
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Validating timed UML models by simulation and
verification?

Iulian Ober
Susanne Graf
Ileana Ober

VERIMAG
2, av. de Vignate
38610 Gières, France
e-mail: {ober,graf,iober}@imag.fr

The date of receipt and acceptance will be inserted by the editor

Abstract. This paper presents a technique and a tool
for model-checking operational (design level) UML mod-
els based on a mapping to a model of communicating ex-
tended timed automata. The target language of the map-
ping is the IF format, for which existing model-checking
and simulation tools can be used.

Our approach takes into consideration most of the
structural and behavioural features of UML, including
object-oriented aspects. It handles the combination of
operations, state machines, inheritance and polymorphism,
with a particular semantic profile for communication and
concurrency. We adopt a UML profile that includes ex-
tensions for expressing timing. The breadth of concepts
covered by our mapping is an important point, as many
previous approaches for applying formal validation to
UML put much stronger limitations on the considered
models.

For expressing properties about models, a formalism
called UML observers is defined in this paper. Observers
reuse existing concepts like classes and state machines,
and they allow expressing a significant class of linear
temporal properties.

The approach is implemented in a tool that imports
UML models from an XMI repository, thus supporting
several editors like Rational Rose, Rhapsody or Argo.
The generated IF models may be simulated and verified
via an interface that presents feedback in the vocabulary
of the original UML model.

1 Introduction

This paper presents a technique and a tool for validat-
ing UML models by simulation and property verifica-

? This work is supported by the OMEGA European Project
(IST-33522). See also http://www-omega.imag.fr

tion. We are focusing on UML as we feel some of the
techniques that emerged in the field of formal validation
are both essential to the reliable development of real-
time and safety critical systems, and sufficiently mature
to be integrated in a real-life development process.

Our past experiences (for example with the SDL lan-
guage [?]) show that this integration can only work if
validation takes into account widely used modelling lan-
guages. Currently, UML based model driven develop-
ment encounters a big success in the industrial world and
is supported by several CASE tools furnishing editing,
methodological help, code generation and other func-
tions, but very little support for validation.

This work is part of a broader project (IST
OMEGA [?]) which aims at building a UML-based
methodology and a validation environment for real-
time and embedded systems. An important part of this
project was concerned with defining a suitable opera-
tional UML profile for real-time applications [?,?], and
a formal semantics of it [?] as well as real-time exten-
sions [?]. The work presented in this paper builds upon
the foundation of this profile (called OMEGA UML in
the following) and is concerned only with validation and
tool-related issues such as: implementing the semantics,
defining a property specification formalism and applying
model-checking techniques. The choices and the seman-
tics of the profile itself are explained only to the extent
necessary for understanding the paper.

1.1 Basic assumptions

The following assumptions provide the starting point for
this work :

– UML is broader than what we need or can handle
in automatic validation. In UML 1.4 [?] there are 9
types of diagrams and about 150 language concepts
(meta-classes). Some of them are too informal to be

2 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

useful in validation (for example use cases) while for
others the relationships and the consistency with the
rest of the UML model are not clearly (nor uniquely)
defined (for example collaborations, system-level ac-
tivity diagrams, deployment diagrams).
As a consequence, in this work we focused on a sub-
set of UML concepts that define an operational view
of the modelled system: objects, their structure and
their behaviour.

– UML has neither a standard nor a broadly accepted
dynamic semantics. The OMEGA profile used in this
work defines a semantics for UML which is suitable
for distributed real-time applications. It identifies
necessary concepts such as the mechanisms of com-
munication between objects, the concurrency model,
the formalism for specifying actions and timing. The
main aspects of this semantics are presented in sec-
tion 2.

– To produce powerful tools we have to build upon the
existing. This motivates our choice to do a translation
to the IF language [?], for which there exists a rich
set of tools performing static analysis, model check-
ing, model construction and manipulation, etc. The
experiments performed so far confirm that many of
these tools can handle UML-generated models. More-
over, mapping UML to IF yields a flexible implemen-
tation of the OMEGA semantics in which one can
test semantic choices and propose improvements.
On the side of model editing, we are relying on com-
mon UML CASE tools such as Rational Rose or I-
Logix’s Rhapsody, via the standard XML represen-
tation for UML (XMI).

1.2 Overview of our approach

The approach presented here covers an operational sub-
set of UML (presented in section 2). The structure
of models is captured through class definitions, linked
by association relationships, aggregation or inheritance.
The behaviour of each class is described in the standard
way by means of state machines and operations, contain-
ing structured imperative actions. A particular model of
concurrency and communication is adopted. The combi-
nation of all these features, goes beyond previous work
done in this area (see section 1.3), which has until now
mainly focused on verification of statecharts.

In order to analyse the potential behaviours of UML
models, we are translating them into the input language
of the IF toolset [?,?]. The translation, explained in sec-
tion 3, does not yield a particular implementation of
an abstract UML model, it rather yields another model
which is semantically equivalent to the initial one. Ab-
stractions, such as non-deterministic behaviour of cer-
tain objects or informal specification of certain actions
are preserved in the IF model.

IF is a formal language based on communicating ex-
tended timed automata (CETA), for which powerful sim-

ulation and verification tools exist. It has been previ-
ously used in a number of research projects and case
studies. Its main features are presented in section 1.4.

On the level of UML modelling, an important is-
sue in designing real-time systems is the ability to cap-
ture quantitative timing requirements and assumptions
as well as time dependent behaviour. A set of timing
extensions for UML are defined in the OMEGA pro-
file [?], and are summarised in section 4 together with
their mapping to IF.

Section 5 presents a lightweight extension of UML
(observer classes) which is used as a property description
language. Instances of observer classes allow expressing
linear temporal property by using a specific semantics
for their state machines. Experience shows that the use
of such familiar concepts diminishes the shock of intro-
ducing formal verification to UML users.

Section 6 presents the UML validation toolset IFx.
The functionalities of the tool, ranging from static anal-
ysis and optimisations to model generation and model
checking, are presented in section 7 on a concrete and
complex example – a model of the Ariane 5 flight con-
figuration software.

1.3 Related work

Work on formalising and reasoning with the semantics
of UML appeared in the literature during the late 90’s
(see for example [?,?,?]). During the more recent years,
theoretical work, as well as tools supporting formal anal-
ysis (and particularly model checking) of UML models
has become a very active field of study, as witnessed by
a number of papers [?,?,?,?,?,?,?,?,?,?].

Like ourselves, many of these authors base their work
on existing model checkers (SPIN [?] in the case of
[?,?,?,?], COSPAN [?] in the case of [?], Kronos [?] for
[?] and UPPAAL [?] for [?]), and on the mapping of
UML to the input language of the respective tool.

As for specifying properties, some authors opt for
the property language of the model checker itself, e.g.,
[?,?,?]. Others [?,?] use UML collaboration or sequence
diagrams, which specify required or forbidden sequences
of messages between objects, but are too weak to express
stronger properties. We propose the use of a variant of
UML classes and state machines to express properties.

Concerning language coverage, most previous ap-
proaches do not handle dynamic object creation, inheri-
tance or behaviour described through operations. These
are some of the features which make UML an object-
oriented formalism. The approach presented in this pa-
per is, to our knowledge, the first one to fill this gap.
Our handling of UML state machines was inspired by
the material cited above, together with previous work
on statecharts [?,?,?].

The concurrency model of the OMEGA profile is in-
spired by the concurrency model adopted in the Rhap-
sody tool [?]. The improvements are the formalisation

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 3

of its semantics, and a more relaxed interpretation of
non-determinism which allows a higher level of abstrac-
tion and opening to different implementations (Rhap-
sody adopts an implicitly defined scheduling scheme).
In the definition of the profile, we also took inspiration
from our previous assessment of the UML concurrency
model [?], and from other positions on this topic (see for
example [?]).

Finally, the work presented in this paper is part of a
broader effort [?,?] to produce a toolset and a methodol-
ogy which integrate UML and formal techniques for the
development of real-time and embedded systems. The
framework supports activities like:

– static wellformedness checks
– checking (timed) models against (timed) observers as

well as scheduling analysis, formulated as a model-
checking problem on the model

– checking of (untimed) models against LTL formulas
or Live Sequence Chart specifications (LSC, a vari-
ant of interaction diagrams with stronger structuring
constructs [?])

– Consistency analysis of LSC (requirements analysis)
[?] and state diagram synthesis from LSC specifica-
tions [?]

– deductive verification using the interactive theorem
prover PVS: compositional verification, consistency
checks and reasoning on requirements specified in
OCL [?,?].

For more details, the reader is referred to [?,?].

1.4 The back-end: model, techniques, tools

The validation approach proposed in this work is based
on the formal model of communicating extended timed
automata and on the IF verification environment built
upon this model [?,?,?]. We summarise the elements of
this model below.

Modelling with communicating extended timed
automata

The IF language and the associated toolset developed
at Verimag are conceived for modelling and validating
distributed systems which can manipulate complex data,
and which involve dynamic aspects and real time con-
straints. The IF language is sufficiently expressive to de-
scribe the operational semantics of user level formalisms
such as UML or SDL at a similar level of abstraction;
IF has also been used as a format for inter-connecting
model-based validation tools.

