
Programming Dynamic Reconfigurable Systems?

Rim El Ballouli, Saddek Bensalem, Marius Bozga, and Joseph Sifakis

Univ. Grenoble Alpes, CNRS, Grenoble INP? ? ?, 38000 Grenoble, France

Abstract. DR-BIP is an extension of the BIP component framework
intended for programming reconfigurable systems encompassing various
aspects of dynamism. It relies on architectural motifs to structure the
architecture of a system and to coordinate its reconfiguration at run-
time. An architectural motif defines a set of interacting components that
evolve according to reconfiguration rules. With DR-BIP, the dynamism
can be captured as the interplay of dynamic changes in three indepen-
dent directions 1) the organization of interactions between instances of
components in a given configuration; 2) the reconfiguration mechanisms
allowing creation/deletion of components and management of their in-
teraction according to a given architectural motif; 3) the migration of
components between predefined architectural motifs which characterizes
dynamic execution environments. The paper lays down the formal foun-
dation of DR-BIP, illustrates its expressiveness on few examples and
discusses avenues for dynamic reconfigurable system design.

Keywords: architectural motifs, components, reconfigurable systems

1 Introduction

Modern computing systems exhibit dynamic and reconfigurable behavior. They
evolve in uncertain environments and have to continuously adapt to changing in-
ternal or external conditions. This is essential to efficiently use system resources
e.g. reconfiguring the way resources are accessed and released in order to adapt
the system behavior in case of mishaps such as faults, and to provide the ad-
equate functionality when the external environment changes dynamically as in
mobile systems. In particular, mobile systems are becoming important in many
application areas including transport, telecommunications and robotics.

There exist two complementary approaches for the expression of dynamic
coordination rules. One respects a strict separation between component behav-
ior and its coordination. Coordination is exogenous in the form of an archi-
tecture that describes global coordination rules between the coordinated com-
ponents. This approach is adopted by numerous Architecture Description Lan-
guages (ADL) (see [7] for a survey). The other approach is based on endogenous

? ? ? Institute of Engineering Univ. Grenoble Alpes
? The research leading to these results has received funding from the European Union

Horizon 2020 research and innovation programme under grant agreement no. 700665
CITADEL (Critical Infrastructure Protection using Adaptive MILS)

2 Rim El Ballouli et al.

coordination by using explicitly primitives in the code describing the behavior
of components. Most programming models use internalized coordination mech-
anisms. Components usually have interfaces that specify their capabilities to
coordinate with other components. Composing components boils down to com-
posing interfaces. This approach is in particularly adopted by formalisms based
on π-calculus and process algebra, such as [1, 9–11]. The obvious advantage of
endogenous coordination is that programmers do not have to build explicitly a
global coordination model. Consequently, the absence of such a model makes the
validation of coordination mechanisms and the study of their underlying prop-
erties much harder. Exogenous coordination is advocated for enabling the study
of the coordination mechanisms and their properties. It motivated numerous
publications and the development of 100+ ADLs [15].

There exists a huge literature on architecture modeling reviewed in detailed
surveys classifying the various approaches and outlining new trends and needs
[14, 15, 18, 7, 19, 8]. Despite the impressive amount of work on this topic there
is no clear understanding about how different aspects of architecture dynamism
can be characterized.

We consider that the degree of dynamism of a system can be captured as
the interplay of dynamic change in three independent aspects. The first aspect
requires the ability to describe parametric system coordination for arbitrary
number of instances component types. For example, systems with m Producers
and n Consumers or Rings formed from n identical components. The second as-
pect requires the ability to add/delete components and manage their interaction
rules depending on dynamically changing conditions. This is needed for a recon-
figurable ring of n components e.g. removing a component which self-detects a
failure and adding the removed component after recovery. So adding/deleting
components implies the dynamic application of specific interaction rules de-
pending on their type. This is also needed for mobile components which are
subject to dynamic interaction rules depending on the state of their neighbor-
hood. The third aspect is currently the most challenging. It meets in particu-
lar, the vision of “fluid architectures” [19] which allows components/services to
seamlessly roam and continue their activities on any available device or com-
puter. Applications and objects live in an environment which is conceptually
an architecture motif. They can be dynamically transported from one motif
to another. Supporting dynamic migration of components allows a disciplined
and easy-to-implement management of dynamically changing coordination rules.
For instance, self-organizing systems may adopt different coordination motifs to
adapt their behavior so as to meet a global property.

The paper proposes Dynamic Reconfigurable BIP (DR-BIP) component fra-
mework, an extension of BIP [3, 2] which encompasses all these three aspects of
dynamism. DR-BIP represents one step further in the research work which lead
previously to DyBIP [6] for BIP with dynamic interactions and more recently
to FunctionalBIP [12] and JavaBIP [17] for BIP with dynamic components and
interactions. As such, DR-BIP follows an exogenous approach respecting the
strict separation between behavior and architecture. It directly encompasses mul-

Programming Dynamic Reconfigurable Systems 3

tiparty interaction [4] and is rooted in formal operational semantics allowing a
rigorous implementation. DR-BIP privileges an imperative and exogenous style
characterizing dynamic architecture as a set of interaction rules implemented by
connectors and a set of configuration rules.

Although it does not allow adhoc dynamism, it directly encompasses all kinds
of dynamism at run time [7]: programmed dynamism and in addition adaptive
dynamism, and self-organizing dynamism. It provides support for component cre-
ation and removal at run time. Moreover, DR-BIP directly supports component
migration from one motif to another. It supports programmed reconfiguration
and triggered reconfiguration in particular [8]. The big advantage from using
motifs is that when a component is created, its type defines the interaction with
other components. So, a motif is a “world” where components live and from
which they can migrate to join other “worlds” [19].

The paper is organized as follows. Section 2 provides a brief overview of the
DR-BIP and major design principles. Section 3 briefly recalls the key concepts
of BIP and its operational semantics. Section 4 introduces the motif concept
and its semantics. Section 5 introduces motif-based systems. Section 6 presents
an example with results using the DR-BIP implementation. Finally, section 7
presents conclusions and future work directions.

