
INV ITED
P A P E R

System Design Automation:
Challenges and Limitations
This paper discusses to what extent the VLSI-design paradigm can be transposed

to hardware/software systems that interact continuously with an external

environment, through the application of the principles of separation of concerns,

component-based design, semantic coherency, and correctness by construction.

By Joseph Sifakis

ABSTRACT | Electronic design automation (EDA) has enabled

the integrated circuit industry to sustain exponentially increas-

ing product complexity growth until today, while maintaining

consistent product development timeline and costs. We argue

that the success of EDA-based design relies on the application

of four interrelated principles: 1) separation of concerns imply-

ing a decomposition of a design flow into steps, each step

dealing with specific aspects, namely user requirements, func-

tional design, and implementation; 2) component-based design

enabling the reasoned construction of complex systems as the

composition of components; 3) semantic coherency meaning

that descriptions used in successive design steps are seman-

tically related through adequate semantic mappings; this im-

plies, in particular, that the formalisms used at each design step

are rooted in well-defined semantics; and 4) correctness by

construction meaning that it is possible to guarantee essential

properties of the designed system incrementally and compo-

sitionally along the design process. The paper discusses to

what extent the EDA paradigm can be adapted to general mixed

hardware/software (HW/SW) systems design through the

application of these principles. It presents an overview of the

problems raised by the rigorous system design of mixed HW/

SW systems. Then, it presents a unified abstract framework for

addressing these problems by identifying main research

avenues.

KEYWORDS | Computer-aided engineering; computer-aided

software engineering; design automation; design methodology;

system software; systems engineering

I . INTRODUCTION

Electronic design automation (EDA) has enabled the

integrated circuit industry to sustain exponentially in-
creasing product complexity growth until today, while

maintaining consistent product development timeline and

costs. We argue that the success of EDA-based design relies

on the application of four interrelated principles.

1) Separation of concerns implying a decomposition

of the design flow into steps, each step dealing

with specific aspects, namely high-level synthesis,
logic synthesis, schematic capture, and layout.

Such a modular decomposition is essential for

coping with complexity, in particular by decou-

pling functional design from implementation.

2) Component-based design enabling the reasoned

construction of complex systems as the composi-

tion of components. Fabricators generally provide

libraries of types of components for their pro-
duction processes, with simulation models that

fit standard simulation tools. Complex system

models can be obtained as the composition of

standardized components and validated before

implementation.

3) Semantic coherency meaning that descriptions

used in successive design steps are related through

adequate semantic mappings. This is essential for
ensuring traceability along the design flow and

understanding how choices at some step may

impact design properties in subsequent steps.

4) Correctness by construction meaning that it is

possible to guarantee essential properties of the

designed system incrementally and composition-

ally along the design process, especially by using

architectures. Designers reuse reference architec-
tures that ensure by construction essential func-

tional and extra-functional properties.

Manuscript received October 22, 2014; revised June 9, 2015 and September 22, 2015;

accepted September 25, 2015. Date of publication October 15, 2015; date of current

version October 26, 2015.

The author is with the Rigorous System Design Laboratory (RiSD), École polytechnique

fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland (e-mail:

joseph.sifakis@epfl.ch).

Digital Object Identifier: 10.1109/JPROC.2015.2484060

0018-9219 � 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2093

We discuss to what extent the EDA paradigm can be
transposed to general mixed hardware/software (HW/SW)

systems design, in particular through the application of

these principles.

Systems can be described by models that specify how

the functionality of their software is implemented by using

resources of an execution platform, such as time, memory,

and energy. A key issue is building faithful system models

from models of their application software equipped with
variables representing resources and their dynamics [1].

This need is well understood and has motivated the devel-

opment of research on cyber–physical systems addressing

various issues including modeling [2] and design [3].

System design is the process leading from a set of re-

quirements to a system meeting these requirements. It can

be decomposed into two main steps: 1) writing an applica-

tion software satisfying functional (platform-independent)
requirements; and 2) implementing the software on a given

execution platform.

System design can be studied as a model-based formal

systematic process supported by a methodology. The latter

should be based on divide-and-conquer strategies involving

a set of steps leading from requirements to an implemen-

tation. At each step, a particular humanly tractable prob-

lem must be solved by addressing specific classes of
requirements. The methodology should clearly identify

segments of the design process that can be supported by

tools to automate tedious and error-prone tasks. It should

also clearly distinguish points where human intervention

and ingenuity are needed to resolve design choices through

requirements analysis and confrontation with experimen-

tal results. Identifying adequate design parameters and

channeling the designer’s creativity are essential for
achieving design goals.

System design methodologies should propose strategies

for overcoming the following theoretical obstacles and

limitations.

1) Requirements formalization: Despite progress in

formalizing requirements over the past decades

(e.g., by using temporal logics), we still lack methods

and tools for rigorous requirements specification.
2) Intractability of synthesis/verification: Very large

scale integration (VLSI) design has largely bene-

fited from fully automated synthesis/verification

techniques. Unfortunately, such techniques be-

come intractable for software that has a poten-

tially infinite number of states. Program synthesis

from abstract specifications and program verifica-

tion do not admit exact algorithmic solutions. For
system design, correctness should be sought be-

yond the synthesis/verification paradigm, as ex-

plained in Section VI.

3) HW/SW interaction: We need theory and meth-

ods for predicting precisely the behavior of some

given software running on a hardware platform

with known characteristics. This difficulty lies in

the fundamental difference between hardware
and software. Software models ignore physical

time and resources while hardware behavior is

bound to timing and resource constraints. Pro-

gram execution dynamics inherits hardware-

dynamic properties that cannot be precisely

characterized or estimated due to inherent

uncertainty and the resulting unpredictability.

We present a vision for rigorous system design as an
accountable model-based process for building systems of

guaranteed quality cost effectively. This vision is substa-

ntiated by a unifying framework, for discussing important

trends in system design and tackling relevant research

challenges. It has been influenced by Sangiovanni-

Vincentelli’s seminal ideas about ‘‘platform-based design’’

[4]. A detailed account of existing work in the area is

beyond the scope of this paper. Several of the mentioned
challenges and techniques have been discussed, addressed,

and to some extent implemented in tools and methodol-

ogies. The most prominent approaches and frameworks are

the environments supporting heterogeneous models of

computation for system design PtolemyII [5], MetroII [6],

and OpenMeta [7]. The presented vision has been amply

implemented in the behavior–interaction– priority (BIP)

component framework [8] at Verimag (Grenoble, France)
and corroborated by numerous experimental results

showing both its relevance and feasibility.

