
Foundations and TrendsR© in
Electronic Design Automation
Vol. 6, No. 4 (2012) 293–362
c© 2013 J. Sifakis
DOI: 10.1561/1000000034

Rigorous System Design

By Joseph Sifakis

Contents

1 Introduction 295

1.1 About Design 295
1.2 System Design 298

2 From Programs to Systems —
Significant Differences 304

3 Achieving Correctness 306

3.1 Correctness versus Design Productivity 306
3.2 Trustworthiness Requirements 307
3.3 Optimization Requirements 308
3.4 Levels of Criticality 310

4 Existing Approaches and the State of the Art 312

4.1 System Development Methodologies 312
4.2 Rigorous Design Techniques 314
4.3 The Limits of Correctness-by-Checking for Systems 316
4.4 The Integration Wall — Mixed-Criticality Systems 319

5 Four Principles for Rigorous System Design 323

5.1 Rigorous System Design 323
5.2 Separation of Concerns 324
5.3 Component-Based Design 328
5.4 Semantically Coherent Design 332
5.5 Correct-by-Construction Design 336
5.6 Putting Rigorous System Design into Practice in BIP 345

6 A System-Centric Vision for Computing 350

6.1 Linking Computing to Other Disciplines 351
6.2 Rigorous Design versus Controlled Experiments 354
6.3 The Limits of Understanding and Mastering

the Cyber-world 355
6.4 The Quest for Mathematically Tractable and

Practically Relevant Theory 357

Acknowledgments 359

References 360

Foundations and TrendsR© in
Electronic Design Automation
Vol. 6, No. 4 (2012) 293–362
c© 2013 J. Sifakis
DOI: 10.1561/1000000034

Rigorous System Design

Joseph Sifakis

RiSD Laboratory, EPFL, Lausanne, Switzerland, Joseph.Sifakis@epfl.ch

Abstract

The monograph advocates rigorous system design as a coherent and
accountable model-based process leading from requirements to correct
implementations. It presents the current state of the art in system
design, discusses its limitations, and identifies possible avenues for over-
coming them.

A rigorous system design flow is defined as a formal account-
able and iterative process composed of steps, and based on four
principles: (1) separation of concerns; (2) component-based construc-
tion; (3) semantic coherency; and (4) correctness-by-construction. The
combined application of these principles allows the definition of a
methodology clearly identifying where human intervention and inge-
nuity are needed to resolve design choices, as well as activities that
can be supported by tools to automate tedious and error-prone tasks.
An implementable system model is progressively derived by source-to-
source automated transformations in a single host component-based
language rooted in well-defined semantics. Using a single modeling lan-
guage throughout the design flow enforces semantic coherency. Correct-
by-construction techniques allow well-known limitations of a posteriori
verification to be overcome and ensure accountability. It is possible to

explain, at each design step, which among the requirements are satis-
fied and which may not be satisfied.

The presented view for rigorous system design has been amply
implemented in the BIP (Behavior, Interaction, Priority) component
framework and substantiated by numerous experimental results show-
ing both its relevance and feasibility.

The monograph concludes with a discussion advocating a system-
centric vision for computing, identifying possible links with other
disciplines, and emphasizing centrality of system design.

1
Introduction

1.1 About Design

Design is the process that leads to an artifact meeting given require-
ments. These comprise functional requirements describing the func-
tionality provided by the system and extra-functional requirements
dealing with the way in which resources are used for implementation
and throughout the artifact’s lifecycle.

Design is a universal concept, a par excellence intellectual activity
linking the immaterial world of concepts to the physical world. It is
an essential area of human experience, expertise, and knowledge which
deals with our ability to mold our environment so as to satisfy material
and spiritual needs. The built world is the result of the accumulation
of artifacts designed by humans.

Design has at least two different connotations in different fields and
contexts. It may be simply a plan or a pattern for assembling objects
in order to build a given artifact. It also may refer to the creative
process for devising plans or patterns. In this monograph we adopt the
latter denotation with a focus on the formalization and analysis of the
process.

295

296 Introduction

Design can be decomposed into two phases. The first is procedural-
ization, leading from requirements to a procedure (executable descrip-
tion) prescribing how the anticipated functionality can be realized by
executing sequences of elementary functions. The second is material-
ization leading from a procedure to an artifact meeting the require-
ments (Figure 1.1). A main concern is how to meet extra-functional
requirements by using available resources cost-effectively.

Design is an essential component of any engineering activity. It
covers multiple disciplines including electrical, mechanical, thermal,
civil, architectural, and computing systems engineering. Design pro-
cesses should meet two often antagonistic demands: (1) productivity to
ensure cost-effectiveness; (2) correctness which is essential for accep-
tance of the designed artifacts, especially when they involve public
safety and security.

Design is a “problem-solving process”. As a rule, requirements are
declarative. They are usually expressed in natural languages. For some
application areas, they can be formalized by using logics. When require-
ments are expressed by logical specifications, proceduralization can be
considered as a synthesis problem: procedures are executable models
meeting the specifications. Model synthesis from logical requirements
often runs into serious technical limitations such as non-computability
or intrinsically high complexity. For all these reasons, in many areas
of engineering, design remains to a large extent an empirical activity
relying on the experience and expertise of engineering teams. New com-
plex products are seldom designed from scratch. Their designs follow
principles and reuse solutions that have proven their worth. Even if
some segments of the design process are fully automated by using tools
(e.g., CAD tools), there exist gaps that can be bridged only by creative
thinking and insightful analysis.