2 DR-BIP Overview

The DR-BIP framework relies on the key concept of architectural motif as the
elementary unit of description of dynamic architectures. A motif encapsulates
(i) behavior, as a set of components, (ii) interaction rules between components
and (iii) reconfiguration rules about creating/deleting or moving components.

b1

b2

c1 c2

c4 c3

b1

b2

c1 c2 c3

c4

b1

b2

c1 c2

c4 c3

b3

c5

Fig. 1: An example : system reconfigurations

Systems are constr-
ucted as a superposi-
tion of several motifs,
possibly sharing their
components and evol-
ving altogether.

Fig. 1 provides an
overall view of the str-
ucture and evolution
of a motif-based sys-
tem. The initial config-
uration consists of six
interacting components
organized in three mo-
tifs (indicated with dashed lines). The central motif contains components b1
and b2 connected in a ring. The upper motif contains components b1, c1, c2,
c3, with b1 being connected to all others. The lower motif contains connected
components b2, c4. The second system configuration (in the middle) shows the
evolution following a reconfiguration step. Component c3 migrated from the up-

4 Rim El Ballouli et al.

per motif to the lower motif, by disconnecting from b1 and connecting to b2.
The central motif is not impacted by the move. The third system configuration
(right) shows one more reconfiguration step. Two new components have been
created b3 and c5. The central motif now contains one additional component b3,
interconnected along b1 and b2 forming a larger ring. In addition a new motif is
created containing b3 and c5.

The example above contains actually two types of motifs: ring motif and
star motif. Types of motifs may be defined separately by giving the types of
hosted components and their parametric interactions and reconfiguration rules.
Then, systems are described by superposing a number of such motifs on a set
of components. In this manner, the overall system architecture captures specific
architectural/functional properties by design.

bi

cj

in out

rcv

snd

b2 b3b1

Motif ”Ring”

...

Deployment

Map

Interaction rules

Behavior

Reconfiguration rules

sync x1.out x2.in
when D(x1) 7→ D(x2)

b1 c1 c2

Motif ”Star”

Reconfiguration rules
...

Map

Deployment

Behavior

Interaction rules

when D(x1) 7→ D(x2)
sync x1.rcv x2.snd

Fig. 2: An example : motifs definition

Fig. 2 depicts the principle of motif definition in DR-BIP. Motifs are struc-
turally organized as the deployment of component instances on a logical map.
Maps are graph-like structures consisting of interconnected positions. Deploy-
ments relate components to positions on the map. The definition of the motif is
completed by two sets of rules, defining respectively interactions and reconfigu-
ration actions. Both sets of rules are interpreted on the current motif configu-
ration. The first defines a set of interactions between components. The second
defines reconfiguration actions to update the content of the motif, that is, the
components, map and deployment.

The “Ring” motif illustrated in Fig. 2 (left) defines the first type of motif
used in the previous example. Three components b1, b2, b3 are deployed into a
three-position circular map. Given some deployment function D, the interaction
rule reads as follows: for components x1, x2 deployed on adjacent nodes D(x1) 7→
D(x2) connect their ports x1.out and x2.in. The rule defines three interactions
between the b’s components namely b1.out b3.in, b3.out b2.in, b2.out b1.in that
correspond to the ring shown in Fig. 1 (right). The “Star” motif illustrated in
Fig. 2 (right) defines the second type. Here, three components are deployed into
a two-position map. The interaction rule reads as follows: for components x1,
x2 deployed on adjacent nodes D(x1) 7→ D(x2) connect their ports x1.rcv and

Programming Dynamic Reconfigurable Systems 5

x2.snd. The rule defines two interactions, namely b1.rcv c1.snd and b1.rcv c2.snd,
also illustrated in Fig. 1 (middle, right).

The reasons for choosing maps and deployments as a mean for structuring
motifs are their simplicity. On one hand, maps and deployments are common
concepts, easy to understand, manipulate and formalize. On the other hand,
they adequately support the definition of arbitrarily complex sets of interactions
over components by relating them to connectivity properties (neighborhood,
reachability, etc). Moreover, maps and deployments are orthogonal to behavior.
Therefore they can be manipulated/updated independently and provide also a
very convenient way to express various forms of reconfiguration.

b b′

m

m′

α
Interaction

Reconfiguration ρ

Behavior

Configuration

Fig. 3: Reconfiguration vs Interaction Steps

Finally, the operational
semantics of motif-based sys-
tems is defined in a compo-
sitional manner. Every motif
defines its own set of interac-
tions based on its local struc-
ture. This set of interactions
and the involved components
remain unchanged as long as
the motif does not execute a
reconfiguration action. Hence
in absence of reconfigurations,
the system keeps a fixed static architecture and behaves like an ordinary BIP
system. As illustrated in Fig. 3, the execution of interactions has no effect on the
architecture. In contrast to interactions, system and/or motif reconfigurations
rules are used to define explicit changes to the architecture. Nonetheless, these
changes have no impact on components, i.e. all running components preserve
their state although components may be created/deleted.

3 Component-Based Systems

BIP [3, 2] is the underlying component-based framework for programming dy-
namic systems (DR-BIP). In BIP, systems are constructed from atomic compo-
nents, which are finite state automata, extended with data and ports. Commu-
nication between components is by multiparty interactions with data transfer.
BIP systems are static in the sense that components and interactions are fixed
at design time and do not change during system execution. We briefly recall the
key BIP concepts and their operational semantics.

