority task i finishes, i.e. when

ti = di:
– ti is deleted
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BGY

SRI_Upstre
am_1

 / SRI.SRI_upstream()

EAP_Calculat
e_aiming

QDP_Calculat
e_aiming

SRI_Upstre
am_2

Control_Predic
t_state_vector SRI_Down

stream

Decide_EAP
_Separation

Navigation_
performed

Interpolation_
performed

Calculate_
attitude

EAP phase QDP phase

EAP phase

QDP phase

Start_Minor_
Cycle

Guidance_ra
n

 / BGY.Perform_BGY()

[ fasvol<>2 ] / Control.Calculate_EAP_aiming() [ fasvol=2 ] / Control.Calculate_QDP_aiming()

 / Control.Predict_EAP_state_vector()  / Control.Predict_QDP_state_vector()  / SRI.SRI_downstream()

Synchro() / begin minor_cycle:=minor_cycle+1 end

 / Attitude.Calculate_Attitude()

[ fasvol=2 ] /
Thrust_Monitor.Decide_EAP_Sepa

ration()

[ fasvol<>2 ]

[ minor_cycle<guidance_period ]
[ minor_cycle>=guidance_period ] / begin

minor_cycle:=0;Guidance_Task!Start_Guidance_cycl
e() end

 / Data_tables.Interpolate()

[ minor_cycle=6 ] / Navigation.Flight_Protection()

[ minor_cycle=2 ] / Navigation.Perform_Navigation()
[ minor_cycle<>2 and minor_cycle<>6 ]

5ms

2ms

2ms

10ms

5ms

5ms 0..5ms

20ms
10ms

5ms

10ms

Fig. 9 Statechart of the Control cycle with unitary execution times.

Task

<<Triggered>> exec(who : Object, d : Integer) : Boolean
<<Constructor>> Task(c : Scheduler)

<<Active>>

FPPScheduler

<<Primitive>> getCurrentPrio()
<<Primitive>> insertNewTask()
<<Constructor>> FPPScheduler()

<<Active>>

Scheduling

System

Scheduler
<<Active>>

n 1

+tasks

n

+cpu

1

FPPSTask

<<Triggered>> exec()
<<Constructor>> FPPSTask()

<<Active>>

+
+

+
+
+
+

Fig. 10 Scheduling library.

– if another task j is waiting (with the highest pri-
ority after i), and if tj is not yet started, then tj
is set to 0.

4.3.3 Modeling the scheduling objectives Scheduling
objectives are modeled using observers. As mentioned
in section 4.3.1, there are three scheduling objectives:

– The control functions have to finish within the 72ms
cycle. This property is formalized in the observer in
Figure 12, by the fact that the Cyclics component
receives the signal Synchro, which signifies the begin-
ning of a cycle, only in the states Start Minor Cycle,
Wait Start or Abort.

If a cycle does not finish in time, the Cyclics compo-
nent is in an intermediate computation state when
the next Synchro is received and this property is vi-
olated.

– The Guidance tasks have to finish within the 576ms
cycle. This property is expressed with a similar ob-
server.

– The bus transfer windows have to be observed. This
is formalized in a similar manner by the fact that
calls to Bus read and write operations do not occur
while the Bus is in a Transfer state.
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exec

error

idle

FPPSExec(theTask,newD, newPrio)

[ t->getAt(currentPrio) = d->getAt(currentPrio) ] / begin
tasks->getAt(currentPrio)!FPPSRelease(); tasks->getAt(currentPrio) := null;

d->getAt(currentPrio) := -1; t->getAt(currentPrio).reset();
started->getAt(currentPrio) := false; currentPrio := self.getCurrentPrio() end

FPPSExec(theTask,newD, newPrio)

[ d->getAt(newPrio) = -1 ] / begin self.insertNewTask(theTask,
newD, newPrio); currentPrio := self.getCurrentPrio() end

[ d->getAt(newPrio) <> -1 ] / informal
"-- VIOLATED ASSERTION--"

[ currentPrio <> -1 ] / if(not started->getAt(currentPrio)) then
begin t->getAt(currentPrio).set(0); started->getAt(currentPrio)

:= true end endif

[ currentPrio = -1 ]

Fig. 11 Behavior of the fixed priority preemptive scheduler.

wait

match send ::EADS::Signals::Synchro() to c

KO_NC_cycle_is_
schedulable

<<error>>

[ c @ Start_Minor_Cycle or c @
Wait_Start or c @ Abort ]

[ not( c @ Start_Minor_Cycle or c @ Wait_Start  or c @ Abort ) ]

Fig. 12 Scheduling objective: the control cycle finishes in
time.