Design formalization raises a multitude of deep theoretical prob-
lems related to the conceptualization of needs in a given area and their
effective transformation into correct artifacts. So far, it has attracted
little attention from scientific communities and is often relegated to
second-class status. This can be explained by several reasons. One is
the predilection of the academic world for simple and elegant theories.
Another is that design is by nature multidisciplinary. Its formalization

1.1 About Design 297

F
ig

.
1.

1
D

es
ig

n
is

a
un

iv
er

sa
l
co

nc
ep

t
ap

pl
ic

ab
le

fr
om

co
ok

in
g

to
co

m
pu

ti
ng

sy
st

em
s.

298 Introduction

requires consistent integration of heterogeneous system models sup-
porting different levels of abstraction including logics, algorithms and
programs as well as physical system models.

1.2 System Design

The monograph deals with the formalization of the design of mixed
hardware/software systems. As a rule, these are interactive systems
continuously interacting with an external environment. Their behavior
is driven by stimuli from the environment, which, in turn, is affected
by their outputs. They drastically differ from function systems which
compute an action on an input, producing an output some time later,
and stopping. Interaction systems can receive new inputs and produce
new outputs while they are already in operation. They are expected to
operate continuously.

Interactive systems are inherently complex and hard to design due
to unpredictable and subtle interactions with the environment, emer-
gent behaviors, and occasional catastrophic cascading failures, rather
than to complex data and algorithms. Compared to function software,
their complexity is aggravated by additional factors such as concurrent
execution, uncertainty resulting from interaction with unpredictable
environments, heterogeneity of interaction between hardware and soft-
ware, and non-robustness (small variations in a certain part of the
system can have large effects on overall system behavior). Henceforth,
the term “system” stands for interactive system.

In system design, proceduralization leads to an application soft-
ware meeting the functional requirements. Materialization consists in
building an implementation from application software and models of
its execution platforms. As program synthesis is intractable, writing
trustworthy application software requires a good deal of creativity and
skills. Materialization also requires a deep understanding of how the
application software interacts with the underlying hardware and, in
particular, how dynamic properties of its execution are determined by
the available physical resources.

The monograph advocates rigorous system design as a coherent and
accountable process aimed at building systems of guaranteed quality

1.2 System Design 299

cost-effectively. We need to move away from empirical approaches to
a well-founded discipline. System design should be studied as a for-
mal systematic process supported by a methodology. The latter should
be based on divide-and-conquer strategies consisting of a set of steps
leading from requirements to an implementation. At each step, a partic-
ular humanly tractable problem must be solved by addressing specific
classes of requirements. The methodology should clearly identify seg-
ments of the design process that can be supported by tools to automate
tedious and error-prone tasks. It should also clearly distinguish points
where human intervention and ingenuity are needed to resolve design
choices through requirements analysis and confrontation with experi-
mental results. Identifying adequate design parameters and channeling
the designers’ creativity are essential for achieving design goals.

The design methodology should take into consideration theoretical
obstacles as well as the limitations of the present state of the art. It
should propose strategies for overcoming as many of the obstacles as
possible. The identified theoretical obstacles are the following:

Requirements formalization: Despite progress in formalizing require-
ments over the past decades (e.g., by using temporal logics), we still
lack theoretical tools for the disciplined specification of extra-functional
requirements.

For instance, security and privacy requirements should take into
account human behavior which is mostly unpredictable and hardly
amenable to formalization. Exhaustive and precise specification of
system security threats depends on our ability to figure out all pos-
sible attack strategies of intruders. Similarly, for privacy violation we
need theory for predicting how global personal data can be inferred by
combining and interpreting partial data.

Another difficulty is linking user-defined requirements to concrete
properties satisfied by the system. This is essential for checking system
correctness. The simple requirement that “when an elevator cabin is
moving all doors should be closed” may be implied by a mutual exclu-
sion property at system level. To prove formally such an implication,
requirements should be analyzed to relate system states to stimuli pro-
vided by user interfaces.

300 Introduction

Intractability of synthesis/verification: Designers need automated tech-
niques either to synthesize programs from abstract specifications or
to verify derived models against requirements. Both problems do not
admit exact algorithmic solutions for infinite state systems.

Hardware–Software interaction: We currently have no theory for
predicting precisely the behavior of some given software running on
a hardware platform with known characteristics. This difficulty lies in
the fundamental difference between hardware and software. Software
is immaterial. Software models ignore physical time and resources.
Hardware is subject to laws of physics. Its behavior is bound to timing
constraints, its resources are limited by their physical characteristics.
Program execution dynamics inherit hardware-dynamic properties.
These properties cannot be precisely characterized or estimated owing
to inherent uncertainty and the resulting unpredictability.

Despite these obstacles and limitations, it is important to study
design as a systematic process. As absolute correctness is not achiev-
able, we advocate accountability, that is, the possibility to assert which
among the requirements are satisfied and which may not be satisfied.
Accountability can be enhanced by using property-preservation results:
if some essential property holds at some design step then it should hold
in all subsequent steps. We present rigorous design as a process rooted
in four principles.

Separation of concerns: The separation between proceduralization and
materialization is crucial for taming complexity. It allows separation
of what functionality is provided by the system by focusing only on
functional requirements, from how this functionality is implemented by
using resources. Rigorous system design is a formally defined process
decomposed into steps. At each step the designer develops a model of
the system to be designed at some abstraction level. Within each step,
abstraction is progressively reduced by replacing conceptual constructs
and primitives by more concrete ones. The final model is a blueprint
for building the physical implementation.