3.1 Component types and instances

A component type Bt is an extended labeled transition system (L,P, V, T), where
L is a finite set of control locations, P is a finite set of ports, V is a finite set
of data variables and T ⊆ L × P × G(V) × F(V) × L is a finite set of labeled
transitions, where G(V) and F(V) are respectively Boolean guards and update

6 Rim El Ballouli et al.

functions defined over variables V . Every transition τ = (`, p, g, f, `′) ∈ T is

equivalently denoted as τ = `
p g f−−−→ `′ ∈ T . For every port p ∈ P , we associate

a subset of variables Vp ⊆ V exported and available for interaction through p.
For a component type Bt = (L,P, V, T), its set of states is Q = L×V where

V is the set of all valuations defined on V . A valuation of a set of variables V
is a function v : V → D, where D is an underlying domain of data values. The
semantics of a component type Bt is defined as the labeled transition system
[[Bt]] = (Q,Σ,−→) where the set of labels Σ = {p(vp) | vp ∈ Vp} and transitions
−→⊆ Q×Σ ×Q are defined by the rule:

τ = `
p g f−−−→ `′ ∈ T g(v) v′′p ∈ Vp v′ = f(v[v′′p/Vp])

Bt : (`,v)
p(v′′p)
−−−→ (`′,v′)

That is, (`′,v′) is a successor of (`,v) labeled by p(v′′p) iff (1) τ = `
p g f−−−→ `′

is a transition of T , (2) the guard g holds on the current state valuation v, (3)
v′′p is a valuation of exported variables Vp and (4) v′ = f(v[v′′p/Vp]) that is,
the next-state valuation v′ is obtained by applying f on v previously updated
according to v′′p . Whenever a p-labeled successor exists in a state, we say that p
is enabled in that state.

We consider a finite set of component types, fixed a priori. A component
instance b is a couple (Bt, k) for some k ∈ N. We denote respectively by ports(b),
states(b), labels(b) the set of ports, states and labels associated to the instance
b according to its type.

Example 1. Fig. 4 (left) illustrates graphically a component type. The compo-
nent has three ports (in, out, rcv) attached with variables (respectively u, v,
w). It has two control locations (idle, busy) and three transitions labeled by the
ports. For example, the transition labeled by in changes control location from
idle to busy while performing the computation v := u+ w.

out v u in

true → u:=v

in

rcv

u

busy

idle

outv
in

out

rcv

w

b2

b4

b5

b1

b3

b6

out out

out

outout

out

in
in

in
in

in

in

v:=u+w

Fig. 4: Component types, interactions and systems in BIP

3.2 Systems of components

Systems of components Γ (B) are obtained by composing a finite set of compo-
nent instances B = {b1, ..., bn} using a finite set of multiparty interactions Γ . A
multiparty interaction a is a triple (Pa, Ga, Fa), where Pa ⊆

⋃n
i=1 ports(bi) is a

Programming Dynamic Reconfigurable Systems 7

set of ports, Ga is a Boolean guard, and Fa is an update function. By definition,
Pa must use at most one port of every component in B, that is, |Pi∩Pa| ≤ 1 for all
i ∈ {1..n}. Therefore, we simply denote Pa = {bi.pi}i∈I , where I ⊆ {1..n} con-
tains the indices of the components involved in a and for all i ∈ I, pi ∈ ports(bi).
Ga and Fa are defined on the variables exported by ports in Pa (i.e.,

⋃
p∈Pa

Vp).
The semantics of a system S = Γ (B) is defined as the labeled transition

system [[S]] = (Q,Σ,−→) where the set of states Q = 〈b 7→ q | b ∈ B, q ∈
states(b)〉, the set of labels Σ ⊆ P(ports(B)×P(V)) contains the ports and sets
of values exchanged on interactions and transitions −→ are defined by the rule:

a = ({bi.pi}i∈I , Ga, Fa) ∈ Γ Ga({vpi}i∈I) {v′′pi}i∈I = Fa({vpi}i∈I)

∀i ∈ I.
(
Bti : (`i,vi)

pi(v
′′
pi

)
−−−−→ (`′i,v

′
i)

)
∀i 6∈ I. (`i,vi) = (`′i,v

′
i)

Γ (B) : 〈b1 7→ (`1,v1), . . . , bn 7→ (`n,vn)〉
{bi.pi(v′′pi)}i∈I−−−−−−−−−−→

〈b1 7→ (`′1,v
′
1), . . . , bn 7→ (`′n,v

′
n)〉

For each i ∈ I, vpi above denotes the valuation vi restricted to variables of Vpi .
The rule expresses that S can execute an interaction a ∈ Γ enabled in state
((`1,v1), . . . , (`n,vn)), iff (1) for each pi ∈ Pa, the corresponding component
instance bi can execute a transition labeled by pi, and (2) the guard Ga of the
interaction holds on the current valuation vpi of exported variables on ports in
a. Execution of a triggers first the update function Fa which modifies exported
variables Vpi . The new values obtained, encoded in the valuation v′′pi , are then
used by the components’ transitions. The states of components that do not
participate in the interaction remain unchanged.

Example 2. Fig. 4 (right) illustrates a system obtained by composing six bi in-
stances with six out in interactions in a ring structure. It shows a binary inter-
action between two ports out, in, having guard true and update function u := v.
That is, whenever the interaction is executed, the data is transferred from the
out port to the in port.

4 Motifs for Dynamic Architectures

Motifs are dynamic structures composed of interacting components. Their struc-
ture is expressed as a combination of three concepts namely, behavior, map and
deployment. The behavior consists of a set of components. The map is an un-
derlying logical structure (backbone) used to organize the interaction of compo-
nents. The deployment provides the association between the components and the
map. The components within a motif run in parallel and synchronize using mul-
tiparty interactions. The set of multiparty interactions is defined by interaction
rules evaluated on the structure of the motif. Finally, the motif structure is also
evolving. Any of the three constituents can be modified i.e., components can be
added/removed to/from the motif, the map and/or the deployment can change.
The motif evolution is expressed using reconfiguration rules, which evaluate and
update the motif structure accordingly. The following section introduces formally
all the motif-related concepts.

8 Rim El Ballouli et al.

4.1 Maps and deployments

Maps and deployments are abstract concepts used to organize the motifs. Maps
denote arbitrary dynamic collections of inter-connected nodes (positions). They
are defined as particular instances of generic map types Ht characterized by
(i) an underlying domain N(Ht) of nodes, (ii) a set of primitives Ω(Ht) to
update/access the map content and (iii) a logic L(Ht) to express constraints on
the map content.

We use maps as dynamic data structures (objects). For a map H, its set of
nodes is denoted by dom(H). For any primitive op ∈ Ω(Ht) we will use the
dotted notation H.op(· · ·) to denote the update and/or access to the map H
according to op. Moreover, for any ψ ∈ L(Ht) we will use H |= ψ to denote that
the constraint ψ is satisfied on H.