5 Validation methodology

Validation of UML models with the IFx toolset involves
several activities, which range from simple syntactic and
static semantic checking to dynamic property verifica-
tion. These activities are supported by different tools. In
this section, we discuss a standard workflow that defines
several validation phases. For each phase, we discuss the
main difficulties that may occur as well as possible solu-
tions.

5.1 Translation from UML to IF

In this phase, the uml2if tool is used to transform a
UML model into an IF specification with an equivalent

semantics (see [OGO05] for the details of the transla-
tion). This phase performs simple static (syntactic and
semantic) checks of the UML model. One can discover
basic errors such as:

– syntax errors in actions
– use of undefined or uninterpreted UML constructs

(e.g., unknown stereotypes or data types, some UML
constructs or features not interpreted in the Omega
profile, etc.)

– naming errors (e.g., use of undefined attributes, sig-
nals, classes, etc.)

– type errors (e.g. operation signature mismatch, etc.)
– violations of other well formedness constraints (e.g.,

root class is not active, a class has several state ma-
chines, etc.)

5.2 Static analysis

In this phase, the dfa tool is applied in order to analyze
the IF specification, simplify it and optimize it for veri-
fication. Several types of transformations are possible:

– State factorization introduces systematic reset in-
structions for variables which are dead in a certain
control state of the specification. In this way, it pre-
vents the model checking tools to distinguish between
execution states which differ only by values of dead
variables. This technique is very effective, given that
it can be applied locally at control-state level, and
may collapse large (bisimulation equivalent) parts of
the state graph.
This transformation is especially useful to reset
clocks or counters which are not useful any more from
a certain execution point on. In this case, the trans-
formation may render finite a system with an infinite
state space.
State factorization is recommended to be used in all
cases before going on to model checking, since it is
a low complexity transformation that preserves all
properties.

– Elimination of dead elements such as unused signals
and variables, unreachable states in process state ma-
chines, or process types which are never instantiated.
This optimization simplifies the IF source code and
can dimuinish the size of the individual system states
(by eliminating variables) but has no impact on the
size of the state space.

– Slicing is a static analysis method used to eliminate
elements (variables and other objects) of the model
which do not affect the valididity of a set of proper-
ties, where the set of properties is defined by a set of
observable elements.
This technique allows to explore a subset of the com-
plete state space still guaranteeing that all properties
which depend only on observations of the selected set
of elements hold on the original model if and only if
they hold on the reduced model.
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In the Ariane-5 case study, the usefulness of factor-
ization is limited due to the relatively small number of
loops in the system state graph. Comment by Susanne:
je ne comprends pas, la factorization est lie au nombre
de variables, non? p.e. on peut dire un peu plus sur ce
qui etait util Nevertheless factorization was useful to au-
tomatically reset clocks which were not useful from some
point on. This was in particular the case in properties,
where this simplification can be applied in the same way
as in the system model. For example, clock t in Prop-
erty 3 (see Fig. 6) is automatically reset upon entry in
state aborted).

5.3 Model exploration through simulation

Simulation allows the user to explore the model in a
guided or random manner, without being exhaustive.
Simulation states need not to be stored as long as ex-
haustive state space exploration is not aimed at.

This lightweight method can be used for example to
validate the existence of expected (nominal) executions
of the system. It allows the user also to disprove sim-
ple safety properties, which must hold on all execution
paths and all properties that can be invalidated on a
single execution. They range from generic ones, such as
absence of deadlocks or signal loss, to more specific and
application dependent ones, e.g., conditional invariants,
which are tested using conditional breakpoints.

The simulation tool allows performing in a simple
manner usual debugging tasks: saving and re-loading a
played scenario, stepping back and forward through it,
inspecting the system state (possibly by defining custom
views of the system state through XSLT style sheets) and
inserting conditional breakpoints.

The simulation tool is mainly used at an early stage
when the model has still to be debugged, or after some
important changes. But it is also useful later for analyz-
ing error traces generated by the model checker when a
property is violated (replay of counter-example).