Component-based construction: Components are essential for enhanced
productivity and correctness through reuse and architectures. In
contrast to many other engineering disciplines, computing systems

1.2 System Design 301

engineering lacks a component taxonomy and theory for component
composition. Electrical and mechanical engineering are based on the
use of a few component types. Electrical engineers build circuits from
elements of predictable behavior such as resistances, capacitances,
and inductances. System designers deal with a large variety of
heterogeneous components with different characteristics and unrelated
coordination principles: synchronous or asynchronous, object-based or
actor-based, and event-based or data-based. This seriously limits our
ability to ensure component interoperability in complex systems.

Semantic coherency : The lack of a framework for disciplined
component-based construction is reflected in the existence of a large
variety of languages used by designers. Application software may be
written in Domain-Specific Languages (DSL) or general purpose pro-
gramming languages. Specific languages may be used for modeling,
simulation, or performance analysis. These languages often lack well-
founded semantics and this is a main obstacle to establishing seman-
tic coherency of the overall design process. Frequently, validation and
performance analyses are carried out on models that cannot be rigor-
ously related to system development formalisms. This introduces gaps
in the design process which seriously lessen productivity and limit our
ability for ensuring correctness. To overcome these limitations, design-
ers should use languages rooted in well-founded semantics defined in a
common host language. This language should be expressive enough to
establish source-to-source translations between the hosted languages,
in particular for enhanced traceability of analysis results at different
abstraction levels.

Correctness-by-construction: Correctness-by-checking suffers from
well-known limitations. An alternative approach is achieving
correctness-by-construction. System designers extensively use algo-
rithms, architectures, patterns, and other principles for structuring
interaction between components so as to ensure given properties. These
can be described and proven correct in well-founded languages and
made available to system designers. A key issue is how to combine
existing solutions to partial problems and their properties in order to
solve design problems. For this we need theory and rules for building

302 Introduction

complex designs meeting a given requirement by composing properties
of simpler designs.

The monograph proposes a view for rigorous system design and
identifies the main obstacles and associated scientific challenges. This
view summarizes key ideas and principles of a research program pursued
for more than 10 years at Verimag. It has been amply implemented in
the BIP (Behavior, Interaction, Priority) component framework [30]
and substantiated by numerous experimental results showing both its
relevance and feasibility.

BIP consists of a language for component-based construction
and an associated suite of system design tools. The language allows
the modeling of composite, hierarchically structured systems from
atomic components characterized by their behavior and their interface.
Components are coordinated by layered application of interactions and
of priorities. Interactions express synchronization constraints between
actions of the composed components, while priorities are used to filter
amongst possible interactions and to steer system evolution so as to
meet performance requirements, e.g., to express scheduling policies.
Interactions are described in BIP as the combination of two types of
protocols: rendezvous, to express strong symmetric synchronization
and broadcast, to express triggered asymmetric synchronization. The
combination of interactions and priorities confers BIP expressiveness
not matched by any other existing formalism. It defines a clean and
abstract concept of architecture separate from behavior. Architecture
in BIP is a first-class concept with well-defined semantics that can
be analyzed and transformed. BIP relies on rigorous operational
semantics that has been implemented by specific run-time systems for
centralized, distributed, and real-time execution.

The monograph is structured as follows.
Section 2 presents significant differences between programs and sys-

tems. Section 3 discusses the concept of correctness characterized by
two types of hardly reconcilable requirements: trustworthiness and opti-
mization. Trustworthiness requirements capture qualitative correctness
while optimization requirements are constraints on resources. Their
interplay determines levels of criticality in system design. Section 4
presents existing approaches for system design and their limitations.

1.2 System Design 303

We discuss how existing rigorous design paradigms can be transposed
to system design. Section 5 discusses the four principles for rigorous
system design and their application in the BIP framework. Section 6
presents a system-centric vision for computing, discusses possible links
with other disciplines and emphasizes on centrality of system design.

2
From Programs to Systems —

Significant Differences

Programs in high-level languages abstract from resources and have a
platform-independent behavior: the application software of a system
describes pure functionality. In programming languages, time and
resources may appear only as external parameters that can be linked
to corresponding physical quantities of the execution environment. A
real-time program can be considered as an interactive machine where
waiting times can be controlled by using mechanisms such as timeouts
or watchdogs. At semantic level, reaching a deadline is an external
event that is not treated differently from any other external event, e.g.,
hitting a wall.

The shift of focus from programs to systems should be accompa-
nied by research for extending the Theory of Computing, which focuses
on the computation of functions as a terminating process, taking as
inputs values of their arguments and producing corresponding results.
By its nature, it is of little help for studying systems. As a rule, system
behavior is non-terminating and non-deterministic. It can be charac-
terized as an input/output relation between timed histories of values.
The interested reader may refer to work on interactive extensions of

304

305

Turing machines, which are non-terminating and interacting with an
environment [15, 35].

Systems are described by models that specify how the function-
ality of their software is implemented by using resources such as time,
memory, and energy. In system models resources are represented by
state variables, in addition to the variables of the application software.
Special care should be taken when dealing with resource variables. For
each action, the amount of consumed and liberated resources should
be specified and resource variables should be modified accordingly.

Extension of current models should not be limited to basic models
such as Turing machines and automata. Modeling languages should
also be enriched to take into account physical resources and the inter-
play between systems and their physical environment. We need theory
and methods for building faithful system models by extending models
of their application software with variables representing resources
and their dynamics [19]. This need is now well-understood and has
motivated the development of research on Cyber-physical systems
addressing various issues including modeling [13] and design [6].

3
Achieving Correctness

3.1 Correctness versus Design Productivity

System designers strive to reconcile two often conflicting demands:
design productivity and design correctness.