Example 3. Map types can be directed graphs (V,E) where vertices V denote
the positions and edges E ⊆ V × V expressing the connectivity between these
positions. Such a map type (i) has the domain V , (ii) can be manipulated explic-
itly using primitives such as addVertex, remVertex, addEdge, remEdge and (iii)
has predicate constraints such as edge constraints · 7→ ·, path constraints · 7→∗ ·),
etc, with the usual meaning.

Example 4. In the “Ring” example from Fig. 5 the map type is a specific type
of graph, that is, a cyclic graph, whose (i) vertices compose the domain and (ii)
primitives include initialize, extend, remove to respectively initialize, extend by
one vertex and remove one vertex from it.

Deployments are partial mappings of a set B of component instances to the
nodes of a map H, formally D : B → dom(H)∪ {⊥}. As for maps, deployments
are dynamic data structures defined as particular instances of a generic deploy-
ment types Dt. We consider a set of primitives Ω(Dt) to update and/or access
the deployment as well as a logic L(Dt) to express constraints on it.

4.2 Motif types

Definition 1. A motif type M t is a tuple ((B,H,D), IR, RR) where:

– the triple (B,H,D) are motif meta-variables used to maintain respectively
the set of component instances, the map and the deployment of component
instances to the map,

– IR is a set of motif interaction rules of the form (Z, Ψ , PI , GI , FI) where
Z is a set of rule parameters, Ψ is a rule constraint, and (PI , GI , FI) is the
interaction specification, namely the set of ports of involved components, the
guard and the data transfer.

– RR is a set of motif reconfiguration rules of the form (Z, Ψ , GR, ZL, AR)
where as before Z is a set of rule parameters, Ψ is a rule constraint, GR is a
reconfiguration guard, ZL are local rule parameters, and AR is a (sequence
of) reconfiguration action(s).

Programming Dynamic Reconfigurable Systems 9

The motif configuration is defined by a consistent valuation of meta-variables
B, H, D respectively as B, a set of components instances, H a map, and D :
B → dom(H)∪{⊥} a deployment. The configuration can dynamically change as
the meta-variables are being updated when reconfiguration rules are executed.
The meaning of the rules is explained in the next subsections.

Example 5. Fig. 5 (left) provides the formal definition of the “Ring” motif type
presented in section 2. The motif type contains one interaction rule denoted as
sync-inout and three reconfiguration rules denoted respectively do-init, do-insert
and do-remove. Fig. 5 (right) provides one motif configuration defined by the set
of six component instances B = {bi}i=1,6, the map H defined as the cyclic graph
of six nodes {ni}i=1,6, and the deployment D = {bi 7→ ni}i=1,6.

sync-inout(x1: C, x2 : C) ≡ when D(x1) 7→ D(x2)
sync x1.out x2.in / true → x2.u := x1.v

do-init() ≡ when B = ∅
do x1 := B.create(C, busy),

x2 := B.create(C, idle), H.init(),
n1 := H.extend(), D(x1) := n1

n2 := H.extend(), D(x2) := n2

do-insert() ≡ do x := B.create(C, idle),
n := H.extend(), D(x) := n

do-remove(x : C) ≡ when |B| ≥ 3 ∧ x.idle
do n := D(x), B.delete(x), H.remove(n)

b2

b4
b1

b3

b6 b5

n1

n6 n5

n4

n3n2

B

D

H

Fig. 5: The “Ring” motif type

4.3 Rule constraints

The motif behavior is defined by interaction and reconfiguration rules. Rule
parameters Z include typed symbols denoting (sets of) component instances or
map nodes and interpreted as (subsets) elements of B or dom(H) respectively.
Rule constraints Ψ are boolean combinations of map, deployment and basic
constraints built using parameters in Z and meta-variables B, H, D:

Ψ ::= ψ0 | ψH | ψD | Ψ1 ∧ Ψ2 | ¬Ψ
In the above, Ψ0 denotes any basic constraint using equality and/or cardinality
constraints on parameters, ΨH denotes a constraint on the map (conforming to
the map logic L(Ht)) and ΨH denotes a constraint on the deployment (conform-
ing to the deployment logic L(Dt)).

For fixed motif content in terms of B,H,D, for given interpretation ζ of
parameters, the constraint satisfaction B,H,D, ζ |= Ψ is defined recursively on
the structure of Ψ as follows:

B,H,D, ζ |= ψ0 iff ζ ∪ [B/B, H/H, D/D] |= ψ0

B,H,D, ζ |= ψH iff H, ζ ∪ [B/B, D/D] |= ψH

B,H,D, ζ |= ψD iff D, ζ ∪ [B/B, H/H] |= ψD

B,H,D, ζ |= Ψ1 ∧ Ψ2 iff B,H,D, ζ |= Ψ1 and B,H,D, ζ |= Ψ2

B,H,D, ζ |= ¬Ψ iff B,H,D, ζ 6|= Ψ

10 Rim El Ballouli et al.

That means, equality/inequality constraints are evaluated in the usual way on
the context ζ extended with the current valuation for meta-variables B, H, D.
Map constraints are evaluated as defined by their underlying logic L(Ht)on the
map H and the context ζ extended with the valuation for meta-variables B, D.
The evaluation of deployment constraints is similar.

4.4 Interactions rules

Interaction rules are used to define multiparty interactions on the components
instances within the motif. The syntax of the interaction specification part is as
follows:

ports: PI ::= x.p | X.p | PI PI
guard: GI ::= true | eI | GI ∧GI | ¬GI
action: FI ::= ε | x.v := eI | X.v := eI | aI , aI

expression: eI ::= x.v | X.v | op(eI , · · · , eI)
The symbols x, X are rule parameters denoting respectively component in-

stances or sets of component instances. Moreover, p is a component port, v is
a component (exported) data variable and op is an operation on data values. A
rule is syntactically well-formed iff all parameter names used in expressions (part
of the guard or data transfer) are also used as part of the interacting port speci-
fication. That is, only data from components participating in the interaction can
be used.