5.4 State space exploration and model checking with
observers

In this phase, which should be applied only on a rea-
sonnably debugged model, the IF model is compiled into
an executable component which can be used to exhaus-
tively explore the state space of the system, and pos-
sibly store it in the form of a labeled graph. The ver-
tices of the graph are the system states reachable during
execution of the system composed of the model under
study and possibly a set of observers expressing proper-
ties, and edges represent transitions and are labeled with
the event names associated with each transition.

Model checking can be performed either by analysing
a completely generated and stored graph obtained by
the execution of the system alone (including always also

an explicit or implicit environment) as shown later on.
When properties are expressed by observers, the error
analysis is usually done on-the-fly during the complete
traversal of the state space — which requires to store
only the states encountered during the traversal, but not
the transitions — by signalling the non satisfaction of
a property each time that an <<error>> state of its
observer is encountered. The IF tool stops exploration
after the first error encountered. Comment by Susanne:
c’est vrai? ou seulement avec depth first

In an early verification phase, where the goal is to
quickly find errors, on-the-fly verification is the most ef-
ficient method, as usually errors are found (and then
eliminated) before the state space is fully explored. The
difference with simple simulation is that visited states
are stored, thus enabling exploration strategies depend-
ing on the set of earlier visits of the same state.

Notice that the exploration of the entire state space7,
which is done by storing is a pre-requisite to positively
prove the satisfaction of properties. In this case, a pos-
teriori verification of a completely generated state graph
is sometimes the better choice, especially for complex
properties expressed by observers with many states.

Comment by Susanne: j’ai essaye de rester sur la
ligne originale, mais finalement je me demande si j’en
n’ai pas trop fait et il ne faudrait pas ou (1) racour-
cir parce que ce sont des generalites qui iront bien dans
un papier tutorial mais pas tellement dans un “pa-
pier recherche” ou (2) fournir des examples venant de
l’etude de cas qui affirment tout ca. Surtout concernant
l’affirmation que la verif a posteriori est parfoi superieur
devrait etre accompagne d’un exemple sinon on laisse
tomber la phrase

5.4.1 Exploration strategies Two main exploration
strategies may be used with IF:

– Depth first exploration. With this strategy, when
an <<error>> state is detected, the current “state
stack” represents a diagnostic trace, that is, an ex-
ecution leading from the initial state to a property
violation which can then be analyzed and debugged
using the simulator.
During depth first exploration, it is also possible to
apply the so-called partial order reduction on-the-fly;
meaning that only subset of executions which differ
only by the execution order of internal transitions
occurring in different — that is concurrent — pro-
cesses. An internal step of a (set of) process(es) is one
that does not affect the behaviour outside the pro-
cess(es), that is does not perform any signal sending
nor access any shared variables. Partial order reduc-
tion imposes a particular exploration order on inter-
nal steps and preserves all properties not observing
internal actions.

7 up to partial order reduction, and possibly of a model
simplified by some static analysis method
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Example: In the Ariane-5 model, the use of partial or-
der reduction was the key for constructing tractable
models. Without this reduction, even for flight pa-
rameters that yield the simplest behaviors, the com-
plete exploration of the state space did not succeed
(it had more than 106 states, with a state size of
about 10KB). By using partial order reduction of in-
ternal steps, we reduced the size of the model by
more than 3 orders of magnitude, that is, to about
1000 states for certain flight configurations.
Depth first exploration is in most cases the recom-
mended strategy: it can be combined with partial
order reduction and it also allows often detecting
anomalous behaviors of the system very early (i.e.
after generating only a fraction of the state space).
During exploration, the number of already generated
states and transitions as well as the “current depth”
are displayed.
Notice that in cases in which the depth grows very
fast or is (almost) equal to the number of explored
states, one can suspect that the system is diverging,
i.e. that any transition execution leads to a new state
and there are no cycles. While this may be a normal
behavior, in most systems this is caused by an error
due to the fact that some clock or counter is never
reset, or that a process signal queue is getting flooded
by signals which are produced more often than they
are handled. The causes of such anomalies can of-
ten be discovered and eliminated by analyzing a few
“deep” states.

– Breadth first exploration. The main advantage of
this strategy is that it allows finding the shortest
path to some property violation. However, it cannot
be combined with partial order reduction and the
generation of diagnostics traces is much more com-
plex Comment by Susanne: le suivcant, je ne com-
prends pas – cannot be generated in a form amenable
to debugging and divergence problems can in not
be detected and diagnosed early. Comment by Su-
sanne: autre question: est-ce bien vrai que po ne peut
pas etre appliquee? ou est-ce simplement bien plus
cher puisqu’il faut garder l’information normalement
seulement pour l’exploration courante pour tous les
etats non encore completement explores?