Section II discusses the concept of system correctness

and provides a rationale for rigorousness. In the subse-

quent sections, we study how the four principles of EDA-

based design can be applied to systems. We show

significant differences and discuss their impact on design

automation.
We propose a single model-based framework in which

the application of the principles yields well-defined

research problems. Section VII presents final remarks

about the nature of system design and its importance.

II . RIGOROUS SYSTEM DESIGN

A. Concept of System Correctness
The concept of system correctness differs from pure

function software correctness in many respects as it

encompasses both functional and extra-functional require-

ments. It conjoins two types of requirements: 1) trust-

worthiness ensuring that nothing bad would happen; and

2) optimization for performance, cost effectiveness, and

tradeoffs between them.
We consider trustworthiness to mean that the system

can be trusted, and that it will behave as expected despite:

a) software design and implementation errors; b) failures

of the execution infrastructure; c) interaction with poten-

tial users including erroneous actions and threats; and

d) interaction with the physical environment including

disturbances and unpredictable events.

Sifakis: System Design Automation: Challenges and Limitations

2094 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

Note that the term ‘‘trusted computing’’ has been pro-
moted by several software vendors such as Microsoft and

Sun Microsystems, which primarily focus on security [9],

[10]. Nonetheless, it is generally admitted that trustwor-

thiness is a much broader concept that should be viewed as

a holistic system property, encompassing both security and

safety [11]–[14]. One confusing aspect is that our confid-

ence in systems is sometimes based on both the artefact

itself and on the humans who deliver it [15]. Therefore,
many approaches that focus on computational trust models

in different domains like sociology and psychology have

been proposed [16], [17].

The development of trustworthy systems has given rise

to an abundant literature, including research papers and

reports as well as a plethora of research projects. There is

no generally accepted definition of the concept to date.

Existing approaches either focus on properties that can be
formalized and checked effectively, e.g., by using formal

methods [18] or are addressing a very broad spectrum of

mostly unrelated topics; see, e.g., [19].

Some authors use the term dependability instead of

trustworthiness. This term coined by the ‘‘fault-tolerance’’

community [13] characterizes a measure of a system’s

availability, reliability, and its maintainability. Depend-

ability does not cover security aspects. Another important
difference with trustworthiness is that the latter can be

defined in a purely qualitative manner.

The proposed definition considers trustworthiness as a

global property that must be addressed throughout the

computing environment. Among the four types of hazards,

only software design errors are born in software. The

others are born in the system as a whole in interaction with

its physical and human environment.
Optimization requirements deal with optimizing func-

tions subject to constraints on resources such as time,

memory, and energy, dealing with: 1) performance which

characterizes how well the system does with respect to user

demands concerning quantities such as throughput, jitter,

and latency; 2) cost effectiveness which characterizes how

well resources are used with respect to economic criteria

such as storage efficiency, processor load/availability, and
energy efficiency; and 3) tradeoffs between performance

and cost effectiveness.

Note that our definition of optimization requirements

leaves out minimization of parameters that characterize

physical characteristics of a given execution platform, e.g.,

weight and length of cables. In the studied approach, we

consider that the designer may choose different execution

platforms as they are.
Trustworthiness requirements determine the set of

legal statesVa state may be trustworthy or not. They may

be functional as well as extra-functional. Optimization

requirements characterize sets of execution sequences.

These are usually integral constraints over sequences, e.g.,

minimize energy or maximize throughput for some time

period. For systems, they are mostly extra-functional

requirements, in contrast to platform-independent opti-
mization requirements applied to application software.

Trustworthiness and optimization requirements are

difficultly reconcilable. As a rule, improving trustworthi-

ness entails nonoptimized use of resources. Conversely,

resource optimization may jeopardize trustworthiness. For

example, if resource utilization is pushed to the limits,

deadlocks may occur; enhancing trustworthiness by mas-

sive redundancy costs extra resources. Designers should
seek trustworthiness and try to optimize resources at the

same time. A key design issue is ensuring trustworthiness

without disregarding optimization.

B. Rationale for Rigorousness
For decades, formal methods and verification in parti-

cular have been considered as the main avenues for

achieving correctness. Despite spectacular progress, veri-
fication techniques suffer from inherent well-known limi-

tations [20]. One comes from our inability to apprehend

and formally express user’s needs by requirements for

complex systems. Another stems from inherent theoretical

limitations of verification techniques such as model check-

ing, abstract interpretation, and static analysis. These are

applied to global system models whose state space size in-

creases exponentially with the number of constituent com-
ponents. Attempts to apply compositional verification to

component-based systems, such as assume/guarantee tech-

niques, failed to make any significant breakthrough [21].

Formal verification hides a much more important

challenge which is faithful modeling of systems. Whatever

is the progress of the state of the art in verification, a

central problem is how to build faithful models, in parti-

cular of mixed HW/SW systems. There are very simple
systems, e.g., the node of a wireless sensor network, that

we do not know how to model faithfully, in particular to

verify extra-functional properties.

In conclusion, formal verification can be applied to

systems whose criticality justifies relatively high develop-

ment costs. Typical examples are purely software compo-

nents that are extensively used such as operating systems

and compilers. For interactive HW/SW systems, it is much
more difficult to formalize their requirements and come

up with faithful models.

The application of verification to resource optimization

requirements is limited to the validation of scheduling and

resource management policies on abstract system models.

We advocate a shift of focus from formal methods to

rigorous system design. The key motivation is to overcome

current limitations through the application of EDA-based
principles. In particular, we put emphasis on correctness

by construction. The idea is as simple as that of construc-

tive proof in Euclidean geometry. When designers use

algorithms, architectures, and protocols that have been

proven correct, they do not need any additional proof of

correctness if they have an adequate methodology for

doing this.

Sifakis: System Design Automation: Challenges and Limitations

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2095

A rigorous system design flow is a formal accountable and
iterative process for deriving trustworthy and optimized

implementations from application software and models of its

execution platform and its external environment.

Rigorous system design is model based: successive sys-

tem descriptions are obtained by application of correct-by-

construction source-to-source model transformations.

Furthermore, accountability implies the obligation of

account-giving behavior in the design process. It covers
two aspects: 1) the designer provides evidence that his

choices are motivated by the need to meet properties im-

plied by requirements; and 2) for already established pro-

perties, the designer guarantees that they still hold in

subsequent stages.

In practice, accountability can be eased through the use

of assurance case methodologies. These allow structuring

the designer’s reasoning to gain confidence that systems
will work as expected. Assurance cases have been applied

in practice to present the support for claims about pro-

perties or behaviors of a system [22]–[24]. The focus is not

on formalization but rather on systematizing the con-

nection between requirements and design choices.

Correctness-by-construction techniques discussed in

Section VI provide a basis for accountability.