For given B, H and D in a motif, the set of multiparty interactions Γ (r)
corresponding to an interaction rule r = (Z, Ψ, PI , GI , FI) is defined as:

Γ (r) =

(Pa, Ga, Fa)
B,H,D, ζ |= Ψ
Pa = PI(ζ), Ga = GI(ζ), Fa = FI(ζ)
(Pa, Ga, Fa) well formed

The triple Pa, Ga, Fa is considered well formed iff it conforms to the definition
of multiparty interactions, namely if Pa does not contain replicated or multiple
ports of the same components, as well as if Ga and Fa use and update only
variables exported on ports in Pa.

Example 6. The ring motif illustrated in Fig. 5 has a unique interaction rule
denoted sync-inout. The rule connects the out port of a component x1 to the
in port of the component x2 deployed next to it on the map. The resulting
interactions are depicted in the right part of Fig. 4.

4.5 Reconfiguration rules

Reconfiguration rules are used to define actions impacting the content / organiza-
tion of the motif. These actions essentially include creating/deleting component
instances, updating the map structure and/or the deployment of component
instances to the map. They are expressed as specific updates on the correspond-
ing B, H, D meta-variables. For enhanced expressiveness, reconfiguration rules

Programming Dynamic Reconfigurable Systems 11

might use additional local parameters (that is, the local context ZL) with arbi-
trary types (data, component instances, map nodes, etc). The local context is
updated using standard assignments.

The syntax of reconfiguration guards and actions is as follows:

guard: GR ::= GI
action: AR ::= ε | x := B.create(Bt, q) | B.delete(x) |

H.op1(...) | D.op2(...) | z := e | AR, AR
The symbol x denotes a rule parameter interpreted as component instance,

z is an arbitrary local rule parameter and e is an arbitrary expression built on
parameters and available operators. The intuitive meaning of reconfiguration
actions is as follows. The action ε denotes an empty action with no effect. The
action x := B.create(Bt, q) denotes the creation of a new component instance of
type Bt. The newly created instance is x and is added to the set of components
instances B. The parameter q denotes the initial state for the instance. The
action B.delete(x) denotes the deletion of the component x from the motif, that
is, the removal of the component instance x from the set B. The action H.op1(...)
denotes an update of the map according to an operator op1 from Ω(Ht) and
specific parameters. Similarly, the action D.op2(...) denotes an update of the
deployment according to an operator op2 from Ω(Dt). Finally, the action z := e
denotes an update of a rule parameter according to the expression e.

Formally, the semantics [[AR]] of a reconfiguration action AR is defined as a
function1 updating the motif content (B, H, D), the set of component configu-
rations (b) and the parameter interpretation (ζ):

[[ε]](B,H,D,b, ζ) = (B,H,D,b, ζ)
[[x := B.create(Bt, q)]](B,H,D,b, ζ) = (B ∪ {b}, H,D′,b′, ζ ′)

where b = (Bt, k) fresh, D′ = D[b 7→ ⊥],b′ = b[b 7→ q], ζ ′ = ζ[x 7→ b]
[[B.delete(x)]](B,H,D,b, ζ) = (B \ {b}, H,D|B\{b},b, ζ) where b = ζ(x) ∈ B
[[H.op1(...)]](B,H,D,b, ζ) = (U,H ′, D|H′ ,b, ζ) where H ′ = H.op1(...)
[[D.op2(...)]](B,H,D,b, ζ) = (B,H,D′,b, ζ) where D′ = D.op2(...)
[[z := e]](B,H,D,b, ζ) = (B,H,D,b, ζ[z 7→ e(ζ ∪ (B/B, H/H, D/D))])
[[AR1, AR2]](B,H,D,b, ζ) = ([[AR2]] ◦ [[AR1]])(B,H,D,b, ζ)

Example 7. The ring motif illustrated in Fig. 5 contains three reconfiguration
rules. The rule do-init initializes the motif with a ring of two components. The
rule do-create creates a new component in the ring. The rule do-remove(x) re-
moves an idle component x from the ring, provided it contains more than 3
components.

4.6 Operational semantics

A motif evolves by performing two categories of steps, namely interactions and
reconfigurations. Interactions are defined from interaction rules and are executed
by motif components. Reconfiguration are defined by reconfiguration rules.

1 up to the choice of fresh component instance

12 Rim El Ballouli et al.

Formally, the semantics of a motif type M t = ((B,H,D), IR,RR) is defined
as the labeled transition system [[M t]] = (Q,Σ,−→) where

– the states of set Q correspond to motif configurations B, H, D consistently
extended with configurations for all component instances b = 〈b 7→ q | b ∈
B, q ∈ states(b)〉,

– the labels of Σ correspond to valid interactions α constructed on components
and reconfiguration actions ρ,

– the transitions −→=−→
I
∪ −→

R
correspond to execution of respectively multi-

party interactions as defined by interaction rules (−→
I

) and reconfiguration

actions, as defined by reconfiguration rules (−→
R

), formally

(Mot-I)
Γ = ∪r∈IRΓ (r) Γ (B) : b

α−→ b′

M t : (B,H,D,b)
α−→
I

(B,H,D,b′)

(Mot-R)

(Z, Ψ,GR,ZL, AR) ∈ RR B,H,D, ζ |= Ψ
GR(ζ)(b) = true [[AR]](B,H,D,b, ζ) = (B′, H ′, D′,b′, ζ ′)

M t : (B,H,D,b)
ρ−→
R

(B′, H ′, D′,b′)

The rule (Mot-I) says that the motif executes a multiparty interaction α and
change the configurations of components instances from b to b′ iff (1) α belongs
to the set of valid interactions Γ defined from the interaction rules and (2) a
valid step labeled by α is indeed allowed between b and b′ according to the
component-based semantics. The rule (Mot-R) says that the motif executes a
reconfiguration if (1) some reconfiguration rule is enabled at the current motif
configuration, when both its constraint Ψ and guards GR are satisfied for the
given interpretation of parameter ζ and configurations of component instances
b and (2) the current and next motif configuration are related according to
the semantics of the action AR. The dichotomy between interaction and recon-
figuration steps ensures separation of concerns for execution within a motif as
previously discussed in section 2 and illustrated in Fig. 3.

5 Motif-based Systems

We consider systems defined as collections of motifs sharing a set of components.
In such systems, every motif can evolve independently of the others, depending
on its internal structure and associated rules. In addition, several motifs can also
synchronize altogether and perform a joint reconfiguration over the system.