An IF description defines the structure of a system
and the behaviour of its components. A system is com-
posed of a set of communicating processes that run in
parallel (see Figure 1). Processes are instances of pro-
cess types. They have their own identity (Pid), they may
own complex data variables (defined through ADA-like
data type definitions), and their behaviour is defined by

p : P
+ int x
- array A
- timer t

<<process>>

s

t

?s(x) [x=0]
// A[1] = x

int p1

<<signal>>
s

<<process>>

q : Q

<<process>>

r : R

[t=0]

instances

shared
variable

(hierarchical)
state machine

time triggered
transition

signal queue

signal
definition

rendez-vous

Fig. 1. Constituents of a communicating extended automata
model in IF.

a state machine. The state machine of a process type
may use composite states and the effect of transitions is
described using common (structured) imperative state-
ments.

The notion of process is similar to the notion of ob-
ject from object-oriented languages. The difference is
that a process type does not define operations and there
is no notion of inheritance. Operations, inheritance and
other notions may be layered on top of the IF model re-
sulting in a more modular definition of the semantics of
object models (see section 3).

Processes may communicate via asynchronous sig-
nals (similar to the UML 1.4 homonym), via shared vari-
ables (corresponding to public attributes in UML), or
via synchronous rendez-vous. Asynchronous signals are
buffered in input queues (one for each process). Paral-
lel processes are composed asynchronously (i.e. by in-
terleaving). The model allows dynamic creation of pro-
cesses, which is an essential feature for modelling object
systems.

IF provides support for real time constraints ex-
pressed using clock variables and guard conditions on
them. The values of clocks increase all at the same rate
as time progresses. The underlying semantics is based
on finite timed automata with urgency [?,?].

For more details on the IF model and its semantics,
the reader is referred to [?,?].

A framework for modelling priority

On top of the set of processes, one may specify a set
of system-wide priority rules of the following form:

StateCondition(p1, p2)⇒ p1 ≺ p2

The rules are evaluated at each stable state of the sys-
tem and they define a partial priority order between pro-
cesses: for every pair of distinct Pids (p1, p2), if the condi-
tion StateCondition(p1, p2) holds in the current system
state then the process with ID p1 has priority over p2

for the next system step. This means that if p1 has an
enabled transition, p2 is not allowed to execute.

4 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

This priority framework is formalised in [?,?,?].

Property description and verification with ob-
servers

Dynamic and time dependent safety properties may
be expressed in IF using observers. These are special pro-
cesses used as language acceptors, which execute syn-
chronously with the system and can monitor changes
of state (variable values, contents of queues, etc.) and
events that occur (input and output of signals, creation
and destruction of processes, etc.).

For expressing properties, some of the states of an
observer may be classified (syntactically) as error or as
invalid states. An execution that does not go through an
invalid state but reaches an error state is an error trace.
Thus, observers can be used to express safety properties.
A re-interpretation of success states as accepting states
of a Büchi automaton allows observers even to express
liveness properties.

IF observers are inspired by the observer concept in-
troduced by Jard, Groz and Monin in the VEDA tool
[?]. This intuitive and powerful property specification
formalism has been adapted over the past 15 years to
other modelling languages (LOTOS, SDL) and imple-
mented in industrial case tools like ObjectGEODE.

Analysis techniques and the IF-2 toolbox
The IF toolbox [?,?] is the validation environment

built upon the language presented before. It is composed
of three categories of tools (see also Figure 5):

1. behavioural tools for simulation, verification of
properties, automatic test generation. The tools im-
plement state of the art techniques such as partial
order reductions and some form of symbolic simula-
tion, and thus present a good level of scalability.

2. static analysis tools providing source-level opti-
misations that help reducing furthermore the state
space of the models, and thus improve the chance of
obtaining results from the behavioural tools. The im-
plemented data and control flow analysis techniques,
leading to exact abstractions of the initial model, are
dead variable reduction, dead code elimination and
slicing.

3. front-ends and exporting tools which provide an
interface with higher-level languages (UML, SDL)
and with other validation tools (Spin [?], Agatha [?],
etc.).

The IF language allows its user to describe models
ranging from very abstract specifications to detailed, di-
rectly implementable design models. In order to tackle
the complexity of detailed models, the IF toolbox sup-
ports abstraction in several ways. For example, data ab-
straction can be done either by static analysis (com-
puting a slice and throw away a part of the system
state which is irrelevant with respect to an observa-
tion criterion) or by abstract interpretation of some vari-
ables (e.g., symbolic handling of timers and clocks). An-

other (exact) abstraction often used in IF is provided by
partial-order reductions during exhaustive state space
exploration; the effect of this reduction is to render de-
terministic the interleaving of parallel components when-
ever the non-deterministic interleaving cannot influence
the result of the verification of a given property. Finally,
other techniques such as input queue abstraction (a very
efficient method for particular object topologies such as
Kahn networks) have been experimented.

Compositional verification is not directly supported
by IF, but some functionalities of the toolbox provide
support for a more manual application of a composi-
tional verification methodology. For example, minimal
model generation with Aldebaran can be used to ex-
tract an abstract model of the behaviour of some com-
ponent(s), which can then be used instead of the con-
crete models for constructing and verifying the model
of the composed system, or user defined abstractions of
subsystems can be checked conform to a more concrete
version of a module.

The toolbox has already been used in a series of
industrial-size case studies [?].

2 The OMEGA UML profile

This section outlines the main features of the operational
OMEGA UML profile [?,?,?,?] implemented in our tools.

2.1 UML concepts covered

The operational subset of UML considered here consists
of the following model element types:

– Classes. active or passive (see section 2.2).
– Operations. triggered/primitive (see section 2.2),

constructors, destructors.
– Signals for asynchronous communication.
– Attributes with basic types or object reference types.
– Basic data types. currently Integer, Boolean, Real.
– Associations. simple and composite, with bounded

multiplicity.
– Generalisations. Their semantics involves polymor-

phism and dynamic binding of operations.
– Statecharts. They are not presented in detail in this

paper as already tackled in many previous works,
such as [?,?,?,?,?,?,?,?,?].

In order to describe a meaningful behaviour for a
UML model, one also needs to describe actions. Actions
in UML describe the effect of a statechart transition, or
the body of an operation. Thus, they allow the descrip-
tion of expressive control structure (not limited to finite
automata) or even the description of the implementation
of operations and transitions. Beginning with version 1.4
of UML, there is a standard for describing actions, but
this standard is defined only in terms of a metamodel

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 5

(giving the types of actions and their components). In
order to make it usable, one still has to define a concrete
syntax, but which is allowed to vary from one tool to
another.

The OMEGA profile [?] defines a textual action lan-
guage compatible with UML 1.4 which covers: object cre-
ation and destruction, operation calls, expression evalua-
tion (including navigation expressions), variable assign-
ment, signal output, return action as well as control flow
structuring statements (conditionals and loops). The
concrete syntax of this action language is not presented
here as it has only been introduced as a common for-
mat to circumvent the problem that none of the today
existing UML tools export actions in a structured form.

Additionally to the elements mentioned above, a
number of UML extensions for describing timing con-
straints and assumptions are supported. They are dis-
cussed in section 4, and a more detailed description can
be found in the companion paper [?].

2.2 The execution model

The purpose of this section is to illustrate the features
and particularities of the OMEGA profile taken into ac-
count in our tool, not its totality and also not its com-
plete formal semantics, which may be found in [?,?,?].
The execution model chosen in OMEGA and presented
here is an extension of the execution model of the Rhap-
sody UML tool (see [?,?] for an overview), which is used
in a large number of UML applications. Other execu-
tion models can be accommodated to our framework by
adapting the mapping to IF accordingly.

Activity groups and concurrency.

There are two kinds of classes: active and passive
ones. At execution, each instance of an active class de-
fines a concurrency unit called activity group. Each in-
stance of a passive class belongs to exactly one activity
group, the one of the instance that has created it.

Apart from defining the partition of the system into
activity groups, there is no difference between how ac-
tive and passive classes (and instances) are defined and
handled. Both kinds of classes are defined by their at-
tributes, relationships, operations and state machine,
and their operational semantics is identical.

Different activity groups are considered as concur-
rent, and each activity group treats external requests
(all signals and operation calls from outside the group)
one by one in a run-to-completion fashion. During a step,
the above mentioned external requests are deferred and
stored in the activity groups’ request queue as long as
the activity group is not stable.

An activity group is stable when all its objects are.
An object is stable if it has no enabled spontaneous tran-

sition1 and no pending operation call from inside its
group.

The motivation for making activity groups working
in run-to-completion steps is to be able to consider such
a step as atomic from the point of view of the envi-
ronment of the group. This interpretation of activity
groups implies that every activity group has a single con-
trol thread, and the atomicity of steps allows preemptive
scheduling at run-time. Notice however, that the atomic-
ity of steps can only be guaranteed when some conditions
on the outgoing communications hold in each step and
if direct data access (through navigation) in between ac-
tivity groups is not possible. The OMEGA profile does
not enforce such a constraint, but the OMEGA method-
ology proposes to systematically use data access via get
and set operations instead.

The semantics of activity groups described here cor-
responds to that of concurrent components, which make
visible to the outside world only the stable states in-
between two run-to-completion steps. Such a model has
been already successfully used in many concurrent ob-
ject oriented languages and in synchronous languages.

Operations, signals and state machines.

We consider only synchronous operation calls, where
the caller (and its group) are blocked in a suspended
state until the completion of the call. In the UML model
we distinguish syntactically between two kinds of oper-
ations: triggered and primitive ones.

The body of triggered operations is described directly
in the state machine of a class: the operation call is seen
as a special kind of transition trigger. Triggered opera-
tions differ from asynchronous signals in that they may
have a return value.