Currently there exist a few rigorous system design
approaches dedicated to the development of safety critical

real-time systems. Some are based on the synchronous

programming paradigm [25]. Others are represented

mainly by flows based on the ADA standard [26].

III . SEPARATION OF CONCERNS

Separately addressing functional from extra-functional re-
quirements is essential from a methodological point of

view. This also identifies two main gaps in a design flow.

First, application software is developed that should be

correct with respect to the functional requirements. Then,

a correct implementation meeting both functional and

extra-functional requirements should be derived by prog-

ressive refinement of the application software taking into

account features of the execution platform. This idea is
commonly adopted in many system design methodologies.

The model-driven architecture (MDA) approach developed

by the Object Management Group (OMG) [27] introduces a

set of models to successively describe requirements, the

application software, and platform-specific models in-

tended to represent the dynamic behavior of the applica-

tion software on a given execution platform. MDA is

related to multiple standards including UML. Today MDA
is rather a conceptual framework. Similar separation of

concern principles is followed and effectively implemented

in frameworks such as model-integrated computing (MIC)

[28], MetroII [6], Ptolemy [5], and BIP [8].

In the following, we discuss two issues. One is provid-

ing support for system programming to ease the transition

from requirement specifications; the other deals with

developing faithful system models from application
software.

A. Domain-Specific Languages
In system software development, the key issue is man-

aging the complexity resulting from interactions with the

environment and among various subsystems. Using gene-

ral purpose programming languages, such as C or Java, may

be counterproductive and error prone. These languages are

adequate mainly for sequential transformational programs

computing functions.

For systems modeling, we need powerful primitives
encompassing direct description of different types of syn-

chronization. Problems that have straightforward solutions

by using automata-based formalisms are hard to tackle by

using standard programming languages. For instance,

programming communicating automata in Java may

involve several technical difficulties because of intricate

thread semantics and semantic variations of the wait/

notify mechanism. As another example, consider a system
of n components that are synchronized by rendezvous. If

a description formalism offers only a single synchroniza-

tion primitive, broadcast (weak synchronization), it is

extremely hard to model strong synchronization. This is

extensively discussed in Section IV-B

To enhance software productivity and safety, system

designers are provided with domain-specific languages

(DSLs) dedicated to a particular problem domain, a parti-
cular problem representation technique, and/or a parti-

cular solution technique.

Synchronous programming languages such as SCADE

and Matlab/Simulink are widely used in the development

of safety-critical control systems. Data-flow programming

models are advantageously used to develop multimedia

applications. They allow explicit description of task paral-

lelism and allow schedulability analysis. Other DSLs are
the various derivatives of UML such as MARTE and

SysML. Nonetheless, these frameworks comprise a very

large number of concepts and primitives and are poorly

suited to formalization.

B. Building Faithful System Models
In a model-based design approach, implementations

should be derived from a system model which faithfully

describes the dynamic behavior of the application software

on the execution platform. A key idea is to progressively

apply source-to-source transformations to the application

software which: 1) refine atomic statements to express
them as sequences of primitives of the execution platform;

2) express synchronization constraints induced by the

resources on the refined actions; and 3) associate with the

refined actions parameters representing the resources

needed for their execution (e.g., execution times).

System models have, in addition to the variables of

the application software, state variables representing

Sifakis: System Design Automation: Challenges and Limitations

2096 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

resources. These variables are subject to two types of
antagonistic requirements:

• user-defined requirements dealing with reaction

times, throughput and cost, such as deadlines,

periodicity, memory capacity, and power or energy

limitations;

• platform-dependent requirements dealing with the

amount of resources needed for executing actions

such as execution times and energy consumption.
When an action is executed, resource variables are up-

dated accordingly, in addition to software variables. Thus,

states of system models are valuations of both the appli-

cation software variables and of resource variables. Any

execution sequence of a system model corresponds modulo

some adequate abstraction criterion, to a sequence of its

application software.

Building faithful system models is still an unexplored
and ill-understood problem. Clearly, owing to a lack of

predictability, system models can only approximate the

behavior of the real systems they represent. As it is impos-

sible to precisely estimate the amount of resources needed

for the execution of an action from a given state, exact

values are replaced by bounds. For example, computing

tight estimates of worst case execution times is a hard

problem that requires: 1) faithful modeling of the hard-
ware and features such as instruction pipelines, caches,

memory hierarchy, etc.; and 2) symbolic analysis techni-

ques based on static analysis and abstract interpretation.

Due to theoretical limitations, the latter can compute only

safe approximations of these bounds.

An additional difficulty is that incremental and parallel

modification of resource variables in a model should be

consistent with physical laws governing resources. For
instance, physical time is steadily increasing while in sys-

tem models time progress may stop, block, or may involve

Zeno runs [29]. This is a significant difference between

model time and physical time. A typical example of model

time is that of time in simulation programs that explicitly

handle its progress.

As physical time progress cannot be blocked, deadline

misses occurring in the actual system correspond to dead-
locks or time locks in the relevant system model. Similarly,

lack of sufficient resources is reflected in system models by

the inability to execute actions. These observations lead to

the notion of feasibility of system models. System model

feasibility and associated analysis techniques deserve

thorough study [30].

A basic principle widely used in all areas of engineering

is that performance changes monotonically with resources.
Typically for a building, enhanced mechanical resistance is

achieved by increasing the strength of the materials of its

components. Consequently, analysis for worst case and

best case values of resource parameters suffices to deter-

mine performance bounds. Unfortunately, for systems, the

intuitive idea that safety of implementation is preserved

for increasing performance turns out to be wrong. This

phenomenon called timing anomaly [31] limits our capa-
bility to analyze system model feasibility. A direct conse-

quence of timing anomalies is that safety for worst case

execution time (WCET) does not guarantee safety for

smaller execution times. As shown in [30], timing anoma-

lies may appear in nondeterministic systems. Avoidance of

timing anomalies advocates for approaches guaranteeing

determinism by construction [32].

IV. COMPONENT-BASED DESIGN

A. Component Heterogeneity
Using components throughout a system design flow is

essential for enhanced productivity and correctness. Any

tractable theory for component-based construction re-

quires a relatively small number of types of components.
Electrical engineers apply Kirchhoff’s laws that distinguish

between four different types of components. Similarly, a

hardware engineer designs processors out of memories,

ALUs, buses, multiplexers, etc. Currently, system de-

signers deal with heterogeneous components, with differ-

ent characteristics, from a large variety of viewpoints, each

highlighting the various dimensions of a system. This

contrasts with standard engineering practices based on the
disciplined composition of a limited number of types of

components.

There exist a large number of component frameworks,

including software component frameworks, systems de-

scription languages, and hardware description languages.