Two ways of coordination between motifs are therefore possible: implicit co-
ordination, by means of shared components and explicit coordination, by means
of inter-motif reconfiguration rules.

This section introduces formally inter-motif reconfiguration and defines the
operational semantics of motif-based systems. We consider a finite set of motif
types. A motif instance m is a couple (M t, k) for some k ∈ N.

Programming Dynamic Reconfigurable Systems 13

5.1 Inter-motif reconfiguration rules

The rules for inter-motif reconfiguration allow joint reconfiguration of several
motif instances. In addition to the application of local reconfiguration actions,
these rules allow two additional types of actions, respectively creation and dele-
tion of motif instances, and exchanging component instances between motifs.

Inter-motif reconfiguration rules are defined as tuples (Z?, Ψ?, G?, Z?L, A?R)
similar to local reconfiguration rules. The set of rule parameter Z? might include
additional symbols denoting motif instances (y). The constraints Ψ∗ are defined
by the grammar:

Ψ∗ ::= Ψ0∗ | 〈y : Ψ〉 | Ψ∗1 ∧ Ψ∗2 | ¬Ψ∗

In the above, Ψ0∗ denotes some basic equality/inequality constraint expressed
on context parameters, 〈y : Ψ〉 denotes a local constraint Ψ to be checked in the
context of the motif instance y.

These constraints are evaluated on motif configurations extended with con-
text parameters. Motif configurations are tuples (M,m) where M is a set of
motif instances and m = 〈m 7→ (B,H,D) | m ∈ M〉 provides the structure of
these instances in terms of behavior, map and deployment. The constraints are
evaluated as follows:

M,m, ζ |= Ψ0∗ iff ζm |= Ψ0∗

M,m, ζ |= 〈y : Ψ〉 iff B,H,D, ζm |= Ψ where m 7→ (B,H,D) ∈m, ζ(y) = m
M,m, ζ |= Ψ∗1 ∧ Ψ∗2 iff M,m, ζ |= Ψ∗1 and M,m, ζ |= Ψ∗2

M,m, ζ |= ¬Ψ∗ iff M,m, ζ 6|= Ψ∗

In the above, ζm denotes an extended context, including valuations for all meta-
variables B, H, D accessed using parameters y of ζ:

ζm = ζ ∪ 〈y.B 7→ B, y.H 7→ H, y.D 7→ D | ζ(y) = m, m 7→ (B,H,D) ∈m〉
Inter-motif reconfiguration guards and actions are defined by:

guard: G?R ::= GI
action: A?R ::= ε | y :=M.create(M t, (eB , eH , eD)) | M.delete(y) |

y.B.migrate(x) | 〈y : AR〉 | z := e | A?R, A?R
That is, guards are the same as for interaction rules. The action y :=M.create(
M t, (eB , eH , eD)) denotes the creation of a new motif instance y of type M t, with
initial structure defined by the valuation of eB , eH , eD. The action M.delete(y)
denotes the deletion of the motif instance y, that is, its removal from the set of
motif instances. The action y.B.migrate(x) denotes the insertion of an existing
component instance x within the set of component instances of the motif y. Fi-
nally, the action 〈y : AR〉 denotes any local reconfiguration action to be executed
in the context of the motif instance y.

Formally, the semantics [[A∗R]] of inter-motif reconfiguration actions is defined
as a function updating motif configurations (M,m), component configurations
(B,b) and context parameters (ζ), as follows:

[[y :=M.create(M t, (eB , eH , eD))]](M,m, B,b, ζ) = (M ∪ {m},m′, B,b, ζ ′)
where m = (M t, k) fresh, m′ = m ∪ 〈m 7→ (eB , eH , eD)(ζm)〉, ζ ′ = ζ[y 7→ m]

14 Rim El Ballouli et al.

[[M.delete(y)]](M,m, B,b, ζ) = (M \ {m},m|M\{m}, B,b, ζ)
where m = ζ(y) ∈M

[[y.B.migrate(x)]](M,m, B,b, ζ) = (M,m′, B,b, ζ)
where m = ζ(y) ∈M,m 7→ (B1, H,D) ∈m, ζ(x) 7→ b ∈ B,

m′ = m[m 7→ (B1 ∪ {b}, H,D[b 7→ ⊥])]
[[〈y : AR〉]](M,m, B,b, ζ) = (M,m′, B′,b′, ζ ′)

where m = ζ(y) ∈M,m 7→ (B1, H,D) ∈m,
[[AR]](B1, H,D,b, ζ) = (B′1, H

′, D′,b′, ζ ′)
where m′ = m[m 7→ (B′1, H

′, D′)], B′ = B ∪B′1
[[z := e]](M,m, B,b, ζ) = (M,m, B,b, ζ[z 7→ ζm(e)])
[[A∗R1, A

∗
R2]](M,m, B,b, ζ) = ([[A∗R2]] ◦ [[A∗R1]])(M,m, B,b, ζ)

Example 8. Consider an inter-motif reconfiguration rule for two “Ring” motifs:

do-merge(y1, y2 : Ring) ≡
when y1.B ∩ y2.B = ∅ and |y1.B| + |y2.B| ≤ 10
do B = y1.B ∪ y2.B, D = y1.D ∪ y2.D, H = merge-cycle(y1.H, y2.H),

M.create(Ring, (B, H, D)), M.delete(y1), M.delete(y2)

The rule allows merging two Ring motif instances y1, y2 into a single one, when-
ever their sets of component instances are disjoint and altogether their number
does not exceed 10. The new motif is created by taking the union of component
instances, the union of deployments and the merging of the two underlying cyclic
maps. The original motifs y1 and y2 are deleted.

5.2 Operational semantics

A motif-based system S is defined as a tuple ((Bti)i, (M
t
j)j ,RR

∗)) consisting of a
set of component types (Bti)i, a set of motif types (M t

j)j and a set of inter-motif
reconfiguration rules RR∗.