Primitive operations are closer to methods in usual
object oriented programming language. They have a
body described by an action. Their handling is more
delicate since they may be overridden in the inheritance
hierarchy and they are dynamically bound, like in all
object-oriented models. When a call for a primitive op-
eration is sent to an object, the appropriate operation
implementation with respect to the actual type of the
called object in the inheritance hierarchy has to be exe-
cuted.

With respect to call initiation, when an object hav-
ing the control in its activity group calls an operation on
an(other) object from the same group, the call is han-
dled immediately (i.e. on the same control thread), like
in usual programming languages. Notice that in case of
triggered operation calls, the dynamic call graph should
be acyclic, since an object that is already waiting for the
termination of a call — made from within a statemachine
transition — is in a suspended state in which it is not
able to handle any new calls. (This type of conditions
may be verified using the IF mapping.)

1 that is a transition which is guarded only by a boolean condi-
tion and not triggered by an event

6 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

Calls received from other activity groups are, inde-
pendently of the type of operation call, queued by the
receiving group and handled in a subsequent run-to-
completion step.

Signals are always put in the target object’s group
queue for handling in a later run-to-completion step, re-
gardless of whether the target is in the same group as the
sender or not. This choice is made in order to be able to
distinguish triggering an action within the same step (an
operation call) and triggering an action in a later step
(signal trigger). It has also the effect that concurrency
within an activity group cannot be created by sending
asynchronous signals.

3 Mapping UML models to IF

In this section, we give the main lines of the mapping of
a UML model to an IF system. The intermediate layer of
IF helps us tackle the complexity of UML and provides
a semantic basis for re-using our existing model checking
tools (see section 6).

The mapping is done in such a way that all run-
time UML entities (objects, call stacks, pending mes-
sages, etc.) are identifiable as a part of the IF state. In
simulation and verification, this allows tracing back to
the UML specification.

3.1 Mapping the object domain to IF

Mapping of attributes and associations. Every
class X is mapped to a process type PX that has a local
variable corresponding to each attribute or association
of X. Inheritance is flattened and all inherited attributes
and associations are replicated in the process type cor-
responding to a class.

Activity group management. Each activity group is
managed by a special group manager process (of type
GM). This process dispatches all signals and external
operation calls and thus contributes to ensure the run-to-
completion policy. Each process PX has a local variable
leader, which points to the GM process managing its
activity group.

Mapping of operations and call polymorphism.
For each operation m(p1 : t1, p2 : t2, ...) in class X, the
following components are defined in IF:
– a signal callX::m(waiting : pid, caller : pid, callee :

pid, p1 : t1, p2 : t2, ...) used to indicate an operation
call. The parameter waiting holds the Pid of the pro-
cess that waits for the completion of the call (the
caller if it is in the same group as the callee, the
group manager of callee, otherwise). The parame-
ter caller designates the process waiting for a return
value, while callee designates the process receiving
the call (a PX instance).

– a signal returnX::m(r1 : tr1, r2 : tr2, ...) used to in-
dicate the return of an operation call (sent to the
caller). Several return values may be sent with this
signal.

– a signal completeX::m() used to indicate completion
of computation in the operation (may differ from re-
turn, as an operation is allowed to return a result
and continue computation). This signal is sent to the
waiting process (see callX::m).

– for a primitive operation (see section 2.2), a pro-
cess type PX::m(waiting : pid, caller : pid, callee :
pid, p1 : t1, p2 : t2, ...) is defined which describes
the behaviour of the operation using an automaton.
The parameters have the same meaning as in the
callX::m signal. The callee Pid is used to access local
attributes of the called object, via the shared variable
mechanism of IF.

– the implementation of a triggered operation (see sec-
tion 2.2), is modelled in the state machine of PX and
it is required that there exists an explicit return ac-
tion in the state machine. Transitions triggered by
a X :: m call event in the UML state machine are
triggered by callX::m in the IF automaton.

The action of invoking an operation X :: m is
mapped to sending a signal callX::m. The signal is sent
either directly to the concerned object (if the caller is in
the same group) or to the object’s active group manager.
This group manager queues the call and forwards it to
the destination when the group becomes stable. As oper-
ation calls are blocking, the sender of a call signal enters
a state in which it expects, in order to be unblocked, ei-
ther a return signal (if X and Y are in different activity
groups) or a complete signal (if X and Y are in the same
group).

The handling of incoming primitive calls is modelled
by transition loops in every state2 of the processes PX ,
which, upon reception of a corresponding callX::m sig-
nal create a new instance of PX::m and wait for it to
terminate (see sequence diagram in Figure 2).

In general, the mapping of primitive operation (ac-
tivations) into separate automata created by the called
object has several advantages:

– it allows extensions to non-usual types of calls, such
as non-blocking calls. It also preserves modularity
and readability of the generated model.

– it provides a simple solution for handling polymor-
phic calls in an inheritance hierarchy: if A is a base
class and B is on of its heirs, both implementing the
method m, then PA responds to callA::m by creating
a handler process PA::m, while PB responds to both
callA::m and callB::m, in each case creating a handler
process PB::m (Figure 3).
This solution is similar to the one used in most object
oriented programming language compilers, where a

2 This is eased by IF’s support for hierarchical automata.

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 7

: Y : X

X::m()

m()

: Py :Px

call X::m(…)
:Px::m

return X::m(…)

complete X::m(…)

UML level IF level

Fig. 2. Handling primitive operation calls using dynamic creation.

+m()

A

+m()

B

Process type A : statechart of A
 + response to call A::m
 by creating PA::m

Process type PA::m : action of A::m

Process type B : statechart of B
 + response to call A::m and call B::m
 by creating PB::m

Process type PB::m : action of B::m

Fig. 3. Mapping of primitive operations and inheritance.

“method lookup table” is used for dynamic binding
of calls to operations; here, the object’s state machine
plays the role of the lookup table and the dynamically
created method instances represent the call stack.

Mapping of constructors. Constructors differ from
primitive operations in that their binding is static. Con-
sequently, they do not need the definition of the callX::m

signal and the call action is mapped directly to the cre-
ation of the handler process PX::m. The handler process
begins by creating a PX object and its components (i.e.
all the aggregate objects defined by UML composition
relationships), after which it continues execution as a
normal operation.

Mapping of state machines. UML state machines
are mapped almost syntactically to IF. Several prior re-
search papers tackle the problem of mapping statecharts
to (hierarchical) automata (e.g., [?]). The method we ap-
ply is similar.

Actions. The action kinds enumerated in section 2.1 are
supported as follows:

– object creation is modelled by the creation of the con-
structor’s handler process

– method call is modelled by sending a call signal and
waiting for a return/complete signal

– assignment is directly supported in IF. Access to at-
tributes is supported by the shared variable mecha-
nism.

– signal output is directly supported in IF.
– return action is modelled by the sending of a return

signal.

– control structure actions are directly supported in IF.

3.2 Modelling run-to-completion with dynamic
priorities

The concurrency model introduced in section 2.2 is real-
ized using the dynamic partial priority order mechanism
presented in 1.4. As already mentioned, the calls or sig-
nals coming from outside an activity group are placed
in the group’s queue and are handled one by one in run-
to-completion steps. In IF, the group management pro-
cesses (of type GM) handle this queueing and forwarding
behaviour.

In order to obtain the desired run-to-completion
(RTC) semantics, the following priority rules are ap-
plied (the rules concern processes representing instances
of UML classes, and not the processes representing op-
eration handlers, etc.):

– All objects of a group have higher priority than their
group manager:

(x.leader = y)⇒ x ≺ y

This guarantees that as long as an object inside a
group may execute, the group manager will not initi-
ate a new RTC step.

– Each GM object has an attribute running which
points to the presently running or most recently run
object in the group. This attribute behaves like a
token that is taken or released by the objects having
something to execute. The priority rule:

(x = y.leader.running) ∧ (x 6= y)⇒ x ≺ y

ensures that as long as an object that is already exe-
cuting has something more to execute (the continua-
tion of an action, or the initiation of a new sponta-
neous transition), no other object in the same group
may start a transition.

– Every object x with the behaviour described
by a state machine in UML will execute
x.leader.running := x at the beginning of each
transition. As a consequence of the previous rule,
such a transition may be executed only when the
previously running object of the group has reached
a stable state, which means that the current object
may take the running token safely.
The non-deterministic choice of the next object to ex-
ecute in a group (stated in the semantics) is ensured
by the interleaving semantics of IF.

3.3 Preserving non-determinism

High level specifications described in UML usually ab-
stract away from implementation details or schedul-
ing policies of concurrent computations. Such aspects

8 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

may appear as non-deterministic choices. When verify-
ing properties of the dynamics of a model, it can be
important to take into account all possible resolutions
of this non determinism by an implementation.

The translation of UML to IF preserves non-
determinism at several levels:

– the non-deterministic interleaving of actions in par-
allel activity groups is preserved by the non-
deterministic interleaving of processes in IF (modulo
the restrictions induced by priority orders described
above).

– the non-deterministic choice of the executing object
inside an activity group, when several can be acti-
vated (as mentioned above).

– the non-deterministic choices described explicitly by
the designer in the behavioural model of an object
(e.g. in the state machine).

Notice that this preservation of non determinism
holds for interactive simulation where the user might
want to see all possible orders and when executions are
assumed to take time. For verification purposes, we gen-
erally eliminate as much non determinism as allowed for
still preserving all properties under consideration (par-
tial order reduction).

4 UML extensions for capturing timing

To build a faithful model of a real-time system, one needs
to represent different types of timing information:

– time-triggered behaviour (prescriptive modelling).
For example, it is common practice in real-time pro-
gramming environments to limit the execution of an
action or waiting for a signal by a delay which can
be represented by a timer object.