Currently, there is no agreement on a common concept of

component. This is mainly due to heterogeneity of com-

ponents and their associated composition operations.
There exist various sources of heterogeneity [1]. Hardware

components and some application software components

are synchronous, while general purpose software compo-

nents are asynchronous. Furthermore, engineers use a

variety of mechanisms to ensure component coordination

including semaphores, rendezvous, broadcast, method

call, buses etc. The difference between actor-based and

thread-based programming is an additional source of
heterogeneity. In actor models, components have no

shared memory and operate on message passing. In

thread-based models, components may share resources

used by multiple threads. The actor paradigm is safer as it

enforces a discipline for structuring coordination between

components with disjoint state spaces. As a rule, thread-

based models are not composable and require an explicit

management of shared resources that may introduce dead-
locks and races [33]. Nonetheless, the advantages con-

ferred by actors are largely reduced due to the lack of

efficient code generation techniques [34].

Is it possible to express component coordination in

terms of composition operators? We need a unified com-

position paradigm based on operational semantics to de-

scribe and analyze the coordination between components

Sifakis: System Design Automation: Challenges and Limitations

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2097

in terms of tangible, well-founded, and organized concepts
characterized by:

1) orthogonality: clear separation between behavior

and coordination constraints;

2) minimality: minimal set of primitives;

3) expressiveness: achievement of a given coordina-

tion with a minimum of mechanism and a maxi-

mum of clarity.

Existing theoretical frameworks for composition are
based on a single operator (e.g., product of automata,

function call). Poor expressiveness of these frameworks

may lead to complicated designs: achieving a given coor-

dination between components often requires additional

components to manage their interaction [35]. For instance,

if the composition is by strong synchronization (ren-

dezvous), modeling broadcast requires components for

choosing the maximal among several possible strong
synchronizations.

Most component composition frameworks fail to

strictly separate behavior from coordination. In most prog-

ramming languages as well as in various process algebras

cloned from CCS, coordination is expressed in terms of

communication primitives spread across component be-

havior. Architecture description languages, e.g., [36] and

[37], advocate separation of concerns between behavior
and coordination while they allow the use of behavior in

connectors.

B. Component Frameworks
We summarize here key ideas overarching the unified

composition paradigm that has been applied in the de-

velopment of the BIP framework [8].

A component framework consists of a set of atomic
components B ¼ fBigi2I and a glue GL ¼ fglkgk2K , a set of

glue operators on these components. Atomic components

are characterized by their behavior specified as a transition

relation involving actions, e.g., by operational semantics. A

glue operator gl is a memoryless composition operator. The

meaning of gl is specified using a class of structured ope-

rational semantics rules that only restrict the behavior of

the composed components. The technical definition [24]
gives the behavior of a composite component glðC1; . . . ;
CnÞ as a partial function of transition relations of the com-

posed components C1; . . . ; Cn. Restriction is either through

multiparty interaction (synchronous execution of actions

from distinct components) or through influence (an action

of a component is allowed depending on the state of other

components). A practically useful case of influence is by

using priorities.
A component framework can be considered as the

algebra of well-formed terms built from a set of atomic

components equipped with a congruence relation �
compatible with strong bisimulation on transition systems.

It can be shown that a component framework enjoys the

following flattening property [35]: if a composite compo-

nent is of the form gl1ðC1; gl2ðC2; . . . ; CnÞÞ, then there

exists an operator gl such that gl1ðC1; gl2ðC2; . . . ; CnÞ �
glðC1; C2; . . . ; CnÞ. This property is essential for separating

behavior from glue and treating glue as an independent

entity that can be studied and analyzed separately [38].

The comparison between different formalisms and

models is often made by flattening their structure and re-

ducing them to behaviorally equivalent models (e.g.,

automata, Turing machine). This leads to a notion of

expressiveness which is not adequate for the comparison of
high-level languages. All programming languages are

deemed equivalent (Turing complete) without regard to

their adequacy for solving problems. For component frame-

works, separation between behavior and coordination

mechanisms is essential.

A notion of expressiveness for component frameworks

characterizing their ability to coordinate components is

proposed in [35]. It allows the comparison of two compo-
nent frameworks with glues GL and GL0, respectively, the

same set of atomic components and equipped with the

same congruence relation �.

We say that GL0 is more expressive than GL if for any

composite component glðC1; . . . ; CnÞ obtained by using

gl 2 GL there exists gl0 2 GL0 such that glðC1; . . . ; CnÞ �
gl0ðC1; . . . ; CnÞ. That is, any coordination expressed by

using GL can be expressed by using GL0. Such a definition
allows a comparison of glues characterizing coordination

mechanisms. The glue GL is universally expressive if it can

express any coordination achieved by using glue operators.

The interested reader may find in [35] a comparison of

existing formalisms according to this notion of expres-

siveness and also a weaker (less discriminating) notion.

The main result is that universal expressiveness can be

achieved by combining two types of glue operators:
1) multiparty interaction; and 2) priorities. It has moti-

vated the development of the BIP framework. Any

language that does not directly support these primitives

is less expressive. Thus, to solve arbitrary coordination

problems, additional coordinator components are needed.

A taxonomy of existing component frameworks based

on their expressiveness would allow a rigorous compar-

ison of their coordination languages, in particular of their
respective merits and their deficiencies.

V. SEMANTICALLY COHERENT DESIGN

System designers use multilanguage frameworks integrat-

ing programming and modeling languages. Most of the

languages lack formal operational semantics, their mean-

ing being defined by user manuals and their supporting
tools. Quite often, system programming and implementa-

tion tasks do not take into account models established

for validation evaluation purposes. Using semantically

unrelated languages in a design flow breaks continuity of

activities and may jeopardize its overall coherency.

To maintain the overall coherency of a design flow, all

the used formalisms should be interrelated through a

Sifakis: System Design Automation: Challenges and Limitations

2098 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

common model. For instance, design flows may involve
DSLs based on different models of computation. Coher-

ency of design flows can be achieved by translating all

these formalisms into a common expressive language with

well-defined operational semantics.

Of course, other types of semantics may be used to

define the meaning of the host language, especially because

they may lead to more elegant and concise formalizations.

Nonetheless, ultimately operational semantics is absolutely
necessary to define correct implementation.

The necessity of using a common host language to serve

as meta-language for embedding DSLs is widely recog-

nized, e.g., [39]. The proposed notion of embedding is

inspired from these works and takes advantage of the

assumption that the host language is more expressive than

the source language. A similar idea originated out of

Passerone’s dissertation work dealing with defining com-
mon semantic domains for heterogeneous models of com-

putation [40], [41]. The main difference is that the host

language and thus the resulting embedding is a choice of

the designer.