5.4.2 Representations for time The time model under-
lying IF is that of timed automata [ACH+95], which are
based on the use of clocks which can be reset to zero
and progress in states, all at the same rate. Thus, clocks
can be used for measuring the time progress between
the event in which a given clock has been set and the
event in which it is measured. In order to enforce upper
bounds on the time distance between events, a notion of
urgency is needed. IF uses timed automata with urgency
[BS97] which provides means to force the occurrence of
transitions to the earliest time point at which they are

enabled (eager transitions) and to forbid that enabled
transitions are disabled by time progress beyond the va-
lidity of their guard (delayable transitions).

In IFx, all timing constraints of the UML model are
translated into constraints on clocks in the correspond-
ing IF model. IF allows two methods for representing
clock values during state space exploration which can be
chosen independently of the exploration strategy:

– symbolic or dense time representation: a state con-
sists of an untimed state and a normalized constraint
on clock values — represented by a so-called differ-
ence bound matrix (DBM) — representing the the
values of the clocks at the point of time at which
the state is entered, and how far time can progress
without any change of the set of enabled transitions.
Notice that the time unit has to be chosen in such a
way that all relevant clock constraints, and therefore
also bounds in the DBMs can be expressed by integer
values.

– discrete time representation: in this case, in each
state the clock variables have some (integer) value,
and time progress is represented by tick events in-
creasing all clock values by 1.

Details on the two representations and how they com-
pare may be found in the literature on timed automata.
The advantage of the symbolic representation is that it
leads often to much smaller models. When the occur-
rence time constraints of some transitions depend on
earlier measured time distances between events (that is
clock differences), the use of the discrete representation
is necessary as in this case the constraint on a successor
state may not be representable by a DBM. When the
symbolic states represent (close to) unit time progress
intervals, the discrete representation is generally more
efficient.

Notice that there are no simple guidelines depending
on the form of the model allowing to make always the
right choice. A general observation is that the presence of
many eager transitions or the presence of “independently
evolving” clocks leads often to small symbolic states. No-
tice that for the Ariane-5 model as well as other UML
models verified with IFx, the symbolic time representa-
tion performed always bette, both in terms of state space
size and generation time.

5.5 Other verification techniques

Several other techniques for property verification are
available in IFx. We discuss here two of them:

– Verification by model minimization is an intuitive
method for a non expert end-user. It consists in com-
puting a reduced graph (with respect to a given set
of observations) of the overall behavior of the speci-
fication. Such a model can be visually examined by
the user.
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Nevertheless, in order to obtain an abstract model,
the complete state space must be stored in memory. If
this is possible, it can be minimized modulo a bisim-
ulation using Aldebaran (a tool connected to IFx
[BFKM97]), and depending on the kind of bisimula-
tion considered, the reduced graph strongly preserves
different classes of properties (e.g., safety, absence of
deadlocks, etc.). The set of observations must include
all events relevant for the property being verified.
Example: The graph in figure 13 is the quotient
model of Ariane-5 with respect to branching bisimu-
lation [?], in which the only observable events are
opening/closing the Epc valves, igniting the Epc
stage and detecting anomalies.
The branching structure and all safety properties in-
volving these actions are preserved on the graph from
figure 13. It is easy to check by inspection on this ab-
stract model that if an Eap anomaly occurs, then all
the valves are closed and afterwards an Epc anomaly
is signaled. Also, it is easy to check that the Epc
sends the Ignition signal only after all valves have
been (correctly) opened.

– Verification of properties expressed by µ-calculus for-
mulas. Alternation-free µ-calculus is a temporal logic
which allows expressing properties depending on the
branching structure of the system state graph. Its ex-
pressive power is incomparable to that of observers
(representing languages). It allows the expression of
branching dependent properties such as “there is no
deadlock”, or fair liveness such as “after each A-
transition, as long as no B-transition has occurred,
there exists always at least one successor from which
a B-transition can be reached”.
There exists extensions of the µ-calculus allowing
the expression of time dependent constraints, but
this is not implemented in IF. Anyway, using µ-
calculus is non trivial, even for specialists. Moreover,
in timed systems, liveness properties are replaced by
time-bounded safety properties for which the use of
observers is almost always more convenient. Truely
branching dependent properties, like the one above
can only be expressed by modifying the model by
adding boolean variables coding the existence of a
required execution as a part of the state.