A motif-based system evolves either by executing interactions and/or recon-
figuration within any of the motifs, or by executing some inter-motif reconfigura-
tion. Formally, the semantics of motif-based systems S is defined as the labeled
transition system [[S]] = (Q,Σ,−→) where:

– the set Q of system configuration contains tuples (M,m, B,b) where M =
{m1,m2, ...} is a set of motif instances, m = 〈mj 7→ (Bj , Hj , Dj) | mj ∈
M, Bj ⊆ B〉 are the motif configurations, B is the set of components in-
stances, and b = 〈b 7→ q | b ∈ B, q ∈ states(b)〉 are the component configu-
rations,

– the set of labelsΣ correspond to valid interactions α on component instances,
local reconfiguration actions ρ and inter-motif reconfiguration actions ρ∗,

– the set of transitions −→=−→
I
∪ −→

R
∪ −−→

R∗
correspond to execution of re-

spectively multiparty interactions as defined by interaction rules (−→
I

), local

reconfiguration as defined by local reconfiguration rules (−→
R

) and global re-

configuration actions (−−→
R?

), formally

Programming Dynamic Reconfigurable Systems 15

(M-I)

mj 7→ (Bj , Hj , Dj) ∈m M t
j : (Bj , Hj , Dj ,bj)

α−→
I

(Bj , Hj , Dj ,b
′
j)

b′ = b[Bj 7→ b′j]

S : (M,m, B,b)
α−→
I

(M,m, B,b′)

(M-R1)

mj 7→ (Bj , Hj , Dj) ∈m M t
j : (Bj , Hj , Dj ,bj)

ρ−→
R

(B′j , H
′
j , D

′
j ,b
′
j)

m′ = m[(B′j , H
′
j , D

′
j)/mj] B′ = B ∪B′j b′ = b[b′j/B

′
j]

S : (M,m, B,b)
ρ−→
R

(M,m′, B′,b′)

(M-R2)

(Z∗, Ψ∗, G∗,Z∗L, A∗R) ∈ RR∗ M,m, ζ |= Ψ∗ G∗(ζ)(b) = true
[[A∗R]](M,m, B,b, ζ) = (M ′,m′, B′,b′, ζ ′)

S : (M,m, B,b)
ρ∗−−→
R?

(M ′,m′, B′,b′)

Rules (M-I) and (M-R1) lift the transitions (steps) allowed within the motifs at
the level of the system, respectively for interactions and reconfigurations. The
rule (M-R2) handles inter-motif reconfiguration. These transitions are allowed
if (1) some inter-motif reconfiguration rule is enabled and (2) the current and
next system configurations are related by the semantics of A∗R.

6 Implementation and Experiments

We have developed a prototype implementation of DR-BIP including a concrete
language to describe motif-based systems and an interpreter (implemented in
JAVA) for the operational semantics. The language provides syntactic constructs
for describing component and motif types, with some restrictions on the maps
and deployments allowed2. The interpreter allows the computation of enabled
interactions and (inter-motif)reconfiguration rules on system configurations, and
their execution according to predefined policies (interactive, random, etc).

We have effectively used DR-BIP for programming reconfigurable systems in
different application domains [13]. For better illustration of DR-BIP concepts,

c11

c21 c22

c12

Processor

t1 t4t3

t6

t2

t5 t7 t8

CoreTask

CoreTask

CoreTask

exec

work

exec fin

fin

work

CoreTask
Core

Task
c

r

w

Fig. 6: Multicore Task System

we reconsider hereafter the exercise
on dynamic task management for a
multicore platform proposed in [13].
A multicore task system consists of a
fixed n× n grid of interconnected ho-
mogeneous cores, each executing a fi-
nite number of tasks. Every task is
either running or completed; running
tasks may execute on the associated
cores and get eventually completed.
The load of a core is defined as the
number of its associated tasks, both

2 maps are restricted to simple graphs e.g., chain, cyclic, star

16 Rim El Ballouli et al.

running and completed. A multicore task system is dynamic if the overall num-
ber of tasks and their allocation to cores may change over time. More specifically,
new running tasks may enter the system at the core c11 and completed tasks may
be withdrawn from the system at the core cnn. Moreover, any task is allowed to
migrate from its core to any of the neighboring cores (left, right, top or bottom)
in the grid, provided the load of the receiving core is smaller (K).

Fig. 6 presents the overall structure of the motif-based system for four cores.
We distinguish two types of atomic components, namely Task and Core. Multiple
cores are interconnected together in a motif of type Processor. The interconnect-
ing topology reflects the platform architecture (e.g., a 2 × 2 grid in the figure)
and is enforced using a similar grid-like map and deployment. An additional
CoreTask motif type is used to represent every core with its assigned tasks. The
interactions in the system are defined within the CoreTask motif. The execution
of a task by the core and resp. the task completion are represented by the rules:

sync-coretask-exec(x1 : Core, x2 : Task) ≡ sync x1.work x2.exec
sync-coretask-fin(x : Task) ≡ sync x.fin

The migration of a task from one core to another is modeled using an inter-motif
reconfiguration rule which involves three distinct motifs. A task x3 migrates from
motif y1 (of type CoreTask) to motif y2 (of type CoreTask) if the core x1 of y1 is
connected to the core x2 of y2 (according to the processor motif Processor) and
if the number of tasks in y1 exceeds the number of tasks in y2 by constant K:

do-migrate(y1, y2 : CoreTask, y3 : Processor, x1, x2 : Core, x3 : Task) ≡
when 〈 y1 : x1 ∈ B 〉 ∧ 〈 y2 : x2 ∈ B 〉 ∧ 〈 y3 : D(x1) 7→ D(x2) 〉 ∧

|y1.B| > |y2.B| + K ∧ x3 ∈ y1.B
do y2.migrate(x3), y1.delete(x3)

0 1,000 2,000 3,000

5

10

15

20

c11

c33

c12c21

c13
c22c31
c23c32

c11 c12 c13
c21 c22 c23
c31 c32 c33

Fig. 7: Task load across 3000 steps

Fig. 7 illustrates the execution
of the dynamic multicore task sys-
tem with 3×3 cores for 3000 steps.
Each core is initialized with a ran-
dom load between 1 and 20. The
constant K is set to 3, hence tasks
are allowed to migrate to neigh-
boring cores (left, right, top or
bottom) that differ in task load by
at least 3 tasks. The cores c11, and
c33 are used to respectively cre-
ate new tasks and withdraw com-
pleted tasks. These two cores re-
tain the maximum and minimum
load. As tasks migrate, the task
load of cores converges and bal-
ances along the execution having
at most a difference of 3 tasks be-
tween neighboring cores. For example, in core c21 the task load increased from
6 to 14. As expected the cores (c21, and c12) closest to c11 maintain a high load
and as we move away from c11 the core’s load gradually decreases.