– knowledge about the timing of events (descriptive
modelling). Such information is taken either as a hy-
pothesis under which the system works (e.g., worst
case execution times of system actions, scheduler la-
tency, etc.) or as a requirement to be imposed upon
the system (e.g., required end-to-end response time).

Different UML tools targeting real-time systems
adopt different extensions for expressing such timing in-
formation. A standard profile targeting real-time appli-
cations was defined by the OMG [?] and provides a com-
mon set of concepts for modelling timing.

In this work, we are using a subset of the concepts
of [?] (timers, clocks, time-related data types and timed
events). Concerning timed events, we refine the profile in
order to gain some flexibility by identifying a number of
event types (e.g. message reception, object creation) and
by differentiating event types and their occurrences. We
also allow the definition of duration constraints between
arbitrary events occurring in the system. This framework

is described in more detail in [?] and accompanied by a
formal semantics in terms of OCL3.

4.1 Features for modelling timing

Here, we present the subset of the OMEGA time exten-
sions taken into account in the tool. We introduce two
time related types: time — representing absolute time
points — and duration — representing time differences
or relative time — and a global operator now for retriev-
ing the current time (since system start).

The following concepts are used for modelling time-
triggered behaviour:
– timer objects, which measure durations. They may

be set to a relative deadline, reset, and they send an
asynchronous signal when the deadline is reached.

– clock objects, which measure also durations; their
value may be consulted by other objects.
For modelling descriptive timing information, the ex-

tensions defined in [?] allow to:
– identify syntactically many of the meaningful events

of a system execution. An event has an occurrence
time, a type and a set of related information depend-
ing on its type. The event types that can be identified
are listed in section 5.1, as they also constitute an es-
sential part of our property specification language.

– express duration constraints between events iden-
tified as above. The constraints may be either as-
sumptions (hypotheses to be enforced upon the sys-
tem runs) or assertions (properties to be verified on
system runs).
If several events of the same type and with the same
parameters may occur during a run, there are mecha-
nisms for identifying the particular event occurrence
that is relevant in a certain context.

– finally, we introduce scheduling related concepts such
as resources, execution times and priorities.
The class diagram in Figure 4 shows an example us-

ing these features. This model describes a client-server
architecture. When a client connects to the server (mod-
elled by LicServer) by calling the method connect, a
worker object (LicClientWorker) is created to handle
the requests from that specific client. The worker object
is supposed to expire after a fixed delay of 10 seconds.

A timing assumption attached to the client (Lic-
Client) says that: ”whenever a client connects to the
server, it will make a request before its worker object
expires, that is before 10 seconds”. This is specified us-
ing two event types, one corresponding to calls (actually,
returns from calls) to LicServer::connect, and the other
corresponding to calls to LicClientWorker::request. Us-
ing instances of these event types (ec, er), a duration
constraint is specified.

3 In an earlier version of [?] which can be found in [?], we used
timed automata to define the semantics of the real-time profile
which makes the translation to IF easier

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 9

LicServer

<<TriggeredOperation>> connect() : LicClientWorker

LicClientWorker

<<PrimitiveOperation>> request(t : LicToken) : Boolean
0..n +lcws0..n

LicClient

id : Integer

1

+ls

1

0..1 +lcw0..1

timeevents {
 ec : EC;
 er : ER;
}
timeconstraints {
 duration(ec,er) <= 10
 when ec.c = er.c
}

EC

c : LicClient

<<TimedEvent>>

ER

c : LicClient

<<TimedEvent>>

match receivereturn LicServer::connect(void) by c

match invoke LicClientWorker::request(void) by c

Fig. 4. Using events to describe timing constraints.

4.2 Mapping timed specifications to IF

The time-related concepts presented in the previous sec-
tion are mapped to IF as follows. Clocks exist as a native
concept, while Timers are implemented using a clock
and a timer process sending timeout signals. Events and
their associated parameters correspond to transitions of
the IF model: for example, the event of invoking an op-
eration X :: m corresponds to the transition in which
the callX::m signal is sent.

For expressing timing constraints, there are two al-
ternatives:

– the constraint is local to some IF process, in the sense
that all involved events are directly observed by the
process (e.g. its inputs, outputs, etc.). This is the
case in Figure 4. In this case, the constraint may be
tested or enforced by looking at the process alone,
and by using an additional clock for measuring the
duration to be constrained.

– the constraint is global, that is depending on events
attached to several objects. In that case, the con-
straint will be tested or enforced by an observer or a
set of observers, which may possibly be dynamically
created, running in parallel with the system.

The tools ensure that runs not satisfying a constraint
are either ignored – if it is an assumption, or diagnosed
as error – if it is an assertion.

5 Expressing properties by UML observers

For specifying and verifying dynamic properties of UML
models, we introduced the notion of UML observers
analogously to IF observers (section 1.4): they are special

objects monitoring run-time state and events. Observers
are described by classes stereotyped with� observer �.
They may have local memory (attributes) and their be-
haviour is described by a state machine.

As for IF observers, we use sates classified as
� error � states or � invalid � states to express
properties and hypotheses.

Several examples of properties specified by observers
can be found in section 7. For the designer, the advantage
of observers compared to other property specification
languages is that they use already known concepts while
remaining formal and and allow the expression of any
safety properties.

5.1 Observations

The main issue in defining observers is the choice of
events which trigger their transitions, and which must
include specific UML event types. We use the timed
events introduced in the OMEGA time extensions [?]
from which we mention here the most important ones:

– Events related to signal exchange: send, receives-
ignal, consumesignal.

– Events related to operation calls: invoke, receive
(reception of call), accept (start of actual process-
ing of call – may be different from receive), invok-
ereturn (sending of a return value), receivereturn
(reception of the return value), acceptreturn (ac-
tual consumption of the return value).

– Events related to the execution of actions or tran-
sitions: start, end and startend for instantaneous
actions.

– Events related to states: enter, exit.
– Events related to timers: occur, timeout as well as

startend events associated with timer specific ac-
tions set and reset which are considered instanta-
neous.

The trigger of a transition is a match clause specify-
ing the type of event (e.g., receive), some related infor-
mation (e.g., the operation name) and observer variables
that may receive related information (e.g., variables re-
ceiving the values of operation call parameters).

Besides events, an observer may access any part of
the state of the UML model: object attributes and state,
signal queues. In order to express quantitative timing
properties, observers may use the concepts available in
the OMEGA profile such as clocks.

6 A simulation and verification toolset

The translation of UML models to IF models and the
validation techniques presented in the previous sections
are implemented in an extended version of the IF tool-
box - IFx4. The architecture of the toolbox is shown in

4 http://www-verimag.imag.fr/˜ober/IFx.

10 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

XMI
UML model

+ time

annotations

Rose,
Rhapsody,

Argo,
...

UML tools
IF tools

IF
model

IF behavioral tools

state explorer

simulator verifier

test generator

IF static
analysis

live variables

IF
exporters

UML-IF frontend

UML2IF

translator +

compliance
checker

UML

validation

driver

slicing

abstraction

time

constraint

propagation

scheduling
analysis

Graph level tools (CADP)

minimization, comparison, composition...

Fig. 5. Architecture of the IFx validation toolbox.

Figure 5. It allows a designer to simulate and verify UML
models and observers developed in third-party editors5

and stored in XMI6 format.

In a first phase, the tool takes as input a UML model
and generates an IF specification and a set of observers
by applying the translation rules presented before. Dur-
ing this phase, a first sanity check is performed on the
model and results are provided in the form of compiler
warnings and errors. They concern action syntax, timing
annotation syntax, type errors, etc.

In a second phase, the tool drives the back-end IF
simulation and verification tools, and translates the val-
idation results back to the UML level of the original
model. The idea is to make the back-end formalism
and tools invisible to the designer, but also to enhance
the functionality of the IF toolbox by providing more
complex interactive simulation features like conditional
breakpoints, scenario persistence, custom views for the
system state, etc.

Using the IF toolbox as underlying engine gives ac-
cess to several existing state space reduction and anal-
ysis techniques: static analysis and partial order opti-
misations for state-space reduction, symbolic model ex-
ploration, model minimisation and comparison [?]. The
use of reduction techniques improves the scalability of
the tools, which is an essential feature in the context of
UML where large design models are often manipulated.

The tool is being applied on several case studies in
the context of the OMEGA project. One of them is pre-
sented in some detail in the next section.

5 The CASE tools that have been tested for compatibility are:
Rational Rose Enterprise Edition 2002 / Unisys Rose XMI Add-in
1.3.6 and I-Logix Rhapsody Developer Edition, v4.1, v4.2 and v5.2

6 XMI 1.0 or 1.1 for UML 1.4

7 Modelling and verification methodology
illustrated by the Ariane-5 case study7

In this section, we outline a verification methodology that
may be used when working with the IFx toolbox. We
illustrate the steps of our methodology on hand of ex-
amples from the Ariane-5 case study.

The Ariane-5 Flight Program is the embedded soft-
ware which autonomously controls the Ariane-5 launcher
during its flight, from the ground through the atmo-
sphere and up to the final orbit. This case study has been
performed in collaboration with EADS Space Trans-
portation in the IST OMEGA project, in order to eval-
uate the applicability of the UML profile and of the val-
idation tools. The study consists in formally specifying
some parts of an existing software in UML with Rational
Rose and in verifying a set of critical properties on this
specification.

7.1 Overview of the Ariane-5 Flight Program

The Ariane-5 example is a non-trivial UML model (23
classes, each one with operations and a state machine)
translated into 77 IF processes and about 7000 lines of
IF code.