Productivity characterizes the efficiency of the design process. It
can be enhanced through: (1) reuse of components; (2) automation of
the design flow by using appropriate methods, and tools; (3) skills and
expertise of system designers. These three factors should synergize har-
moniously. System designers should have the appropriate background
for handling components and tools. Using overly sophisticated tools
becomes counter-productive if their users are not adequately trained.

Correctness means compliance to requirements. Formally checking
correctness consists in comparing a system model against requirements.
It is a relative judgment: “are we building the system right with respect
to the requirements?” It would be an answer to the question “are we
building the right system” if firstly, requirements could be correctly
formalized; and secondly, if system models could faithfully represent
the system behavior interacting with its environment.

306

3.2 Trustworthiness Requirements 307

As flawless system design is not attainable, owing to both theoret-
ical limitations and cost-effectiveness considerations, system designers
target levels of criticality. These correspond to trade-offs between cor-
rectness and productivity. Furthermore, they determine which types
of requirements are relevant and to what extent these requirements
should be met, e.g., probability of failure or disparity between nominal
and observed values of significant parameters.

The proposed concept of system correctness conjoins two types of
properties: (1) trustworthiness ensuring that nothing bad would hap-
pen; (2) optimization for performance, cost-effectiveness, and trade-
offs between them. It differs from pure function software correctness
in many respects as it encompasses mostly extra-functional properties
while software correctness deals primarily with functional properties;
optimization is a concern when we deal with specific implementations.

Trustworthiness and optimization requirements are difficultly rec-
oncilable. As a rule, improving trustworthiness entails non-optimized
use of resources. Conversely, resource optimization may jeopardize
trustworthiness. For example, if resource utilization is pushed to
the limits, deadlocks may occur; enhancing trustworthiness by
massive redundancy costs extra resources. Designers should seek
trustworthiness and try to optimize resources at the same time.

3.2 Trustworthiness Requirements

Roughly speaking, non-trustworthiness means that the system can
reach some “illegal” state. That is to say, trustworthiness requirements
include, in addition to functional requirements, all the extra-functional
requirements which qualitatively characterize system correctness.

The study of trustworthy systems has given rise to an abundant
amount of literature including research papers and reports as well as
a plethora of research projects [33]. Existing approaches either focus
on properties that can be formalized and checked effectively (e.g., by
using formal methods [9]) or by addressing a very broad spectrum of
mostly unrelated topics (see e.g., [29]).

We consider trustworthiness to mean that the system can be trusted,
and that it will behave as expected despite: (a) software design and

308 Achieving Correctness

implementation errors; (b) failures of the execution infrastructure; (c)
interaction with potential users including erroneous actions and threats;
and (d) interaction with the physical environment including distur-
bances and unpredictable events.

Trustworthiness must be addressed throughout the computing envi-
ronment. Among the above hazards, only software design errors are
limited to application software. The others require the analysis of a
system model in interaction with its physical and human environment.

Note that some trustworthiness definitions take into consideration
the fact that our confidence in systems is often based on both the arti-
fact itself and on the humans who deliver it. As systems are becoming
increasingly sophisticated in their processing and dynamic “learning”,
our trust in them becomes similar to our trust in humans. Therefore,
the corresponding approaches focus on computational trust models in
different domains like sociology and psychology. They consider that
a thorough understanding of those social, psychological, and engi-
neering aspects of trust is necessary to develop an appropriate trust
model [27].

We believe that using such a general concept for the current state
of the art is of little technical interest. Thus we prefer to abstract from
subjective factors, and study the concept as it is determined by the
relevant intrinsic system properties.

3.3 Optimization Requirements

Optimization requirements deal with optimization of functions subject
to constraints involving resources such as time, memory, and energy
dealing with:

(1) performance which characterizes how well the system does
with respect to user demands concerning quantities such as
throughput, jitter, and latency;

(2) cost-effectiveness which characterizes how well resources are
used with respect to economic criteria such as storage effi-
ciency, processor load/availability, and energy-efficiency; and

(3) trade-offs between performance and cost-effectiveness.

3.3 Optimization Requirements 309

Non Trustworthy States

Fig. 3.1 Optimization requirements characterize execution sequences on trustworthy states.

Optimization requirements characterize sets of execution sequences,
while trustworthiness requirements determine the set of legal states —
a state may be trustworthy or not (Figure 3.1). For systems, they
are mostly extra-functional requirements, in contrast to platform-
independent optimization requirements applied to software.

A key issue is ensuring trustworthiness without disregarding
optimization. This is much easier for monolithic or single processor
implementations (e.g., safety critical designs). It is much harder to get
optimized trustworthy designs for many-core or distributed implemen-
tations.

Designers need theory and methods for choosing among different
equally trustworthy designs those better fitting the resources of
the computing infrastructure. This is often achieved through the
application of design space exploration techniques. Currently, these
techniques are mostly experimental and consist in evaluating, on
a system model, the impact of design parameters on optimization
criteria. Design parameters include the number and type of processing
cores, sizes and organization of memories, interconnect, scheduling
and arbitration policies, etc. These determine resource parameters
of the system model on which performance, efficiency, and trade-offs
between them can be evaluated.

To discover optimized solutions, design should be parsimonious,
that is, design choices should be implied only by requirements. Design-
ers often preclude possible solutions by eliminating alternatives based
on the idea that the flexibility they afford would be difficult or impos-
sible to exploit later [20]. Very early in the design process, they
favor specific programming models or implementation principles which

310 Achieving Correctness

drastically reduce the design space. For instance, developing an encoder
in plain C leads to solutions hard to parallelize and implement on
a multiprocessor platform. Alternatively, programming in a data-flow
language can help discover parallelism and enables the use of adequate
scheduling policies by applying existing theory [24].