Note that an important trend in industrial flows is the

translation of the various languages used by the designers,

in particular of DSLs into a single host language, namely C
for embedded applications or Java for web-based ones. Of
course, these translations are done in some ad hoc manner.

Furthermore, they are not embeddings as the structure of

the source language is usually lost in the translation by

flattening. We advocate structure-preserving translations

that require expressive host languages.

An embedding is a semantics-preserving and structure-

preserving mapping between two component-based lan-

guages rooted in operational semantics. Consider two
component-based languages H and L with well-defined

operational semantics. We assume that the terms (pro-

grams) of these languages can be compared through a

common semantic congruence � and require that H is

more expressive than L. An embedding of L into H is de-

fined as a two-step transformation involving functions �
and �, respectively.

The first step defines a homomorphism that fully
preserves the structure of the translated language. It takes

into account the ‘‘programmer’s view’’ of the language by

translating all the coordination primitives explicitly

manipulated by the programmer. It consists in transform-

ing a term t of L into a term �ðtÞ 2 H. The function � is

structure preserving. It associates with components and

glue operators of L, components and glue operators of H
so that: 1) if B is an atomic component of L, then �ðBÞ is
an atomic component of H; 2) �ðtÞ ¼ �ðglÞð�ðC1Þ; . . . ;
�ðCnÞÞ 2 H, for any term t ¼ glðC1; . . . ; CnÞ 2 L.

The second step adds the glue and the behavior needed

to orchestrate the execution of the translated component

�ðtÞ, by respecting the semantics of L. It consists in trans-

forming a term t 2 L into a term �ðtÞ 2 H, by using a

semantics-preserving function �. The function � can be

expressed by using two auxiliary functions �1 and �2

associating, respectively, with any term t 2 L its semantic

glue �1ðtÞ and an execution engine �2ðtÞ both expressed in

H, so that �ðtÞ ¼ �1ðtÞð�ðtÞ; �2ðtÞÞ � t.
This constructive definition involves separate trans-

lation of the coordination mechanisms explicitly handled

by the programmer from additional coordination mechan-

isms implied by the operational semantics of the source

language.
Fig. 1 illustrates the principle. On the left, the soft-

ware written in L is a set of components with their glue.

The structured operational semantics of L defines an exe-

cution engine that coordinates the execution of compo-

nents as specified by the glue. Embeddings preserve the

structure of the source: atomic components of L are

translated into atomic components of H with additional

ports used by the component representing the execution
engine of L in H.

Embedding real-life languages is a nontrivial task as it

requires a formalization of their intuitive semantics. The

interested reader can find in [8] papers dealing with the

definition and implementation of embeddings into BIP for

languages such as nesC, DOL, Lustre, and Simulink.

Embedding languages for modeling cyber–physical

systems involves an additional difficulty: the definition
of precise enough operational semantics coping with the

inherent complexity of the synchronous execution me-

chanisms required.

VI. CORRECTNESS BY CONSTRUCTION

Correct-by-construction approaches are at the root of any

mature engineering discipline. They are scalable and do

not suffer limitations of correctness by checking.

System developers extensively use algorithms, pro-

tocols, and architectures that have been proven to be cor-

rect. They also use compilers to get across abstraction

Fig. 1. Embedding language L into the host language H.

Sifakis: System Design Automation: Challenges and Limitations

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2099

levels and translate high-level languages into (semantically
equivalent) object code. All of these results and techniques

largely account for our ability to master complexity and

develop systems cost effectively. Nonetheless, we still lack

theory and methods for combining them in principled and

disciplined fully correct-by-construction flows.

We propose a methodology to ensure correctness by

construction gradually throughout the design process by

acting in two different directions:
• horizontally, within a design step, by providing

rules for enforcing global properties of composite

components (horizontal correctness) while pre-

serving essential properties of atomic components;

• vertically, between design steps, to guarantee that

if some property is established at some step then it

will be preserved at all subsequent steps (vertical

correctness).
Horizontal correctness and vertical correctness stem

from the need to distinguish between correctness within a

design step and the relationship of established properties

between steps. This distinction is extensively applied in

contract-based methodologies, e.g., [42].

A. Horizontal Correctness
Horizontal correctness addresses the following prob-

lem: for a given component framework with set of atomic

components B ¼ fBigi2I and glue GL ¼ fglkgk2K , build a

component C meeting a given property P, from a set of

atomic components B1; . . . ; Bn of B.

The construction process of component C is bottom-up.

Increasingly complex composite components are built

from atomic components by using glue operators. Two

principles can be used in this process to obtain a compo-
nent meeting P: property enforcement and property

composability.

1) Property Enforcement: Property enforcement consists

in applying architectures to coordinate the behavior

of a set of components so that the resulting behavior

meets a given property. Depending on the expressiveness

of the glue operators, it may be necessary to use additional
components to achieve the coordination meeting the

property.

Architectures depict design principles and paradigms

that can be understood by all, and allow thinking on a

higher plane and avoiding low-level mistakes. They are a

means for ensuring global properties characterizing the

coordination between components. Using architectures is

key to ensuring trustworthiness and optimization in net-
works, OS, middleware, HW devices, etc.

System developers extensively use libraries of refer-

ence architectures enforcing functional and/or nonfunc-

tional properties, for example, fault-tolerant architectures,

architectures for resource management and quality of

service (QoS) control, time-triggered architectures, secu-

rity architectures, and adaptive architectures. The pro-

posed definition is general and can be applied not only to
hardware or software architectures but also to protocols

and distributed algorithms [43].

An architecture [44] is a family of operators on

components AðnÞ½X� parameterized by their parity n and

a family of characteristic properties PðnÞ such that:

• AðnÞ transforms a set of components C1; . . . ; Cn

into a composite component AðnÞ½C1; . . . ; Cn� ¼
glðnÞðC1; . . . ; Cn;DðnÞÞ where glðnÞ is a generic
glue operator and DðnÞ is a set of coordinating

components;

• AðnÞ½C1; . . . ; Cn� meets the characteristic property

PðnÞ.
Architectures are partial operators as the interactions

of gl should match actions of the composed components.

They are solutions to a coordination problem character-

ized by P. The desired coordination is achieved by apply-
ing the glue operator gl to the set of the arguments

augmented with coordinating components D.

For instance, in distributed architectures, interactions

are point to point by asynchronous message passing. Other

architectures adopt a specific topology (e.g., ring archi-

tectures, hierarchically structured architectures). These

restrictions entail reduced expressiveness of the glue ope-

rator gl that must be compensated by using the additional
set of components D for coordination. The characteristic

property assigns a meaning to the architecture that can be

informally understood without the need for explicit

formalization. Typically, a client–server architecture

guarantees atomicity of transactions and fault-tolerance

properties.