The phases of the flight.

An Ariane-5 launch begins with the ignition of the
main stage engine (epc - Etage Principal Cryotech-
nique). Upon confirmation that it is operating properly,
the two solid booster stages (eap) are ignited to achieve
lift-off.

After burn-out, the two eap boosters are jettisoned
and Ariane-5 continues its flight through the upper at-
mosphere propelled only by the cryogenic main stage
(epc). The fairing is jettisoned too, as soon as the atmo-
sphere is thin enough for the payload not to need protec-
tion. The main stage is rendered inert immediately upon
shut-down. The launch trajectory is designed to ensure
that the stages fall back safely into the ocean.

The storable propellant stage (eps) takes over to
place the geostationary satellites in orbit. Payload sep-
aration and attitudinal positioning begin as soon as the
launcher’s upper section reaches the corresponding or-
bit. Ariane-5’s mission ends about 40 minutes after the
first ignition command.

The flight program.

The flight program entirely controls the launcher,
without any human interaction, beginning 6 minutes 30
seconds before lift-off, and ending 40 minutes later, when
the launcher terminates its mission.

The main functions of the flight program are as fol-
lows:

7 Ariane-5 is an European Space Agency Project delegated to
CNES (Centre National d’Etudes Spatiales).

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 11

– flight control, involves guidance, navigation and con-
trol algorithms (GNC),

– flight regulation, involves observation and control of
various components of the propulsion stages (engines
ignition and extinction, boosters ignition, etc),

– flight configuration, involves management of launcher
components (stage separation, payload separation,
etc).

The UML description models the regulation and con-
figuration parts in detail. For the flight control part, the
computational aspects are abstracted to a set of empty
control functions, and only the structure of the control
cycle (i.e. the flowchart according to which the functions
are called) and timing are modelled in detail.

The environment.

In order to obtain a realistic functional model of the
flight program, the environment of the launcher software
must also be modelled. The ground component abstracts
the nominal behaviour of the launch protocol on the
ground side, by providing the launch date and confirma-
tions needed for launching. Furthermore, the equipment
controlled by the flight program (like valves and pyros)
is modelled to allow both success and hardware failure
scenarios.

Requirements.

Several safety requirements ensuring the right service
of the flight program have been identified and verified on
the UML model. The requirements can be classified as
follows:

– general requirements, not necessarily specific to the
flight program but general for all critical real-time
systems, such as the absence of deadlocks, signal loss,
timelocks;

– overall system requirements, specific to the flight pro-
gram and concerning its global behaviour. For exam-
ple, it is required that the firing and the extinction
functions perform a series of actions in a specific or-
der;

– local component requirements, concerning the func-
tionality of some part. For example, it is required
that the opening and closing commands sent to the
valves conform to their state.

– scheduling requirements, concerning the preservation
of scheduling objectives under the given the schedul-
ing policy and action execution times.

7.2 UML modelling

The Ariane-5 flight program is modelled as a collection
of objects communicating mostly through asynchronous
signals, and the behaviour of which is described by state
machines. Operations (with an abstract body) are used
to model the guidance, navigation and control (GNC)

Wait_Igniti
on_Time

Open_EVB
O

Wait_Start

Abort

timeout(clock) /
current_is_ok:=EVVP.

Open()

Stop1

Stop2

[current_is_ok = false]

[current_is_ok = true]

Wait_Clos
e_EVBO

timeout(clock) / begin current_is_ok:=EVBO.Close();
Cyclics!Anomaly();Acyclic!Anomaly();Guidance_Task!An
omaly(); EAP!Anomaly(); Thrust_Monitor!Anomaly() end

 / clock.set(TimeConstants.MS_100)

Wait_Clos
e_EVVP

 / clock.set(TimeConstants.MS_100)

Start(H0_time) / begin
clock.set(298900);

H0.set(H0_time) end

timeout(clock) / begin
clock.set(TimeConstants.MS_100);
current_is_ok:=EVBO.Open() end

[current_is_ok = false] / clock.reset()[current_is_ok = true]

timeout(clock) / current_is_ok:=EVVP.Close()

Fig. 7. Behaviour of the EPC regulation process (part).

tasks. For modelling timed-dependent behaviour, timers
and clocks are being used.

The model (a partial view of its structure is visible
in Figure 6) is composed of:

– a global controller class responsible of flight configu-
ration (Acyclic);

– a model of the regulation components (e.g., EAP,
EPC corresponding to the launcher stages);

– a model of the regulated equipment (e.g., Valves, Py-
ros);

– an abstract model of the cyclic GNC tasks (Cyclics,
Thrust monitor, etc.);

– a model of the environment (classes Ground for the
external events and Bus for modelling the communi-
cation with synchronous GNC tasks).

The behaviour of the flight regulation components
(eap, epc) involves mainly the execution of the fir-
ing/extinction sequence for the corresponding stage of
the launcher (see for example the partial view of the EPC
stage controller’s behaviour in Figure 7). The behaviour
is time-driven with the possibility of safe abortion in case
of anomaly.

The flight configuration part implements several
tasks: eap separation, epc separation, payload separa-
tion, etc. The separation dates are provided by the con-
trol part, based on the current flight evolution.

7.3 Validation methodology and results

Formal validation is a complex activity, which may be
structured into several tasks as depicted in Figure 8.

Translation to IF and basic static analysis.

12 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

Cyclics

minor_cycle : Integer
fasvol : Integer
incg : Integer
guidance_period : Integer = 8

<<Active>>

Thrust_Monitor

nb : Integer
nb_conf : Integer = 3
T1delh1 : Timer
H0 : Timer
H0_time : Integer

<<Triggered>> Decide_EAP_Separation()

(from GNC)

Valves

<<Triggered>> Open()
<<Triggered>> Close()

(from Environment)

<<Active>>

Acyclic

fasvol : Integer
H0_time : Integer
tqdp : Timer
H0 : Timer
Tpstot_prep : Timer
Tpstar_prep : Timer
Tpstot_eaprel : Timer
Tpstar_eaprel : Timer
End_QDP : Boolean
Early_sep : Timer
Late_sep : Timer
clock : Timer

<<Active>>

1

+Acyclic

+Cyclics

+Thrust_Monitor

+Acyclic

EPC

current_is_ok : Boolean
clock : Timer
H0 : Timer
H0_time : Integer

(from Stages)

<<Active>>

1 1

+EPC

+Acyclic

1

1

+Cyclics
+EPC

1

1

+Thrust_Monitor

+EPC

1

1

+EVBO

1 1

+EVVP

1

1

+EVVCH

1

1

+EVVCO

1

1

+EVVGH

1

+EPC

EAP

H0 : Timer
H0_time : Integer

<<Triggered>> EAP_Preparation()
<<Triggered>> EAP_Release()

(from Stages)

<<Active>>

1

1

+EAP

+Acyclic

1

1

+EAP

+EPC

Pyro
(from Environment)

<<Active>>

1
1

+Pyro1

1

1

+Pyro2

1

1

+Pyro3

Fig. 6. Structure of the UML specification (part).

[t]

Translation from UML to IF

Requirements

Specification

Basic Static Analysis

State Space Generation
Model Checking

Advanced Static Analysis

Model Exploration

Fig. 8. Verification methodology in IF.

This phase provides a first sanity check of the model.
The user can find simple compile-time errors in the
model (name errors, type errors, etc.) but also more
elaborate information (uninitialised or unused variables,
unused signals, dead code).

Model exploration.

The validation process continues with a debugging
phase. Without being exhaustive, the user begins to ex-
plore the model in a guided or random manner. Simu-
lation states do not need to be stored as the complete
model is not explicitly constructed at this moment.

The aim of this phase is to inspect and validate
known (nominal) scenarios of the specification. The user
can also test simple safety properties. Such properties

range from generic ones, such as absence of deadlocks
or signal loss, to more specific and application depen-
dent ones, e.g., invariants tested using conditional break-
points.

Advanced static analysis.

The aim at this phase is to prepare the specifica-
tion to an exhaustive simulation. Optimisation based on
static analysis (see section 1.4) are applied in order to
reduce both the state vector and the state space, while
completely preserving its behaviour.

For example, one possible optimisation introduces
systematic resets for variables which are dead in certain
control states of the specification. In this way, it prevents
the tool to distinguish between simulation states which
differ only by values of variables which are dead in a
given state. This technique is very effective, given that
it can be applied locally at control-state level, and may
collapse large (bisimulation equivalent) parts of the state
graph. For this case study, however, the live reduction
was not impressive due to the relatively small number of
loops in the simulation graph of the system.

State space generation and model checking.

Some verification techniques implemented in IFx, like
observer and µ-calculus based model checking, work on-
the-fly without the need of generating the state space
beforehand. Others, like minimisation, work on an al-
ready generated state space.

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 13

In the context of UML models, the most intuitive ver-
ification techniques presented in the following are model
minimisation and observer based model checking.

Model minimisation is an intuitive method for a non
expert end-user. It consists in computing an abstract
model (with respect to given set of observations) of the
overall behaviour of the specification. Such a model can
be visualised and possible incorrect behaviours detected
by the user. These abstract models are computed by
Aldebaran (a tool connected to IFx [?]) and, depend-
ing on the (bi)-simulation relation used, they preserve
different classes of properties.

In order to obtain an abstract model, the state space
mist first be generated by exhaustive simulation. In order
to cope with the complexity in this phase, the user can
choose an adequate state representation e.g., discrete or
dense representation of time, as well as an exploration
strategy e.g., traversal order, use of property preserving
partial order reductions, under-approximating schedul-
ing policies, etc.