5.6 Reduction techniques with weak property
preservation

Until now, we have only considered methods preserv-
ing both the satisfaction and the non satisfaction of a
set of properties: that is, for some set of properties, the
application of a reduction technique will conclude that
the original system satisfies the property if and only if
the reduced model does. IF allows also some reductions
in which only one of the two implications holds, that is
properties are only weakly preserved.

0

11

{Valves}0 ?Open

14

{Valves}0 ?Open

10

{Valves}1 ?Open

13

{Valves}1 ?Open

6 {Valves}0 ?Close

1

2

{Valves}4 ?Open

8

{Valves}4 ?Open

4
{EPC}0 !Ignition

9{Valves}4 ?Close

5

i

7
i

3{Valves}3 ?Open

{Valves}3 ?Open

12{Valves}3 ?Close

{EAP}0 !Anomaly

{EPC}0 !Anomaly

{Valves}2 ?Close

{Valves}2 ?Open

{Valves}2 ?Open

{Valves}1 ?Close

Fig. 13 A minimal model generated with Aldebaran.

– existential abstraction consists in eliminating a set
of elements (variables, processes, messages) and all
statements changing their value, together with all
those elements whose values may depend on some al-
ready eliminated element. This transformation leads
often to much smaller models as a smaller state space
is considered, but it may lead also to a huge over-
approximation of the behavior. Over-approximations
preserve the satisfaction of safety properties, but not
their non-satisfaction (i.e. they may generate false
negatives). In the case of non satisfaction of a prop-
erty on an abstract model, nothing can be concluded,
and one has to reconsider the choice of the abstrac-
tion. IF does not (yet) provide support for this so-
called abstraction refinement process [?].
A related abstraction of timed systems consists in
relaxing the urgency type of transitions, for example
transforming eager transitions into delayable or even
lazy ones. This leads to a state graph allowing more
behaviours but probably with much less states.

– introducing priorities: when property preserving par-
tial order reduction does not eliminate enough
concurrency-induced non determinism, IF proposes
the addition of priority rules forcing particular ex-
ecution orders for some conflicting transitions (for
a description, see [OGO05,GS04]). In the case that
confluence can shown for the prioritized transitions
using stronger methods than those underlying the IF
partial order reduction, strong property preservation
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is still guaranteed. Otherwise, only a subset of the
possible behaviours is explored, and only the viola-
tion of safety properties are preserved by the reduced
model.

Notice that the simultaneous use of both over- and
underapproximations is problematic as verification re-
sults are then meaningless. Notice also that most models
use some form of over approximations due to the non rep-
resentation of “irrelevant details”. Thus, underapproax-
imations as they are introduced by priorities have to
be used very carefully. When priority rules are however
taken into account by the code production process, as
this is for example the case in Rhapsody, then priorities
are strictly property preserving with repsect to the code
generation process and can be used to simplify models.

An example of using abstractions of this form is given
in section 6.1. In the context of IF, where we are verifying
mostly timed systems, a common abstraction consists in
loosening the timing constraints of a component of the
system. For example, a transition which is taken in a
strictly defined time condition may be rendered time-
nondeterministic by defining its urgency as lazy. This
means that it can be delayed indefinitely instead of be-
ing executed as soon as it is enabled. While this intro-
duces new behaviors in the model, the state space may
shrink by an important factor because of the symbolic
representation of time that is used.

6 Ariane-5 verification results

6.1 Abstractions in Ariane-5

Comment by Susanne: le problem que je vois ici, c’est
qu’on a enumere tout un tas de techniques de reduction
mais finalement on a utilise encore d’autres. Sans expli-
cation ca ne passe pas

The duration of a basic cycle of the cyclic behavior
of the Ariane-5 flight software is about 100 ms. Each
basic cycle contains about 100 steps. This implies that
the generated model will have a depth of about 3 600
000 steps for 1 hour mission, and 15 000 000 000 steps
for a 6 months mission, etc ...