2) Property Composability: In a design process it is often
necessary to combine more than one architectural solution

on a given set of components to achieve a global property.

System engineers use libraries of solutions to specific

problems and they need methods for combining them

without jeopardizing their characteristic properties. For

example, a fault-tolerant architecture combines a set of

features building into the environment protections against

trustworthiness violations. These include: 1) triple mod-
ular redundancy mechanisms ensuring continuous opera-

tion in case of single component failure; 2) hardware

checks to be sure that programs use data only in their

defined regions of memory, so that there is no possibility of

interference; and 3) default to least privilege (least shar-

ing) to enforce file protection. Is it possible to obtain a

single fault-tolerant architecture consistently combining

these features? The key issue here is interference of the
integrated solutions. This is a very common phenomenon

known as feature interaction in telecommunication sys-

tems, interference among web services, and interference

in aspect programming. It can be understood as a violation

of property composability defined below.

Consider two architectures A1 and A2, enforcing, re-

spectively, properties PA1 and PA2 on a set of components

Sifakis: System Design Automation: Challenges and Limitations

2100 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

C1; . . . ; Cn. That is, A1½C1; . . . ; Cn� and A2½C1; . . . ; Cn� sa-
tisfy, respectively, the properties PA1 and PA2. Is it possible

to find an architecture AðC1; . . . ; CnÞ that meets both

properties? For instance, if A1 ensures mutual exclusion

and A2 enforces a scheduling policy, is it possible to find

architectures on the same set of components that satisfies

both properties?

Results for composability of safety properties can be

found in [44] which provides a method for computing an
architecture A1 � A2 enforcing two safety properties PA1

and PA2, from two architectures A1 and A2, enforcing PA1

and PA2, respectively.

To put this vision for horizontal correctness into prac-

tice, we need to develop a repository of reference architec-

tures classified according to their characteristic properties.

A list of these properties can be established; for instance,

architectures for mutual exclusion, time triggered, secu-
rity, fault tolerance, clock synchronization, adaptive,

scheduling, etc. Is it possible to find a hierarchical classifi-

cation of architectures induced by a hierarchy of charac-

teristic properties? Moreover, is it possible to determine a

minimal set of basic properties and corresponding archi-

tectural solutions from which more general properties and

their corresponding architectures can be obtained?

B. Vertical Correctness
Moving downwards in the abstraction hierarchy re-

quires component refinement. This can be achieved by

transforming a composite component C ¼ glðC1; . . . ; CnÞ
into an refined component C0 by using an architecture A,

C0 ¼ A½C01; . . . ; C0n� ¼ gl0ðC01; . . . ; C0n;DÞ, preserving cor-

rectness of the initial system modulo some observation

criterion.
This transformation is by refining the actions of com-

ponents C1; . . . ; Cn to obtain new components C01; . . . ; C0n.

Action refinement in some component Ci consists in

replacing an action a by its implementation as a se-

quence of actions strðaÞ . . . cmpðaÞ. The first and the last

element of this sequence correspond, respectively, to the

start and the completion of the refined action. Action

refinement also induces a refinement of the state space of
the initial components: new state variables are introduced

to control the execution of the refined actions. The glue

operator gl0 includes interactions involving refining

actions. It contains in particular for each interaction a of

gl, interactions strðaÞ and cmpðaÞ corresponding to the start

and the completion of a.

An instance of this problem is finding a distributed

implementation for a system glðC1; . . . ; CnÞ where gl spe-
cifies multiparty interactions between components. In that

case, gl0 includes only point-to-point interactions imple-

menting asynchronous message passing coordinated by an

additional set of components D. These contain memory

where the exchanged messages are queued. Atomic ac-

tions of the initial components are refined by sequences

of send/receive actions implementing a protocol.

We say that C0 ¼ gl0ðC01; . . . ; C0n;DÞ refines C ¼ glðC1;
. . . ; CnÞ, denoted by C � C0, if:

• all traces of C0 are traces of C modulo the observ-

ation criterion associating to each interaction of C
the corresponding finishing interaction of C0;

• if C is deadlock free, then C0 is deadlock free;

• � is compatible with the congruence relation �.

That is, for any components C1, C2, and C, if C1 �
C2 and C1 � C, then C2 � C;

• � is stable under substitution that is for any com-

ponents C1 and C2 and any architecture A, C1 � C2

implies A½C1;X� � A½C2;X� where X is an arbitrary

tuple of components.

In this definition, the second condition guarantees

preservation of deadlock freedom and precludes emptiness

of the set of the traces of C0. Stability of � under substi-

tution is essential for reusing refinements and correctness
by construction. As a rule, proving refinements requires

nontrivial inductive reasoning on the structure of the

terms representing systems.

The top of Fig. 2 depicts, in the form of a Petri net, a

refinement which associates to glðC1; C2Þ the system

gl0ðC01; C02;DÞ where gl consists of a single interaction a
and gl0 consists of the interactions strðaÞ (start a), rcvðaÞ
(receive a), ackðaÞ (acknowledge a), and cmpðaÞ (complete
a). So, the interaction a is refined by the sequence:

strðaÞrcvðaÞackðaÞcmpðaÞ. The coordination component D
contains two places for synchronization. The two systems

are observationally equivalent for the criterion that consid-

ers as silent the interactions strðaÞ, rcvðaÞ, and ackðaÞ and

associates cmpðaÞ with a.

Note that this type of refinement is not stable for

substitution, as depicted in the bottom of Fig. 2. Two
conflicting interactions a and b of the system on the left

side are refined to obtain a system where a deadlock may

occur when the transition strðaÞ is executed.

In [45] and [46], refinement techniques are applied to

generate correct implementations.

Fig. 2. Interaction refinement by using send/receive primitives.

Sifakis: System Design Automation: Challenges and Limitations

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2101

To attain extra-functional correctness, designers
need theory and methods for choosing, among different

equally trustworthy designs, those better fitting the

resources of the computing infrastructure. This is often

achieved through the application of design space explora-

tion techniques, e.g., [4]. Currently, these techniques are

mostly experimental and consist in evaluating, on a system

model, the impact of design parameters on optimization

criteria.

VII. CONCLUSION

System design formalization raises a multitude of deep

theoretical problems, including the conceptualization of

needs and their expression as formal requirements, the

development of functionally correct application software,

and the optimized implementation on a given platform. So
far, it has attracted little attention from scientific commu-

nities and is often relegated to second class status. This can

be explained by several reasons. One is the predilection of

the academic world for simple and elegant theories.