Example 1. For Ariane-5, the use of partial order re-
duction has been useful to construct tractable models.
We applied a simple static partial order reduction which
eliminates spurious interleaving between internal steps
occurring in different processes at the same time. Inter-
nal steps are those which do not perform visible commu-
nication actions, no signal emission nor access to shared
variables. This partial order reduction imposes a fixed
exploration order on internal steps and preserves all
properties expressed in terms of visible actions.
By using partial order reduction of internal steps, we
reduced the size of the model by 3 orders of magnitude,
i.e, from more than 106 states (model generation did not
terminate, due also to the large size – about 1KB – of the
system state) to about 1000 states and 1200 transitions,
which can be easily handled by the minimisation tool.

After the generation of the state space, it can be min-
imised modulo bisimulation using Aldebaran. Minimi-
sation takes into account the observation criteria which
are relevant for both, the observations relevant for the
property being verified (i.e. the actions that have to re-
main visible) and the type of property (e.g., safety, ab-
sence of deadlocks, etc.).

Example 2. The graph in Figure 9 is the quotient model
of Ariane-5 with respect to branching bisimulation [?], in
which the only observable events are opening/closing the
epc valves, igniting the epc stage and detecting anoma-
lies.
The branching structure and all safety properties involv-
ing these actions are preserved on the graph from Fig-
ure 9. It is easy to check by inspection on this abstract
model that if an eap anomaly occurs, then all the valves
are closed and afterwards an epc anomaly is signalled.
Also, it is easy to check that the epc sends the Ignition
signal only after all valves have been (correctly) opened.

0

11

{Valves}0 ?Open

14

{Valves}0 ?Open

10

{Valves}1 ?Open

13

{Valves}1 ?Open

6 {Valves}0 ?Close

1

2

{Valves}4 ?Open

8

{Valves}4 ?Open

4
{EPC}0 !Ignition

9{Valves}4 ?Close

5

i

7
i

3{Valves}3 ?Open

{Valves}3 ?Open

12{Valves}3 ?Close

{EAP}0 !Anomaly

{EPC}0 !Anomaly

{Valves}2 ?Close

{Valves}2 ?Open

{Valves}2 ?Open

{Valves}1 ?Close

Fig. 9. A minimal model generated with Aldebaran.

Observer based model-checking is useful for more
complex safety properties, which depend on quantitative
time or on the values of system variables, signal param-
eters, etc. This type of verification is done on the fly,
while the state graph is generated.

Example 3. Figures 10 to 12 show some of the timed
safety properties of Ariane-5 that were checked over the
UML model using observers:

Figure 10: between any two commands sent by the flight
program to the valves there should elapse at least
50ms.

Figure 11: if some instance of class Valve fails to open
(i.e. enters the state Failed Open) then
– No instance of the Pyro class reaches the state

Ignition done.
– All instances of class Valve shall reach one of the

states Failed Close or Close after at most 2 sec-
onds since the initial valve failure.

– The events EAP Preparation and EAP Release
are never emitted.

Figure 12: if the Pyro1 object (of class Pyro) enters
the state Ignition done, then the Pyro2 object shall
enter the state Ignition done at a system time be-
tween TimeConstants.MN 5 ∗ 2 + Tpstot prep and
TimeConstants.MN 5 ∗ 2 + Tpstar prep.

Scheduling analysis. A particular type of property
that can be checked using observers is schedulability of a

14 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

valve_not_abused

t : Clock

<<Observer>>

initial

wait

match invoke ::EADS::Environment::Valves::Close() / t.set(0)

match invoke ::EADS::Environment::Valves::Open() / t.set(0)

KO
<<error>>

match invoke ::EADS::Environment::Valves::Open()

match invoke ::EADS::Environment::Valves::Close()

[t >= 50]

Fig. 10. A timed safety property of the Ariane-5 model.

liftoff_aborted_right

v : Valves
t : Clock

<<Observer>>

ok

aborting

aborted

not_yet

aborted

not_yet

 / t.set(0)

[t >= 2000]

ko
<<error>>

[v.EPC.EAP.Pyro1 @ Ignition_done or
v.EPC.EAP.Pyro2 @ Ignition_done or
v.EPC.EAP.Pyro3 @ Ignition_done]

match send ::EADS::Signals::Request_EAP_Preparation()

match send ::EADS::Signals::Request_EAP_Release()

match accept ::EADS::Environment::Valves::Open() by v

[v @ Open]
[v @ Failed_Open]

[(v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or
(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or
(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or
(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or

(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open)]

Fig. 11. A timed safety property of the Ariane-5 model.

set of tasks (with arbitrarily complex activation patterns
and execution times) on a set of computation resources,
according to a predefined scheduling policy.

In order perform an analysis of this type, the follow-
ing elements have to be modelled:

– the computation resources (CPUs). A CPU is a spe-
cial type of object, upon which other objects request
execution time necessary for their computations. A
request for execution time may be accompanied by a
set of parameters (such as priority, or a time dead-
line). The CPU allocates execution time according to
these parameters and to the other requests it is cur-
rently processing (in a way determined by its schedul-
ing policy), and notifies the requesting object when
the execution time has elapsed.

wait_start

wait_ignition_
p1

p1_ignited

ko
<<error>>

okchoice

match send ::EADS::Signals::Start(void) / begin mc :=
g.Acyclic.MissionConstants; tc := g.Acyclic.TimeConstants end

[g.Acyclic.EAP.Pyro1
@ Ignition_done]

[now >= (tc.MN_5 * 2 + mc.Tpstar_prep)]

[g.Acyclic.EAP.Pyro2 @ Ignition_done]

[now >= (tc.MN_5 * 2 + mc.Tpstot_prep)]

[now < (tc.MN_5*2 + mc.Tpstot_prep)]

liftoff_performed_right2

g : Ground
mc : MissionConstants
tc : TimeConstants

<<Observer>>

Fig. 12. A timed safety property of the Ariane-5 model.

Depending on the complexity of the scheduling pol-
icy, CPUs can in most cases be modelled using the
features of the OMEGA UML profile described in
this paper. For example, a quite general model for
a CPU, which uses dynamic fixed priority preemp-
tive scheduling, can be modelled using the technique
proposed in [?]. In this model each request for execu-
tion time comes with a priority, which can be com-
puted dynamically by the functional model but is
fixed once the request is made. A UML package con-
taining this CPU model is available together with our
tools and can be imported and used directly in any
system model.

– the execution requests made by the different system
objects.

– the scheduling objectives which are usually safety
properties which can be expressed by observers.

Once these elements are modelled, scheduling anal-
ysis consists in verifying (model-checking) that the ob-
servers encoding the scheduling objectives are not vio-
lated.

Example 4. In the Ariane-5 model, tasks performed
by the regulation components and by the guidance-
navigation-control components are executed on the same
CPU, using a fixed priority preemptive scheduling pol-
icy:

– Time consuming tasks of the Regulation components
have the highest priority and are sporadic (they ap-
pear at certain moments during the 40 minutes flight,
according to the application logic, and have small ex-
ecution times of 2-5ms).

– Time consuming tasks of the Navigation and Control
components have medium priority and execute cycli-

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 15

wait

match send
::EADS::Signals::Start_Guidance_cycle() to g

KO_G_cycle_is_schedulable
<<error>>

[g @ Idle]

[not (g @Idle)]

Fig. 13. A scheduling objective expressed as observer.

cally every 72ms. They take 30 to 60ms every cycle
depending on the application logic.

– Time consuming tasks of the Guidance component
have low priority and execute cyclically every 576ms.
They take about 200ms every cycle.

There are several scheduling objectives. We mention
here the most basic one, which is that the Navigation-
Control computation and the Guidance computation fin-
ish in their respective cycle time (72ms, respectively
576ms). The objective for the Guidance task, formalised
by an observer, is shown in Figure 13. It describes the
fact that, when the Guidance object receives the signal
Start Guidance cycle, it should be in state Idle, i.e. it
should have finished the computation from the previous
cycle.

Verification has been performed on a version of the
EADS model in which the cyclic part is fully described,
while the acyclic regulation part is over-approximated
(its logic is preserved, but its timing is modelled as non-
deterministic). Verification can provide a yes/no answer
to the question of whether the system is schedulable un-
der the described policy. In case of a negative answer,
it can also provide hints on which executions overflow
and by what amount of CPU time. For example, it has
been determined that the the system is safe if Guidance
computation takes not more than 230ms, but above this
value it may sometimes overflow the 576ms cycle.

7.4 Assessment and lessons learned

The EADS case study has shown the feasibility of our
approach, but also some of its weaknesses. On the posi-
tive side:

– Verification of the functional properties of the acyclic
part have been performed on a quite detailed spec-
ification of the Regulation components, combined
with an abstract specification of the cyclic Guidance-
Navigation-Control part. The state space has about
1000 states and is generated in less than 1s, after
static analysis and using partial order reduction.

These techniques prove to be essential: without static
analysis, the state space is infinite due to some coun-
ters and clocks which continue to grow after they
stop being used. Without partial order reduction, the
state space is necessarily finite, but we could not gen-
erate it (over 106 states, with a state vector of about
10KB).

– Verification of scheduling properties has been per-
formed on a detailed description of the Guidance-
Navigation-Control part, combined with a specifica-
tion of Regulation components from which time has
been abstracted away. The state space has around
66000 states and is generated in about 1m10s on a
dual Pentium-II system with 2GB of memory.