Current tools do not allow to exhaustively explore
state spaces of this size, even after application of the
previously presented automatic reduction techniques. In
order to cope with the complexity of the model, we had
to apply more evolved abstraction and reduction tech-
niques which need a good understanding of both the
functioning of the system and the verification and ab-
straction technology. Comment by Susanne: p.e. plutot
dans les conclusions de la section: In our case study,
the verification has been done by the designer with the
guidance from the verification expert. ...

Compositional Abstraction . We have applied this well
known technique which consists in the verification of
properties of a subsystem, by replacing the other parts of
the system — which play here the role of an environment
— by a simpler description representing an abstraction,
that is, allowing more behaviours. Nevertheless, the sim-
ple variable elimination implemented in IF did not suc-
ceed Comment by Susanne: a-t-on essaye ?. We had to
manually provide abstractions, and in order to minimize
the modelling effort, the existing decomposition of the
system into a cyclic and an acyclic part, and the clear
interface between them has been exploited:

– Abstraction of the cyclic behavior.
To prove safety properties related only to the acyclic
part, that is the flight programm, the cyclic GNC
part has been abstracted. This has been done by
eliminating all the internal behaviour of the cyclic
part, and by sending the events generated by the
GNC (flight phase change commands) at arbitrary
moments, rather than at an “optimal” time point
computed by the concrete GNC. This simplified GNC
is clearly an abstraction, and it was sufficient to
show the satisfaction of all the properties of the
asynchonous part. Comment by Susanne: c’est fi-
nalement une abstraction qu’on saurait construire
presque automatiquement?. Si je comprends bien on
a utilise une elimination des time guards — affaiblir
des gardes. cest clairement une abstraction — suivi
d’une abstraction existentielle de tout le comporte-
ment interne de GNC, qu’on aurait pu obtenir au-
tomatiquement, p.e. meme en applicant le slicing ?

– Abstraction of the asynchronous behavior.
Comment: [IO]: est-ce qu’on peut dire plus prcise-
ment ce qu’on a fait avec a? je ne me rapelle
plus si je l’avais utilis vraiment. [S]: oui ca serait
bien d’expliquer un peu en detail en quoi consiste
l’abstraction
In this second step, the asynchronous part has been
abstracted. Also in this case, we mainly relaxed
time constraints: The cyclic behavior received asyn-
chronous events generated at a non deterministic
time. No hardware failure can occur. Even if this ab-
straction is not completely realistic (especially for a
CPU consumption point of view), it has allowed the
detection and the correction of several errors in the
model. Comment by Susanne: la, on melange tout:
interdire l’occurrence de “fault events” est une sous
approximation, qui en effet p.e. utilise pour la de-
tection d’erreur. Mais le melange avec l’abstraction
(relacher des time constraints) fait qu’il peut s’agir
de spurious errors; donc il faut argumenter pourquoi
on est content quand meme.
ensuite on a bien du montrer des proprietes, ce qui
est a priori impossible avec un melange de sur et sous
approximations
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We have also used an alternative reduction with-
out behavioral abstraction, in order to show global
correction of the software, which allows also checking
some global properties on the time points at which the
event exchanges between the cyclic and the acyclic part
take place. Comment by Susanne: est-ce vrai? sinon il
faut dire pourquoi c’est bien, ca permet une simulation
plus realist qui p.e. utilisee aussi pour une inspection
manuelle? c’est plus simple a construire ? autre?

Reduction of the durations of the flight phases .
A huge source of state explosion is the difference of

the timing scale between the asynchronous behaviour
and the cyclic one. The cyclic behaviour deals with du-
rations of a few milliseconds, whereas the asynchronous
one deals with durations of several hours (and up to
some months for other types of missions like the ATV8

project).
Comment by Susanne: ca ne me convainc pas, c’est

plutot une justification pour l’abstraction de le partie cy-
clique comme avant; j’essais une explication alternative
ci-dessous. est-elle correcte?
That means that asynchronous events are rare, and
the system is working without occurrence of any asyn-
chronous events during a great number of basic cycles.
Moreover, most of the output of the cyclic part is irrel-
evant for the properties to be verified. Thus, it is suffi-
cient to perform the proof with a mission duration much
greater than the basic cycle, but shorter than the real
mission duration.