Another is that system design is by nature multidisciplin-

ary. Its formalization requires consistent integration of

heterogeneous system models supporting different levels

of abstraction, including logics, algorithms, and programs
as well as physical system models.

We advocate system design as a process involving
source-to-source correct-by-construction scalable transfor-

mations. Semantic coherency can be achieved using a

single expressive component framework. The development

of rigorous system design flows could leverage on the large

body of existing ‘‘constructivity’’ results, e.g., algorithms,

protocols, and architectures. A key idea is formalizing and

composing architectures as a means for enforcing design

properties. This allows correctness (almost) for free pro-
vided we develop an adequate composability theory.

Endowing system design with scientific foundations is

a major scientific challenge. Even if the identified goals are

reached, system design will never achieve the degree of

automation of VLSI design; there will always remain gaps

that can be bridged only by creative thinking and insightful

analysis. h

Acknowledgment

The author would like to thank the members of the

behavior–interaction– priority (BIP) teams at Verimag,

Grenoble, France and the École polytechnique fédérale de

Lausanne (EPFL), Lausanne, Switzerland. He is also

indebted to three anonymous reviewers for their com-

ments and criticism that have drastically contributed to
improving the paper.

REF ERENCE S

[1] T. A. Henzinger and J. Sifakis, ‘‘The discipline
of embedded systems design,’’ Computer,
vol. 40, pp. 36–44, 2007.

[2] P. Derler, E. A. Lee, and
A. Sangiovanni-Vincentelli, ‘‘Modeling
cyber-physical systems,’’ Proc. IEEE, vol. 100,
no. 1, pp. 13–28, Jan. 2012.

[3] P. Bogdan and R. Marculescu, ‘‘Towards a
science of cyber-physical systems design,’’ in
Proc. IEEE/ACM 2nd Int. Conf. Cyber-Phys. Syst.,
2011, pp. 99–108.

[4] A. Sangiovanni-Vincentelli, ‘‘Quo Vadis, SLD?
Reasoning about the trends and challenges
of system level design,’’ Proc. IEEE, vol. 95,
no. 3, pp. 467–506, Mar. 2007.

[5] C. Brooks, E. Lee, X. Liu, S. Neuendorffer,
and Y. Zhao, ‘‘Heterogeneous concurrent
modeling and design in Java,’’ Univ. California
Berkeley, Berkeley, CA, USA, Tech. Rep.
UCB/ERL M05/21, 2005.

[6] A. Davare et al., ‘‘MetroII: A design
environment for cyber-physical systems,’’
ACM Trans. Embedded Comput. Syst., vol. 12,
no. 1, Mar. 2013, Art. no. 49.

[7] J. Sztipanovits, T. Bapty, S. Neema, L. Howard,
and E. Jackson, ‘‘OpenMETA: A model and
component-based design tool chain for
cyber-physical systems,’’ in From Programs
to SystemsVThe Systems Perspective in
Computing (FPS 2014). Grenoble, France:
Springer-Verlag, 2014.

[8] Verimag, Rigorous design of component-based
systemsVThe BIP component framework.
[Online]. Available: http://www-verimag.
imag.fr/Rigorous-Design-of-Component-
Based.html.

[9] Microsoft, ‘‘Trusted computing group.’’
[Online]. Available: http://www.
trustedcomputinggroup.org.

[10] Sun Microsystmes, ‘‘Liberty alliance.’’
[Online]. Available: http://www.
projectliberty.org.

[11] L. Bernstein, ‘‘Trustworthy software
systems,’’ SIGSOFT Softw. Eng. Notes,
vol. 30, no. 1, pp. 4–5, 2005.

[12] ‘‘The Second National Software Summit,
Software 2015: A national software strategy to
ensure U.S. security and competitiveness,’’
U.S. Cntr. Nat. Softw. Studies, Tech. Rep.,
2005.

[13] A. Avizienis, J. C. Laprie, B. Randell, and
C. Landwehr, ‘‘Basic concepts and taxonomy
of dependable and secure computing,’’ IEEE
Trans. Depend. Secure Comput., vol. 1, no. 1,
pp. 11–33, Jan./Mar. 2004.

[14] L. J. Hoffman, K. L. Jenkins, and J. Blum,
‘‘Trust beyond security: An expanded trust
model,’’ Commun. ACM, vol. 49, no. 7,
pp. 94–101, 2006.

[15] K. W. Miller and J. Voas, ‘‘The metaphysics of
software trust,’’ IT Professional, vol. 11, no. 2,
pp. 52–55, 2009.

[16] D. H. Mcknight and N. L. Chervany,
‘‘The meanings of trust,’’ in Trust in
Cyber-Societies. Cambridge, MA, USA:
MIT Press, 2001, pp. 27–54, ser. Lecture
Notes in Artificial Intelligence.

[17] S. P. Marsh, ‘‘Formalising trust as a
computational concept,’’ Ph.D. dissertation,
Univ. Stirling, Stirling, Scotland, 1994.

[18] M. Butler, M. Leuschel, S. L. Presti, and
P. Turner, ‘‘The use of formal methods
in the analysis of trust,’’ in Trust
Management, vol. 2995. Berlin, Germany:
Springer-Verlag, 2004, pp. 333–339,
ser. Lecture Notes in Computer Science.

[19] D. K. Mulligany and F. B. Schneider,
‘‘Doctrine for cybersecurity,’’ Cornell Univ.,
Ithaca, NY, USA, Tech. Rep., May 2011.

[20] E. M. Clarke, E. A. Emerson, and J. Sifakis,
‘‘Model checking: Algorithmic verification
and debugging,’’ Commun. ACM, vol. 52,
no. 11, pp. 74–84, 2009.

[21] J. M. Cobleigh, G. S. Avrunin, and
L. A. Clarke, ‘‘Breaking up is hard to do: An
evaluation of automated assume-guarantee
reasoning,’’ ACM Trans. Softw. Eng. Methodol.,
vol. 17, no. 2, 2008, Art. no. 7.

[22] The Adelard safety case development, ASCAD
Manual Adelard, London, U.K., 1998.

[23] S. Cruanes, G. Hamon, S. Owre, and
N. Shankar, ‘‘Tool integration with the
evidential tool bus,’’ in Verification, Model
Checking, and Abstract Interpretation,
vol. 7737, R. Giacobazzi, J. Berdine, and
I. Mastroeni, Eds. Berlin, Germany:
Springer-Verlag, 2013, pp. 275–294,
ser. Lecture Notes in Computer Science.

[24] Software Engineering Institute, Carnegie
Mellon University, ‘‘Assurance cases.’’
[Online]. Available: http://www.sei.cmu.edu/
dependability/tools/assurancecase/.