– We have assessed the impact of translation on the
state space size. For this we have compared the size
of the state space generated by a hand-written IF de-
scription with the size of the space generated by an
equivalent model translated from UML. (The com-
parison considers UML models which only use the
structure and communication mechanisms available
directly in IF. Inheritance or behaviour described
through operations is not considered, as this would
require an encoding in IF similar to that implemented
by the UML translator.)
We found that the translation induces a linear growth
in space size, by a factor of around 4. This is mostly
due to the processes which manage activity groups
and the run-to-completion policy of the OMEGA se-
mantics.
On the other hand, the case study has pointed out

the necessity of using abstractions. When trying to ver-
ify both acyclic and cyclic parts of Ariane-5 without ab-
straction, the result is an intractable state space explo-
sion.

The IFx tool provides several abstractions which can
be applied automatically: removing or resetting dead
variables, slicing away irrelevant variables for a given
property, partial order reduction, symbolic representa-
tion of clock values, queue abstraction. These abstrac-
tions are “exact” in the sense that they preserve the
reachability of observable states and preserve both the
satisfaction and the non-satisfaction of safety properties.

However, such abstractions are generally not suffi-
cient for complex problems. To exploit compositionality,
one often needs to verify the properties of a component
in conjunction with an abstract (over-approximated)
version of the other components of the system. The
state space of the whole system is in this case over-
approximated. Such abstractions preserve the satisfac-
tion of safety properties, but do not preserve their non-
satisfaction (i.e. may lead to false negative answers).

In the Ariane-5 case study, this technique was ex-
ploited: safety properties of the regulation and config-
uration components were verified using an exact model
for the acyclic part and an over-approximated behaviour
of the cyclic part. Likewise, scheduling properties were

16 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

verified using an exact model of the cyclic part and a
time-nondeterministic model of the acyclic part.

This form of abstraction has to be handled mostly
manually: using several versions of the model, checking
manually compliance between the abstract and the con-
crete model of a component. A part of this management
burden could be better supported by tools.

Finally, another conclusion of the case study is that
static analysis is less effective on models generated from
UML. This is caused by the heavy use of dynamic pro-
cess creation and of shared variables in the IF counter-
part. For models where architecture is mostly static, like
in the case of Ariane-5, describing the architecture with
a diagram (as can be done in UML 2.0) instead of de-
scribing the system creation phase with class construc-
tors could largely improve performance of static analysis
tools. Also, using operation inlining instead of our com-
pilation scheme (section 3.1) when possible, will improve
the impact of static analysis.

8 Conclusions and plans for future work

We have presented a method and a tool for validating
UML models by simulation and model checking, based
on a mapping to an automata-based model (communi-
cating extended timed automata).

Although this problem has been previously studied
[?,?,?,?,?,?], our approach introduces a new dimension
by considering the object-oriented features present in
UML: inheritance, polymorphism and dynamic binding
of operations, and their interplay with statecharts and
the concurrency semantics. A solution is given for mod-
elling these concepts with timed automata extended with
variables and dynamic creation.

Our experiments show that the overhead introduced
by handling these object-oriented aspects during simu-
lation and model checking remains low, thus not ham-
pering the scalability of the approach.

For expressing and verifying dynamic properties, we
propose a formalism that remains within the framework
of UML: observer objects. We believe this is an impor-
tant facility for the adoption of formal techniques by the
UML community. Observers are a natural way of writing
a large class of properties (linear properties with quan-
titative time).

8.1 Handling semantic variations

Several features of the IF language, such as dynamic ad-
dressing, the default atomicity of transitions or the dy-
namic priority mechanism, make it a satisfactory com-
promise between expressiveness and level of abstraction
for describing different communication and synchronisa-
tion schemes. Consequently, our approach of defining the
semantics of UML models by translation to IF proves to
be flexible and open to semantic variations.

In the future, we plan to exploit the openness of the
translation and explore variations in the:

– communication paradigm. Currently our model sup-
ports communication via asynchronous signal pass-
ing, synchronous (blocking) method calls and shared
(public) object attributes.
Extensions may include :
– Communications which are not point-to-point,

such as asynchronous signal multicast or broad-
cast. They may be mapped to IF by using dy-
namic addressing which allows processes to com-
municate without a pre-established link.

– Asynchronous calls. They may be mapped to IF
using an exchange of asynchronous signals, by
loosening the constraints of our implementation
of blocking calls.

– Data flow communication between functional
modules. This form of communication can be
achieved using protected (atomic) access to
shared variables. Dynamic priorities can be used
to describe generically the activation order of
functional modules in a network.

– Rendez-vous communication is also a powerful
communication mechanism used in certain types
of systems. It can be implemented in IF by means
of a (relatively complex) protocol. Nevertheless,
rendez-vous is interesting as a primitive concept,
and for this reason, we plan to extend the IF lan-
guage with a rendez-vous-like primitive [?].

– concurrency model. In our model, activity groups are
executed concurrently, and requests to a group are
treated in run-to-completion steps. Other execution
models may be useful in different applications, and
can be accommodated by changing the translation to
IF:
– models which loosen some of the hypotheses of

the OMEGA semantics. For example, relaxing the
hypothesis that a passive object is part of one
activity group only, and that calls are sequenced
by the activity group, can yield a model closer to
that of Java or C++/Posix (in which threads are
orthogonal to objects).

– models which strengthen the hypotheses of the
OMEGA semantics, for example by introducing
a notion of synchronous step (during which all
activity groups execute a run-to-completion step,
all communication being taken into account only
in the next step).

– step granularity. The current semantics supposes
that only basic actions (assignments, signal output,
etc.) are atomic by construction. Different scales of
granularity, up to forcing entire run-to-completion
steps as atomic, are possible depending on the con-
sidered applications.

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 17

8.2 UML 2.0 and other future plans

The present work focuses on UML 1.4 as this is the most
recent version of UML implemented by mature and open
(in the sense of XMI export) CASE tools. In the future
we plan to adapt this work to UML 2.0.

On the side of the OMEGA UML profile, the exten-
sions proposed here are compatible with UML 2.0: the
concurrency and communication model is a specialisa-
tion of that of UML 2.0, the action language syntax is
compatible as there were no major changes versions 1.4
and 2.0. Observers are defined by means of standard ex-
tension mechanisms which have been preserved. Finally,
the declarative time constraints defined in OMEGA have
a formal counterpart in UML 2.0 (Duration, DurationIn-
terval, DurationConstraint, etc. from Common Behav-
iors) but the precise identification of event types and
occurrences, and the different kinds of event pair match-
ing defined in OMEGA are still missing.

We also plan to integrate the component and ar-
chitecture specification frameworks of UML 2.0 and to
study the possibility of using these additional structures
for improving verification, static analysis and abstrac-
tions.

On the side of translation tools, upgrading to UML
2.0 will bring major changes in the XMI format and the
tool’s internal repository structure which is an image of
the metamodel. However, both XMI de-serialisation and
UML-to-IF translation are built based on the reflectiv-
ity capabilities of Java and are loosely coupled with the
repository. Also, a new repository for UML 2.0 can be
generated automatically from an XMI representation of
the metamodel, which we expect to be available from
the OMG as it was the case with UML 1.4.

Finally, our plans include assessment of the appli-
cability of our technique to larger models. The tool is
already being applied to a set of case studies provided
by industrial partners within the OMEGA project.

Acknowledgements. The authors wish to thank
Marius Bozga and Yassine Lakhnech who contributed
with ideas and help throughout this work.

References

1. K. Altisen, G. Gössler, and J. Sifakis. A methodology
for the construction of scheduled systems. In M. Joseph,
editor, proc. FTRTFT 2000, volume 1926 of LNCS, pages
106–120. Springer-Verlag, 2000.

2. R. Alur and D.L. Dill. A theory of timed automata. In
TCS94, 1994.

3. Vieri Del Bianco, Luigi Lavazza, and Marco Mauri.
Model checking UML specifications of real time software.
In Proceedings of 8th International Conference on Engi-
neering of Complex Computer Systems. IEEE, 2002.

4. S. Bornot and J. Sifakis. An algebraic framework for
urgency. Information and Computation, 163, 2000.

5. M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier.
Protocol verification with the aldebaran toolset. Soft-
ware Tools for Technology Transfer, 1:166–183, 1997.

6. M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P.
Krimm, and L. Mounier. IF: An Intermediate Repre-
sentation and Validation Environment for Timed Asyn-
chronous Systems. In Proceedings of Formal Methods’99,
Toulouse, France, June 1999.

7. Marius Bozga, Susanne Graf, and L. Mounier. IF-2.0:
A validation environment for component-based real-time
systems. In Proceedings of Conference on Computer
Aided Verification, CAV’02, Copenhagen, number 2404
in LNCS. Springer Verlag, June 2002.

8. Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober,
and Joseph Sifakis. The IF toolset. In SFM-04:RT 4th
Int. School on Formal Methods for the Design of Com-
puter, Communication and Software Systems: Real Time,
number 3185 in LNCS, June 2004.

9. Marius Bozga and Yassine Lakhnech. IF-2.0 common
language operational semantics. Technical report, 2002.
Deliverable of the IST Advance project, available from
the authors.

10. Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel
Klein, Barbara Paech, Bernhard Rumpe, and Veronika
Thurner. Towards a formalization of the Unified Model-
ing Language. In Proceedings of ECOOP’97 - 11th Euro-
pean Conference on Object-Oriented Programming, num-
ber 1241 in LNCS. Springer Verlag, 1997.