That means that asynchronous events are rare, and
the system is working without occurrence of any asyn-
chronous events during a great number of basic cycles in
what we call here “stable phases”. In such stable phases,
all executions of the basic cycle in the cyclic part are
identical with respect to the properties that we want to
verify: in particular,

– the schedulability of all tasks in all relvant cycles
– the reactivity to exceptional events (such events do

not occur in stable phases)
– the respect of a certain time window for the com-

mands send from the synchronous to the asyn-
chronous part (stable phases are outside this time
window

This suggests that the model can be reduced by dras-
tically reducing the overall flight duration, by being care-
ful to make sure that only stable phases are shortened,
whereas all the critical transition phases are fully ex-
plored. The transition phases are defined by the flight
phases defined in the acyclic part and by the occurrence
of exceptions, where the correctness of the software has
only to be guaranteed if there are not more than 2 ex-
ceptions over the entire flight.

The correctnes of a chosen reduction of the duration
of the different phases can be shown als follows Comment

8 Automated Transfer Vehicle

by Susanne: ici ca serait sympa si on pouvait dire has
been shown .... For a choice of a minimal duration of all
phases which requires a good knowledge of the design,
we show phase by phase by starting with the first one,
that:

– after the expected stabilization time the system is
indeed stable, that means, nothing changes from one
cycle to the next; thus, only time progress (leading
to the next phase change) or exceptions may lead to
new states.

– In a similar way one has to validate on over approx-
imation of the stabilisation time for all exceptions

– then, the duration of the first phase can be reduced to
the minimal stabilisation time plus the duration al-
lowing two exceptions to occur and to stabilize again.
This allows to guarantee that all states that can be
reached during the first flight phase with the orig-
inal flight durations, will also be reached using the
shorter duration.

– Now we can use a short first flight phase to verify the
stabilisation delay for the second phase, and so on,
until the last one.

Using such a reduction of the real duration of the mis-
sion, the reachable state space for the entire flight could
be explored, and all the properties could been shown to
hold. Notice that the properties of the cyclic part were
taken unchanged, whereas the properties of the acyclic
part had to be adapted to take into account the reduced
duration of the different flight phases.

6.2 Results and figures

In this section, we want to show the efficiency of
the applied reduction methods.Comment by Susanne: il
faudrait donc inclure des durees plus longues puis con-
clure que pour 50 minutes on n’y arrivera jamais?

In order to test the tool, we performed the mission
time reduction by using different mission durations (but
always respecting the required stabilisation times) Com-
ment by Susanne: est-ce que les duress utilisees sont vrai-
ment suffisantes? j’aurai la tendance de dire que tant que
l’espace d’etat ne crois pas lineairement, il y des vrais
nouveaux etats?.

The table in Figure 14 shows the verification time
and the size of the explored model using live variable
and partial order reduction (why not slicing?) for a given
mission duration (which one?) and for the verification
of individual properties. The difference between the ex-
plored state spaces is small, meaning that all properties
are of similar complexity.

Comment by Susanne: je comprends bien qu’ici on
a utilise -live et -po, et la difference des taille vient de
la difference des tailles des observateur ou plutot du
produit?
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est-ce que tu as une taille du modele sans observa-
teur? pour voir l’influence des proprietes

je suppose aussi que les temps donnes sont des temps
de generation, et qu’on peut mentionner cette histoire de
temps de compilation qui est affreusement long dans les
conclusions

We have also tried to verify all the properties at the
same time by running all observers in parallel with the
model. The array in Figure 15 gives the same informa-
tion as above for all properties verified at the same time
and by varying the choice of the mission duration.

Notice that the state explosion due to parallel com-
position of all properties is less important that one could
expect, which means that the properties are not really
independent. In fact, all the observers have just a few
control statesand the state changes in different events
are due to events which are either identical or strictly
ordered in time. The state of most observers depends
also on clocks. But looking more closely, the clocks of
different observers are active in different model states.

That is, the methodological guideline proposing com-
plex proeprties into more simple ones, has here relative
little impact on the complexity of model-checking. Nev-
ertheless, the use of many small properties is of great
importance for the understanding of properties.

7 Comparison to other approaches

There exist already a number of tools proposed
for the validation of UML models by translat-
ing a subset of UML into the input language of
some existing validation tool [LP99a,LP99b,LMM99,
Kwo00,KMR02,SKM01,DMY02a,dMGMP02,XLB01,
DMY02b,BLM02,STMW04,AHK+04] to mention only
a some of the relevant work in the context of real-time
and embedded systems.