[25] N. Halbwachs, Synchronous Programming of
Reactive Systems. Norwell, MA, USA:
Kluwer, 1993.

[26] D. A. Watt, B. A. Wichmann, and W. Findlay,
Ada: Language and Methodology. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1987.

[27] Object Management Group (OMG), ‘‘Model
Driven Architecture (MDA) Guide Revision
2.0 DocumentVOrmsc/14-06-01 (MDA
Guide Revision 2.0),’’ 2014.

[28] G. Karsai, J. Sztipanovits, A. Ledeczi, and
T. Bapty, ‘‘Model-integrated development
of embedded software,’’ Proc. IEEE, vol. 91,
no. 1, pp. 145–164, Jan. 2003.

[29] M. Heymann, F. Lin, G. Meyer, and
S. Resmerita, ‘‘Analysis of Zeno behaviors
in a class of hybrid systems,’’ IEEE Trans.

Sifakis: System Design Automation: Challenges and Limitations

2102 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

Autom. Control, vol. 50, no. 3, pp. 376–383,
Mar. 2005.

[30] T. Abdellatif, J. Combaz, and J. Sifakis,
‘‘Model-based implementation of real-time
applications,’’ in Proc. 10th ACM Int. Conf.
Embedded Softw., 2010, pp. 229–238.

[31] J. Reineke et al., ‘‘A definition and
classification of timing anomalies,’’ in
Proc. 6th Int. Workshop Worst-Case Execution
Time (WCET) Anal., Dresden, Germany,
Jul. 4, 2006.

[32] E. A. Lee and S. Matic, ‘‘On determinism
in event-triggered distributed systems with
time synchronization,’’ presented at the Int.
IEEE Symp. Precision Clock Synchronization
(ISPCS) Meas. Control Commun., Vienna,
Austria, Oct. 1–3, 2007.

[33] E. A. Lee, ‘‘The problem with threads,’’
IEEE Computer, vol. 39, no. 5, pp. 33–42,
May 2006.

[34] M. Bozga, M. Jaber, and J. Sifakis,
‘‘Source-to-source architecture
transformation for performance
optimization in BIP,’’ IEEE Trans. Ind.
Inf., vol. 6, no. 4, pp. 708–718, Nov. 2010.

[35] S. Bliudze and J. Sifakis, ‘‘A notion of
glue expressiveness for component-based
systems,’’ in CONCUR 2008VConcurrency
Theory, vol. 5201. Berlin, Germany:

Springer-Verlag, 2008, pp. 508–522,
ser. Lecture Notes in Computer Science.

[36] D. Garlan, R. Monroe, and D. Wile, ‘‘Acme:
An architecture description interchange
language,’’ in Proc. Conf. Centre Adv. Studies
Collaborative Res., 1997, pp. 169–183.

[37] J. Magee and J. Kramer, ‘‘Dynamic structure
in software architectures,’’ in Proc. 4th ACM
SIGSOFT Symp. Found. Softw. Eng., 1996,
pp. 3–14, ACM Press.

[38] S. Bensalem, M. Bozga, T.-H. Nguyen, and
J. Sifakis, ‘‘D-finder: A tool for compositional
deadlock detection and verification,’’ in
Computer Aided Verification, vol. 5643.
Berlin, Germany: Springer-Verlag, 2009,
pp. 614–619, ser. Lecture Notes in Computer
Science.

[39] T. Rompf, N. Amin, A. Moors, P. Haller, and
M. Odersky, ‘‘Scala-virtualized: Linguistic
reuse for deep embeddings,’’ Higher-Order
Symbolic Comput., vol. 25, no. 1, pp. 165–207,
2012.

[40] R. Passerone, ‘‘Semantic foundations for
heterogeneous systems,’’ Ph.D. dissertation,
Dept. Electr. Eng. Comput. Sci., Univ.
California Berkeley, Berkeley, CA, USA,
May 2004.

[41] J. Burch, R. Passerone, and
A. Sangiovanni-Vincentelli, ‘‘Refinement
preserving approximations for the design

and verification of heterogeneous systems,’’
Formal Methods Syst. Design, vol. 31, no. 1,
pp. 1–33, Aug. 2007.

[42] P. Nuzzo et al., ‘‘A contract-based
methodology for aircraft electric power
system design,’’ IEEE Access, vol. 2, 2014,
DOI: 10.1109/ACCESS.2013.2295764.

[43] S. Bensalem, M. Bozga, J. Quilbeuf, and
J. Sifakis, ‘‘Optimized distributed
implementation of multiparty interactions
with restriction,’’ Sci. Comput. Programm.,
vol. 98, no. 2, pp. 293–316, 2015.

[44] P. C. Attie, E. Baranov, S. Bliudze, M. Jaber,
and J. Sifakis, ‘‘A general framework for
architecture composability,’’ in Software
Engineering and Formal Methods, vol. 8702.
Berlin, Germany: Springer-Verlag, 2014,
pp. 128–143, ser. Lecture Notes in Computer
Science.

[45] P. Bourgos et al., ‘‘Rigorous system-level
modeling and analysis of mixed HW/SW
systems,’’ in Proc. 9th IEEE/ACM Int. Conf.
Formal Methods Models Codesign, 2011,
pp. 11–20.

[46] A. Iannopollo, P. Nuzzo, S. Tripakis, and
A. L. Sangiovanni-Vincentelli,
‘‘Library-based scalable refinement
checking for contract-based design,’’ in
Proc. Design Autom. Test Eur. Conf. Exhibit.,
2014, DOI: 10.7873/DATE.2014.167.

ABOUT T HE AUTHO R

Joseph Sifakis is a Professor at the École

polytechnique fédérale de Lausanne (EPFL),

Lausanne, Switzerland. He is the founder of the

Verimag laboratory, Grenoble, France, which he

directed for 13 years. His current research in-

terests cover fundamental and applied aspects of

embedded systems design. The main focus of his

work is on the formalization of system design as a

process leading from given requirements to trust-

worthy, optimized, and correct-by-construction

implementations. He has actively worked to reinvigorate European

research in embedded systems as the scientific coordinator of the

?ARTISTX European Networks of Excellence, for ten years. He has been

involved in many major industrial projects led by leading companies such

as Airbus, EADS, France Telecom, Astrium, and STMicroelectronics.

Dr. Sifakis has received the Turing Award for his contribution to the

theory and application of model checking, the most widely used system

verification technique today, in 2007. He is a member of the French

Academy of Sciences, the French National Academy of Engineering,

Academia Europea, and the American Academy of Arts and Sciences.

Sifakis: System Design Automation: Challenges and Limitations

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2103

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