11. OMEGA consortium. http://www-omega.imag.fr - web-
site of the IST OMEGA project.

12. W. Damm and D. Harel. LSCs: Breathing life into Mes-
sage Sequence Charts. In P. Ciancarini, A. Fantechi, and
R. Gorrieri, editors, FMOODS’99 IFIP TC6/WG6.1.
Kluwer Academic Publishers, 1999.

13. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Un-
derstanding UML: A formal semantics of concurrency
and communication in real-time UML. In Proceedings
of FMCO’02, volume 2852 of LNCS Tutorials. Springer
Verlag, November 2002.

14. Werner Damm, Bernhard Josko, Hardi Hungar, and
Amir Pnueli. A compositional real-time semantics of
STATEMATE designs. Lecture Notes in Computer Sci-
ence, 1536:186–238, 1998.

15. Werner Damm, Bernhard Josko, Amir Pnueli, and Ange-
lika Votintseva. OMEGA Project Deliverable D.1.1.1 : A
Formal Semantics for a UML Kernel Language. Technical
report, 2002. Available at http://www-omega.imag.fr.

16. Alexandre David, M. Oliver Möller, and Wang Yi. For-
mal Verification of UML Statecharts with Real-Time
Extensions. In R.-D. Kutsche and H. Weber, edi-
tors, Fundamental Approaches to Software Engineering
(FASE’2002), volume 2306 of LNCS, pages 218–232.
Springer-Verlag, April 2002.

17. Maria del Mar Gallardo, Pedro Merino, and Ernesto
Pimentel. Debugging UML designs with model check-
ing. Journal of Object Technology, 1(2):101–117, August
2002. (http://www.jot.fm/issues/issue 2002 07/article1).

18. Elena Fersman, Leonid Mokrushin, Paul Pettersson, ,
and Wang Yi. Schedulability analysis using two clocks.
In 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS),
volume 2619 of Lecture Notes in Computer Science.
Springer, 2003.

18 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

19. R.B. France, A.S. Evans, K.C. Lano, and B. Rumpe. De-
veloping the UML as a formal modeling notation. Com-
puter Standards and Interfaces: Special Issues on Formal
Development Techniques, 1998.

20. Susanne Graf and Jozef Hooman. Correct development of
embedded systems. In European Workshop on Software
Architecture: Languages, Styles, Models, Tools, and Ap-
plications (EWSA 2004), co-located with ICSE 2004, St
Andrews, Scotland, LNCS 3047, pages 241–249. Springer-
Verlag, May 2004.

21. Susanne Graf, Ileana Ober, and Iulian Ober. Timed
annotations in UML. In Workshop on Specifica-
tion and Validation of UML models for Real Time
and Embedded Systems (SVERTS 2003), a satellite
event of UML 2003, San Francisco, October 2003,
October 2003. downloadable through http://www-
verimag.imag.fr/EVENTS/SVERTS/.

22. Susanne Graf, Ileana Ober, and Iulian Ober. Timed an-
notations in UML. STTT, Int. Journal on Software Tools
for Technology Transfer, 2005. accepted for publication.

23. Gregor Gössler and Joseph Sifakis. Component-based
construction of deadlock-free systems. In proceedings
of FSTTCS 2003, Mumbai, India, LNCS 2914, pages
420–433, 2003. downloadable through http://www-
verimag.imag.fr/ sifakis/.

24. Gregor Gössler and Joseph Sifakis. Priority systems. In
proceedings of FMCO’03, LNCS 3188, 2004.

25. D. Harel and H. Kugler. The RHAPSODY Semantics of
Statecharts (or, On the Executable Core of the UML).
In Integration of Software Specification Techniques for
Application in Engineering, volume 3147 of Lect. Notes
in Comp. Sci., pages 325–354. Springer-Verlag, 2004.

26. D. Harel, H. Kugler, and A. Pnueli. Synthesis Revisited:
Generating Statechart Models from Scenarios-Based Re-
quirements. In Formal Methods in Software and Sys-
tem Modeling, volume 3393 of Lect. Notes in Comp. Sci.,
pages 309–324. Springer-Verlag, 2005. To appear.

27. D. Harel, H. Kugler, and G. Weiss. Some Methodologi-
cal Observations Resulting from Experience Using LSCs
and the Play-In/Play-Out Approach. In Proc. Scenarios:
Models, Algorithms and Tools, Lect. Notes in Comp. Sci.
Springer-Verlag, 2005. To appear.

28. David Harel and Eran Gery. Executable object modeling
with statecharts. Computer, 30(7):31–42, 1997.

29. David Harel and Amnon Naamad. The STATEMATE
semantics of statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293–333, 1996.

30. David Harel and Bernhard Rumpe. Modeling languages:
Syntax, semantics and all that stuff. Technical Report
MCS00-16, Weizmann Institute of Science, Rehovot, Is-
rael, 2000.

31. Z. Har’El and R. P. Kurshan. Software for Analysis of
Coordination. In Conference on System Science Engi-
neering. Pergamon Press, 1988.

32. G. J. Holzmann. The model-checker SPIN. IEEE Trans.
on Software Engineering, 23(5), 1999.

33. C. Jard, R. Groz, and J.F. Monin. Development of
VEDA, a prototyping tool for distributed algorithms.
IEEE Transactions on Software Engineering, 14(3):339–
352, March 1988.

34. Alexander Knapp, Stephan Merz, and Christopher Rauh.
Model checking timed UML state machines and collab-
orations. In W. Damm and E.-R. Olderog, editors, 7th

Intl. Symp. Formal Techniques in Real-Time and Fault
Tolerant Systems (FTRTFT 2002), volume 2469 of Lec-
ture Notes in Computer Science, pages 395–414, Olden-
burg, Germany, September 2002. Springer-Verlag.

35. Gihwon Kwon. Rewrite rules and operational se-
mantics for model checking UML statecharts. In
Bran Selic Andy Evans, Stuart Kent, editor, Proceedings
of UML’2000, volume 1939 of Lecture Notes in Computer
Science. Springer-Verlag, 2000.

36. Marcel Kyas and Frank S. de Boer. On message specifi-
cation in OCL. In Frank S. de Boer and Marcello Bon-
sangue, editors, Compositional Verification in UML, vol-
ume 101 of entcs, pages 73–93. elsevier, 2004.

37. Marcel Kyas, Harald Fecher, Frank S. de Boer, Mark
van der Zwaag, Jozef Hooman, Tamarah Arons, and Hil-
lel Kugler. Formalizing UML models and OCL con-
straints in PVS. In Workshop on Semantic Foundations
of Engineering Design Languages, Electronic Notes in
Computer Science. Elsevier, 2004.

38. Marcel Kyas, Joost Jacob, Ileana Ober, Iulian Ober,
and Angelika Votintseva. OMEGA Project Deliverable
D.2.2.2 Annex 1 : OMEGA Syntax for Users. Technical
report, 2004. Available at http://www-omega.imag.fr.

39. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi.
Uppaal in a nutshell. STTT, 1(1-2):134–152, 1997.

40. D. Latella, I. Majzik, and M. Massink. Automatic ver-
ification of a behavioral subset of UML statechart dia-
grams using the SPiN model-checker. Formal Aspects of
Computing, (11), 1999.

41. J. Lilius and I.P. Paltor. Formalizing UML state ma-
chines for model checking. In Rumpe France, editor,
Proceedings of UML’1999, volume 1723 of Lecture Notes
in Computer Science. Springer-Verlag, 1999.

42. Johan Lilius and Ivan Porres Paltor. vUML: A tool for
verifying UML models. In Proceedings of 14th IEEE
International Conference on Automated Software Engi-
neering. IEEE, 1999.

43. D. Lugato, N. Rapin, and J.P. Gallois. Verification and
tests generation for SDL industrial specifications with
the AGATHA toolset. In Real-Time Tools Workshop af-
filiated to CONCUR 2001, Aalborg, Denmark, 2001.

44. Erich Mikk, Yassine Lakhnech, and Michael Siegel. Hi-
erarchical automata as a model for statecharts. In Pro-
ceedings of Asian Computer Science Conference, volume
1345 of LNCS. Springer Verlag, 1997.

45. Iulian Ober and Ileana Stan. On the concurrent object
model of UML. In Proceedings of EUROPAR’99, LNCS.
Springer Verlag, 1999.

46. OMG. Unified Modeling Language Specification (Ac-
tion Semantics). OMG Adopted Specification, document
ptc/02-01-09, January 2002.

47. OMG. UML Profile for Schedulability, Performance, and
Time Specification. OMG ducument formal/03-09-01,
September 2003.

48. Timm Schäfer, Alexander Knapp, and Stephan Merz.
Model checking UML state machines and collabora-
tions. Electronic Notes in Theoretical Computer Science,
55(3):13 pages, 2001.

49. M. van der Zwaag and J. Hooman. A semantics of com-
municating reactive objects with timing. STTT, Int.
Journal on Software Tools for Technology Transfer, 2005.
accepted for publication.

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 19

50. Rob J. van Glabbeek and W. Peter Weijland. Branching
time and abstraction in bisimulation semantics. Journal
of the ACM, 43(3):555–600, May 1996.

51. WOODDES. Workshop on concurrency issues
in UML. Satelite workshop of UML’2001. See
http://wooddes.intranet.gr/uml2001/Home.htm.

52. Fei Xie, Vladimir Levin, and James C. Browne. Model
checking for an executable subset of UML. In Proceedings
of 16th IEEE International Conference on Automated
Software Engineering (ASE’01). IEEE, 2001.

53. S. Yovine. Kronos: A verification tool for real-time sys-
tems. Springer International Journal of Software Tools
for Technology Transfer, 1(1-2), December 1997.