Like IFx, most of these tools are based on existing
model-checkers such as SPIN [Hol99] (in [LP99a,LP99b,
LMM99,SKM01]) or COSPAN [HK88] (in [XLB01] ) for
untimed systems, and Kronos [Yov97] (in [BLM02]) or
Uppaal [LPY97] (in [KMR02,DMY02b]) for the valida-
tion of systems with timing constraints. Also the transla-
tion into proof-based frameworks, such as PVS [SOR93]
(e.g. in [AHK+04]) or B (in [LMS02]), has been pro-
posed.

From the point of view of the technology used, the
IF tool includes and combines the on-the-fly exploration
of SPIN and the symbolic representation of time con-
straints of Kronos and Uppaal. It includes also the
bisimulation based reduction techniques of Aldebaran
[FGK+96].

With respect to the expressivity of the UML pro-
file accepted, the framework presented here goes beyond
the existing tools. IFx handles a rich subset of UML,
including inheritence and dynamic object creation as
well as powerful timing features. Most other tools are

restricted to static systems, often described by state-
charts. [DMY02b] considers a real-time UML fitting the
input language of Uppaal which is less expressive than
that of IF.

The tools described in [STMW04,AHK+04] are, like
ours, based on the Omega profile, where the first one
does not take into account timing extensions and the
second one is based on deductive verification with PVS
and could been applied so far only to quite simple exam-
ples (using a small, yet expressive, subset of the profile).

Also, most of the tools proposed for the validation of
UML models rely on the expression of properties to be
checked in some tool dependent formalism, in many cases
some form of temporal logic which is difficult to handle
by system designers. This means also that the properties
to be validated are not really part of the model which is
bad from the methodological point of view. The Omega
UML profile proposes the use of observers

8 Conclusions and Future Work

In the Omega project, we have developed different types
of validation engines and used them in several case stud-
ies. The evaluation of the contributions of the different
tools shows their complementarity:

– The big advantage of the IF tool which is based on
explicit state exploration combined with powerful re-
duction techniques, turned out to be the fact that it
allows to obtain feedback very rapidly on all models
without much remodelling and adaptation effort by
the user. Obtention of positive verification results re-
quired in the case of the bigger examples some effort
to find an appropriate property preserving abstrac-
tion or approximation. In the case of the Ariane-5
flight programme, this consisted ....

– The RUVE toolset [STMW04] working on the same
profile is built upon a BBD-based symbolic model-
checking engine.

– The third toolset handling the Omega profile
[AHK+04] translates a UML model into a set of ex-
pressions defining the set of executions of this model
and defines a set of PVS strategies designed for help-
ing the user to accelerate the interactive verification
with PVS of properties - expressed either in OCL
or in the expression language of PVS. The advan-
tage of this tool is that positive verification results on
parameterized and infinite systems can be obtained.
Nevertheless, the experience with the case studies in
Omega showed that this kind of verification applies
best to abstract algorithms. The obtention of results
is time consuming, and in general it is advisable to
first validate a finite instance of the system with a
model-checker before starting the proof process.
An important problem with this tool is the readabil-
ity of the expressions obtained by automatic trans-
lation from UML. This means in general that only
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Property Number of states Number of transitions Proof duration

liftoff aborted right 36037 38149 00:00:36

pyro not ignited twice 35988 38092 00:00:42

valve not abused 36082 38210 00:00:37

valve not close in close 36010 38114 00:00:44

valve not open in open 35998 38102 00:00:38

liftoff performed right1 46075 48713 00:00:49

liftoff performed right2 37897 40550 00:00:55

liftoff performed right3 37961 40632 00:01:12

liftoff performed right4 35986 38090 00:00:38

CPU not in error 35980 38084 00:00:53

G cycle is schedulable 36012 38116 00:00:48

NC cycle is schedulable 36380 38484 00:00:39

read write coherence 36618 38722 00:00:47

Fig. 14 State space size and times for the verification of safety properties

Mission duration Number of states Number of transitions Proof duration

7 s 51 324 54 697 00:03:30

15 s 161 956 171 734 00:12:06

22 s 303 496 321 206 00:11:33

30 s 463 932 490 901 00:22:58

37 s 658 981 696 031 00:34:53

Fig. 15 State space size and times for different mission durations (all properties combined)

small systems - or components of it - can be used for
verification. Which means that the decomposition of
the system must be done with respect to the proper-
ties to be verified.
This tool has not been applied to the schedulability
problem of the Ariane-5 flight program Also, the user
has to come up with the necessary auxiliary invari-
ants
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