Programming Dynamic Reconfigurable Systems 17

7 Discussion

The DR-BIP framework for programming dynamic reconfigurable systems has
been designed to encompass three complementary structuring aspects of com-
ponent-based coordination. Architecture motifs are environments where live in-
stances of components of predefined types subject to specific parametric in-
teraction and reconfiguration rules. Reconfiguration within a motif supports in
addition to creation/deletion of components, the dynamic change of maps and
the mobility of components. Maps are a common reference structure that proves
to be very useful for both the parametrization of interactions and the mobility of
components. It is important to note that a map can have either a purely logical
interpretation, or a geographical one or a combination of both. For instance, a
purely logical map is needed to describe the functional organization of the coor-
dination in a ring or a pipeline. To describe mobility rules of cars on a highway a
map is needed representing at some abstraction level their external environment
e.g. the structure of the highway with fixed and mobile obstacles. Finally a map
with both logical and geographic connectivity relations may be used for cars on
a highway to express their coordination rules. These depend not only on the
physical environment but also on the communication features available.

Structuring a system as a set of loosely coordinated motifs confers the ad-
vantage that when components are created or migrate, we do not need to specify
associated coordination rules; depending on their type, components are subject
to predefined coordination rules of motifs. Clearly these results are too recent
and there are many open avenues to be explored. One is how we make sure that
the modeled systems meet given properties. The proposed structuring principle
allows a separation of concerns between interaction and reconfiguration aspects.
To verify correctness of the parametric interacting system of a motif we extend
the approach adopted for static BIP: assuming that dynamic connectors cor-
rectly enforce the sought coordination, it remains to show that restricting the
behavior of deadlock-free components does not introduce deadlocks. We have
recently shown this approach can be extended for parametric systems [5].

To verify the correctness of reconfiguration operations a different approach
is taken. If we have already proven correctness of the parametric interacting
system of a motif, it is enough to prove that its architecture style is preserved by
statements changing the number of components, move components and modify
maps and their connectivity. In other words the architecture style is an invariant
of the coordination structure. This can be proven by structural induction. The
architecture style of a motif can be characterized by a formula of configuration
logic φ [16]. We have to prove that if a modelm of the system satisfies φ then after
the application of a reconfiguration operation the resulting model m′ satisfies φ.

References

1. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software ar-
chitectures. In: International Conference on Fundamental Approaches to Software
Engineering. pp. 21–37. Springer (1998)

18 Rim El Ballouli et al.

2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T., Sifakis, J.:
Rigorous component-based system design using the BIP framework. IEEE Software
28(3), 41–48 (2011)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time systems in BIP.
In: SEFM’06 Proceedings. pp. 3–12. IEEE Computer Society Press (2006)

4. Bliudze, S., Sifakis, J.: The algebra of connectors structuring interaction in BIP.
IEEE Transactions on Computers 57(10), 1315–1330 (2008)

5. Bozga, M., Iosif, R., Sifakis, J.: Checking deadlock-freedom of parametric compo-
nent-based systems. arXiv preprint arXiv:1805.10073 (2018)

6. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using
Dy-BIP. In: International Conference on Software Composition. pp. 1–16. Springer
(2012)

7. Bradbury, J.: Organizing definitions and formalisms for dynamic software architec-
tures. Tech. Rep. 2004-477, Software Technology Laboratory, School of Computing,
Queen’s University (2004)

8. Butting, A., Heim, R., Kautz, O., Ringert, J.O., Rumpe, B., Wortmann, A.: A clas-
sification of dynamic reconfiguration in component and connector architecture de-
scription languages. In: 4th International Workshop on Interplay of Model-Driven
and Component-Based Software Engineering (ModComp’17) (2017)

9. Canal, C., Pimentel, E., Troya, J.: Specification and refinement of dynamic software
architectures. In: Software Architecture, pp. 107–125. Springer (1999)

10. Cuesta, C., de la Fuente, P., Barrio-Solárzano, M.: Dynamic coordination archi-
tecture through the use of reflection. In: Proceedings of the 2001 ACM symposium
on Applied computing. pp. 134–140. ACM (2001)

11. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: The SCEL language. TAAS 9(2), 7:1–7:29 (2014)

12. Edelmann, R., Bliudze, S., Sifakis, J.: Functional BIP: Embedding connectors in
functional programming languages. Journal of Logical and Algebraic Methods in
Programming 92, 19–44 (2017)

13. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Four exercises in programming
dynamic reconfigurable systems: Methodology and solution in DR-BIP. In: Lever-
aging Applications of Formal Methods, Verification and Validation: Foundational
Techniques - 8th International Symposium, ISoLA 2018 (2018), to appear

14. Garlan, D.: Software architecture: A travelogue. In: Future of Software Engineering
(FOSE’14). pp. 29–39. ACM (2014)

15. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: A survey. IEEE Trans. on Soft. Eng. 39(6) (2006)

16. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration logics: Modeling
architecture styles. J. Log. Algebr. Meth. Program. 86(1), 2–29 (2017)

17. Mavridou, A., Rutz, V., Bliudze, S.: Coordination of dynamic software components
with JavaBIP. In: International Conference on Formal Aspects of Component Soft-
ware. pp. 39–57. Springer (2017)

18. Oreizy, P.: Issues in modeling and analyzing dynamic software architectures. In:
International Workshop on the Role of Software Architecture in Testing and Anal-
ysis. pp. 54–57 (1998)

19. Taivalsaari, A., Mikkonen, T., Syst, K.: Liquid software manifesto: The era of
multiple device ownership and its implications for software architecture. In: IEEE
38th Annual Computer Software and Applications Conference (COMPSAC’14)
(2014)