A prerequisite for parsimonious design is using appropriate
programming languages to unveil inherent data or task parallelism and
non-determinism. Optimized implementations can be obtained by ade-
quate design choices: reducing parallelism (through mapping on the
same processor), reducing non-determinism (through scheduling), or
fixing parameters such as quality, precision, frequency, and voltage.

3.4 Levels of Criticality

The criticality of a system is the degree to which a violation of some
trustworthiness requirement could have a dramatic impact on human
life, the environment, or significant assets. For safety-critical systems,
such as flight controllers or nuclear plant controllers, violation can come
from the system itself or from its interaction with its physical environ-
ment. Security-critical systems are sensitive to attacks or any kind of
malevolent interactions with humans (e.g., smart cards).

Critical systems development is costly and requires special tech-
niques guaranteeing absence of critical failures. Often it must be certi-
fied according to safety-critical systems standards such as DO178B for
airborne systems and ISO26262 for automotive systems. The Common
Criteria for Information Technology Security Evaluation is the techni-
cal basis for certification of secure IT products.

Currently, critical systems are confined to small size systems owing
to both limitations of the present state of the art and high development
costs. These are roadblocks to their extensive use in areas such as auto-
motive or health applications. For instance, projects for “active” safety
in cars based on “drive-by-wire” or “brake-by-wire” may not become
a reality because of these limitations. Similarly, there exists a huge
potential for healthcare applications that are still at an experimental
stage.

3.4 Levels of Criticality 311

In addition to safety and security, other criteria can be chosen to
characterize system criticality. Mission-critical systems used in space,
telecommunications, and data centers must ensure, even at limited
capacity, completion of tasks. Another criterion is business criticality
evaluated as the impact of a downtime on the revenues generated
from system exploitation (e.g., data center systems). Finally, best-
effort systems are systems whose failures have a limited impact leading
to error states from which quick recovery is possible. Their develop-
ment focuses primarily on optimized use of resources, provided their
availability remains above a certain threshold. Best-effort systems
comprise a large variety of applications and services (e.g., web-based
applications).

4
Existing Approaches and the State of the Art

We provide a succinct overview of main approaches for system develop-
ment, successful paradigms of rigorous design, and discuss limitations
of the state of the art and associated technical challenges.

4.1 System Development Methodologies

Existing development methodologies are of limited interest for systems.
They prescribe only general principles and fail to provide rigorous
support and guidance.

The V-model methodology is an extension of the waterfall model,
which considers development as a sequence of phases from requirements
specification to implementation and validation [21]. It decomposes sys-
tem development into two flows.

1. One top-down starting from requirements and involving a
hierarchical decomposition of the system into components
and associated requirements. Components are designed sep-
arately so as to meet their requirements.

2. The other is bottom-up and consists in progressively assem-
bling, integrating, and testing the designed components.

312

4.1 System Development Methodologies 313

Fig. 4.1 The V-model (source: Wikipedia).

This methodology, depicted in Figure 4.1, can be criticized for four
main reasons:

(1) It assumes that all the system requirements are initially
known, and can be clearly formulated and understood.

(2) It assumes that system development is top-down from a set of
requirements. Nonetheless, systems are never designed from
scratch; they are built by incrementally modifying existing
systems and component reuse.

(3) It considers that global system requirements can be broken
down into requirements satisfied by system components.
Furthermore, it implicitly assumes a compositionality prin-
ciple: atomic components are proven correct with respect
to their individual requirements and then correctness of
the whole system can be inferred from their correctness.
This principle is not applicable to emergent properties (e.g.,
mutual exclusion). Furthermore, the number of unantici-
pated interactions scales exponentially with the number of
the components, in the course of integration. So, inevitably,
a re-design cycle begins. In fact, the two sides of the “V”
are ever more interconnected with increasingly frequent
re-designs and incremental modification.

314 Existing Approaches and the State of the Art

(4) It relies mainly on correctness-by-checking (verification or
testing).

Agile development has been proposed as an alternative to the V-design
methodology [3]. It puts emphasis on incremental development of solu-
tions and collaborative team work. It considers that coding and design-
ing go hand in hand: designs should be modified to reflect adjustments
made to the requirements. So, design ideas are shared and improved on
during a project. The main merit of this methodology is its criticism
of the V-model rather than a disciplined and well-structured way for
tackling system development.

4.2 Rigorous Design Techniques

There exist two classes of successful rigorous design techniques. One is
applied to hard real-time systems ensuring trustworthy control of air-
craft, cars, power plants, and medical devices. The other comes from
hardware engineering. VLSI design and associated EDA tools have
enabled the IC industry to sustain almost four orders of magnitude
in product complexity growth since the 80386, while maintaining a
consistent product development timeline.

We present below the main characteristics of these techniques which
also explain their main reasons of success.

Hard real-time systems design techniques: The design of hard real-time
systems relies on the use of domain-specific languages for program-
ming application software and of associated rigorous implementation
methods.

Synchronous programming languages are used for the development
of synchronous reactive systems [16]. Synchronous programs can be
considered as a network of strongly synchronized components. Their
execution is a sequence of non-interruptible steps that define a logical
notion of time. In a step each component performs a quantum of com-
putation. As a rule, synchronous implementations are monolithic on
bare metal. An implementation is correct if the worst-case execution
times (WCET) for steps are less than the requested response time for
the system.

4.2 Rigorous Design Techniques 315

Asynchronous design techniques are represented mainly by flows
using the ADA standard [36]. Implementations are event-driven based
on dedicated multi-tasking run-time environments. Fixed priority
scheduling policies are used for sharing resources between components.
Scheduling theory allows predictable response times for components
with known period and time budgets [10].

Finally, time-triggered techniques are based on the use of spe-
cific programming models and associated implementation techniques
on dedicated platforms [22]. They can guarantee by construction
correctness with respect to timing requirements.

An interesting question is whether these paradigms can be extended
to encompass mixed-criticality systems. Clearly, existing techniques
adopt specific scheduling principles that can guarantee by construc-
tion, satisfaction of essential properties. For a successful generalization
of these paradigms, we need theory for composing components each
equipped with specific scheduling requirements, and deriving global
scheduling policies for the resulting system, as well as the minimal
amount of resources for meeting these requirements. This vision goes
far beyond the current state of the art.

VLSI design techniques: These techniques support rigorous design flows
leading from structural component-based descriptions expressed in
an HDL to their physical implementation based on a powerful well-
understood abstraction hierarchy. They use a limited and well-defined
number of synchronous components. Homogeneity of the model of
computation greatly simplifies the analysis of component interaction.
Correctness is achieved mainly by construction through extensive use
of architectures and of powerful synthesis tools. Additionally, VLSI
design techniques benefit from mature algorithmic verification tech-
nology based on efficient representation and computation of Boolean
functions (e.g., BDDs).

Clearly, the above techniques provide only instructive templates.
Integrated circuits consist of a limited number of fairly homogeneous
components. Hard real-time design techniques are costly and not ade-
quate for general purpose systems. Their main reasons for success are:
(1) coherent and accountable design flows, supported by tools and often

316 Existing Approaches and the State of the Art

enforced by standards; and (2) correct-by-construction design enabled
by extensive use of architectures and formal design rules. The applica-
tion of these principles to system design is hampered by several obsta-
cles such as the lack of a common component model, the heterogeneity
of models of computation, the variety of architectural styles, and the
intractability of synthesis for infinite state systems.

4.3 The Limits of Correctness-by-Checking for Systems

Correctness-by-checking is ensured by validation of requirements on a
real system prototype or on a system model. Validation of system pro-
totypes can be done only by testing, that is, by exercising the system’s
behavior according to test cases and checking whether the observed
response agrees with requirements. Validation of models can be either
ad hoc (e.g., by simulation) or by formal verification. In the latter
case, requirements and system models are expressed in formal languages
related through a satisfaction relation.

Formal verification and algorithmic verification, in particular, con-
stitutes one of the main breakthroughs for quality assurance in both
hardware and software. It has drastically contributed to gaining math-
ematical confidence that both common and critical computing appli-
cations meet their specifications [11]. Despite spectacular progress of
the state of the art over the past decades, verification techniques suffer
from inherent well-known limitations [28].

A general discussion about these limitations is out of the scope of
this monograph. We explain below how they are aggravated for system
verification, compared to software and hardware verification.

There exist three main sources of limitations regarding the ability:
(1) to apprehend and formally express user’s needs by requirements;
(2) to faithfully model the system to be verified; and (3) to overcome
inherent theoretical limitations of verification techniques.

Expressing requirements: Requirements should be written in a formal
language easy to understand and use by engineers. Expression of trust-
worthiness properties requires first and foremost a clear understanding
and characterization of “bad situations” to be avoided. The identifi-
cation of these situations is quite straightforward for non-interactive

4.3 The Limits of Correctness-by-Checking for Systems 317

systems. For interactive systems, this may turn out to be non-trivial as
it is necessary to figure out for a given property, all the relevant patterns
of interaction between a system and its environment. This is typically
the case for security properties whose expression may require a deep
analysis (e.g., anticipating all possible malevolent actions coming from
a system’s environment).

Expression of optimization properties requires an even more sub-
tle reasoning over system execution sequences. Currently, we lack ade-
quate languages for formally expressing quality of service requirements
involving bit rate, jitter, and latency.

From a more pragmatic point of view, the use of rigorous require-
ment specification languages for real-life systems seems to be problem-
atic. In fact, requirements specifications must meet two fundamental
properties:

• Soundness, that is, there exists at least one system meeting
the specifications (no contradiction). Checking this property
even for decidable requirements specification languages may
be questionable owing to the intrinsic complexity of decision
algorithms.

• Completeness, that is, requirements specify tightly enough
the system’s behavior. There is no technical criterion char-
acterizing completeness for declarative languages — writing
requirements in a declarative language may be an endless
game!

Modeling : System models should be faithful, that is, to say that what-
ever property is satisfied for the model also holds for the real system.
Furthermore, they should be generated automatically from system
descriptions.

Currently, we master automatic generation of faithful models for
hardware systems. For software systems, we can generate models for
checking functional requirements, provided they are written in lan-
guages with well-defined semantics. The operational semantics of the
language can be used to formally define a transition system on which
verification techniques can be applied. Nonetheless, for interactive

318 Existing Approaches and the State of the Art

systems we lack faithful detailed modeling techniques. Generating faith-
ful models even for very simple systems, such as the node of a wireless
sensor network, requires understanding intricate interaction between
application software and the underlying execution platform, including
hardware-dependent software and hardware.

Verification techniques: Formal verification allows exhaustive checking.
Currently, automated verification techniques such as model checking,
abstract interpretation, and static analysis are all monolithic. They
are applied to global transition systems whose size increases exponen-
tially with the number of the components of the system to be verified.
A direct consequence of this state explosion phenomenon is that cur-
rent verification techniques are limited to small or medium size systems
and to specific properties.

Attempts to apply compositional verification to component-based
systems, such as assume/guarantee techniques, failed to make any sig-
nificant breakthrough [12]. The main obstacle to overcome is break-
ing up a global requirement into a set of local requirements such that
(1) each requirement is met by a constituent component; and (2) their
conjunction implies the global requirement.

As a conclusion, correctness-by-checking contributes to trustwor-
thiness but it is limited to requirements that can be formalized and
checked efficiently (mainly verification of functional properties for
application software). For the same reasons, its application to opti-
mization requirements is limited to the validation of scheduling and
resource management policies on abstract system models. In any case,
verification is applied to medium size systems when it is possible to
make automated proofs or when the cost of faults is high.

For optimization requirements, a more natural approach for their
satisfaction is by enforcing rather than by checking. That is, instead
of checking a requirement depending on some parameters, sets of
parameter values for which it is satisfied should be determined. This
can be achieved either by synthesis techniques subject to even more
severe limitations than checking techniques or by using adaptive con-
trol techniques [2]. The latter allow on-line adaptation of the values by
monitoring system execution.

4.4 The Integration Wall — Mixed-Criticality Systems 319

4.4 The Integration Wall — Mixed-Criticality Systems

4.4.1 Mixed-Criticality Systems

Increasing systems integration inevitably leads to systems-of-systems of
mixed criticality that are geographically distributed, are heterogeneous
and use various communication media. A key issue for integration is
mastering interaction of critical and non-critical features and error con-
tainment. Preventing failures of non-critical components from affecting
the behavior of critical components raises difficult problems. However,
the theory with which to tackle them is lacking.

There exist several incarnations of this systems-of-systems vision.
The most general one is the Internet of Things which is intended
to develop global services by interconnecting everyday objects. One
instance of this vision is Smart Grids for efficient and reliable energy
management. Another instance is Intelligent Transport Systems to
improve safety and reduce vehicle wear, transportation times, and fuel
consumption.

Integration of mixed-criticality systems of guaranteed trustworthi-
ness is currently an unattainable goal. The main reason is that critical
systems and best-effort systems are developed following two completely
different and diverging design paradigms. We outline below the tech-
nical reasons leading to such a separation and identify avenues for
achieving enhanced integration.

4.4.2 The Issue of Predictability

Systems must provide a service meeting given requirements in interac-
tion with uncertain environments. Roughly speaking, uncertainty can
be characterized as the difference between average and extreme system
behavior. There are two main sources of uncertainty.

1. The system’s external environment : Non-determinism comes
either from inputs with time-varying characteristics (e.g.,
varying throughput) or from the fact that the external
environment is inherently complex and its behavior can be
understood and described only at some level of abstraction.

320 Existing Approaches and the State of the Art

How to figure out all possible security threats devised by an
experienced hacker?

2. The hardware execution platform: Hardware has inherently
non-deterministic behavior owing to manufacturing errors or
aging. It also exhibits time non-determinism since execution
times of even simple instructions cannot be precisely esti-
mated due to the use of memory hierarchies and speculative
execution. Depending on the size and the location of the data,
execution times can vary between a best-case execution time
(BCET) and a worst-case execution time (WCET) that may
be 10 times larger.

Uncertainty directly affects predictability, that is to say the degree
to which qualitative or quantitative system properties can be asserted.
Lack of predictability is further aggravated as exact analysis techniques
are impossible owing to non-computability of all essential system prop-
erties. For instance, timing analysis techniques allow upper approxima-
tions of WCET, which may be many orders of magnitude larger.

Uncertainty and the resulting non-predictability have a deep impact
on the way we design systems. They limit our ability to design complex
critical systems.

4.4.3 The Gap between Critical and Best-Effort
System Design

Currently, there exist two diverging system design paradigms.

1. Critical systems design focuses on ensuring satisfaction of
trustworthiness properties. It is based on worst-case analysis
of all the potentially dangerous situations. Currently, design
principles lead to over-provisioned systems. They consist in
statically reserving all the resources needed for safe or secure
operation. The amount of physical resources may be some
orders of magnitude higher than necessary. This incurs high
production costs as well as increased energy consumption.
For example, response times of a critical real-time system
must be guaranteed to be less than a given deadline. These

4.4 The Integration Wall — Mixed-Criticality Systems 321

are computed from safe approximations of the WCET of its
tasks which may be many orders of magnitude larger than
the real WCET. The resulting hardware platforms for such
systems are excessively over-dimensioned.
Another principle from critical systems engineering con-
sists in using massive redundancy to enhance reliability.
Redundancy techniques such as Triple Modular Redundancy
(TMR), entail high development and operational costs (e.g.,
energy consumption). They are appropriate only for hard-
ware when probabilities of failure in redundant components
are independent. With the increasing miniaturization of tran-
sition features, this assumption is less and less valid. Appli-
cation of TMR techniques to systems is costly as it requires
different versions of software in redundant components.

2. Best-effort design focuses primarily on meeting optimiza-
tion requirements of complex non-critical systems. It is based
on average-case analysis and dynamic resource management.
Designers apply QoS management techniques to optimize
speed, memory, bandwidth, and power. Physical resources
are provisioned for availability in nominal cases. In critical
situations, e.g., a spike in service demands, the system service
may be degraded or denied.

The separate design between critical and best-effort systems is a
means for coping with non-predictability by focusing on essential prop-
erties for each class of systems. Nonetheless, this separation may be
the source of hurdles, as attested by serious technical problems expe-
rienced by car manufacturers over the past decade. A modern car has
currently more than 50 ECUs (Electronic Control Units) which are
electronic components ensuring services of various levels of criticality.
These are coordinated by using federated architectures where ECUs
share and exchange information by using networks such as CAN or
Time-Triggered Networks. An advantage of these architectures is phys-
ical isolation between critical and less critical functions. Even so, poor
dependability of interconnect has a profound influence on the overall
system quality. Furthermore, there are many cost and weight arguments

322 Existing Approaches and the State of the Art

in favor of reducing the number of ECUs and interconnect by integrat-
ing different functions, developed by different suppliers, into a single
ECU. This leads to the concept of integrated architecture where a single
integrated distributed hardware base is used for the execution of jobs
from different subsystems [23].

Recently, a number of efforts have been made to develop integrated
architectures, including Integrated Modular Avionics (IMA) in the
aerospace domain and AUTOSAR in the automotive domain. Research
efforts should focus on jointly addressing trustworthiness and optimiza-
tion and seeking integrated solutions throughout system design.

5
Four Principles for Rigorous System Design

5.1 Rigorous System Design

A rigorous system design flow is a formal accountable and iterative
process for deriving trustworthy and optimized implementations from
application software and models of its execution platform and its exter-
nal environment. It relies on divide-and-conquer strategies involving
iteration on a set of steps and clearly identifying points where human
intervention and ingenuity are needed to resolve design choices as well
as segments that can be supported by tools to automate tedious and
error-prone tasks.

Rigorous system design is model-based: successive system descrip-
tions are obtained by application of correct-by-construction source-to-
source of a single expressive model rooted in well-defined semantics. An
additional demand is accountability, that is, the possibility to explain
which among the requirements are satisfied and which may not be
satisfied.

As explained in the Introduction, we advocate four principles for
rigorous system design discussed in detail below.

323

324 Four Principles for Rigorous System Design

5.2 Separation of Concerns

Separately addressing functional from extra-functional requirements is
essential from a methodological point of view. This also identifies two
main gaps in the design flow. First, application software is developed
that is correct with respect to the functional requirements. Then, a
correct implementation meeting both functional and extra-functional
requirements is derived by progressive refinement of the application
software taking into account features of the execution platform.

We discuss the main obstacles to be overcome for bridging these
gaps. We also identify relevant research directions for overcoming these
obstacles.

5.2.1 From Requirements to Application Software

In system software development the key issue is managing the complex-
ity resulting from interactions with the environment and amongst var-
ious subsystems. Using general-purpose programming languages, such
as C or Java, may be counter-productive and error-prone. These lan-
guages are adequate mainly for sequential transformational programs
computing functions. Existing programming languages and technology
should be improved in two directions:

Raising abstraction: Programming should get as close as possible to the
declarative style so as to simplify reasoning and relegate software gen-
eration to tools. There exist many approaches for enhanced abstraction
including logical, constraint-based, and functional programming. These
leave to interpreters or compilers that task of synthesizing executable
descriptions. In our opinion, for system design, the most adequate
abstractions are offered by automata-based formalisms. The latter
focus on system behavior description as a set of transitions involving
actions guarded by conditions, such as behavioral programming [18],
BIP, and scenario-based formalisms which capture a system’s behavior
as a set of scenarios from which behavior can be synthesized [26].

Support for System Programming : General-purpose programming
languages do not provide adequate support for concurrency and com-
munication. For systems we need powerful primitives encompassing

5.2 Separation of Concerns 325

direct description of different types of synchronization. Problems that
have straightforward solutions by using automata are hard to tackle
by using standard programming languages. For instance, programming
communicating automata in Java may involve several technical diffi-
culties because of intricate thread semantics and semantic variations of
the wait/notify mechanism.

To enhance software productivity and safety, system designers are
provided with Domain-Specific Languages (DSLs) dedicated to a par-
ticular problem domain, a particular problem representation technique,
and/or a particular solution technique. For instance, synchronous pro-
gramming languages, such as SCADE and Matlab/Simulink, are widely
used in the development of safety-critical control systems. Data-flow
programming models are advantageously used to develop multimedia
applications. They allow explicit description of task parallelism and
are amenable to schedulability analysis. Other examples of DSLs are
nesC, an extension to C designed to embody the structuring concepts
and execution model of the TinyOS platform for wireless sensor net-
works, and BEPL, an orchestration language for business processes and
services.

5.2.2 From Application Software to Implementation

In a model-based design approach, implementations should be derived
from a system model which faithfully describes the dynamic behavior
of the application software on the execution platform. A key idea is
to progressively apply source-to-source transformations to the applica-
tion software which: (1) refine atomic statements to express them as
sequences of primitives of the execution platform; (2) express synchro-
nization constraints induced by the resources on the refined actions;
and (3) associate with the refined actions parameters representing the
resources needed for their execution (e.g., execution times).

System models have, in addition to the variables of the applica-
tion software, state variables representing resources. These variables
are subject to two types of constraints:

• User-defined constraints which express requirements dealing
with reaction times, throughput, and cost, such as deadlines,

326 Four Principles for Rigorous System Design

periodicity, memory capacity, and power or energy limita-
tions.

• Platform-dependent constraints expressing the amount of
resources needed for executing actions such as execution
times and energy consumption.

When an action is executed, resource variables are updated accord-
ingly, in addition to software variables. Thus, states of system models
are valuations of variables of both the application software variables
and resource variables. Any execution sequence of a system model
corresponds modulo some adequate abstraction, to a sequence of its
application software.

Building faithful system models is still an unexplored and poorly
understood problem. Queuing network theory allows macroscopic
modeling based on architectural abstractions that cannot take into
account values of data and data-dependent choice. Detailed, albeit ad
hoc system models are usually written in languages such as systemC or
TLM. Nonetheless, these languages are not rooted in rigorous semantics
and it is impossible to establish faithfulness of models.

Clearly, owing to a lack of predictability, system models can only
approximate the behavior of the real systems they represent. As it is
impossible to precisely estimate the amount of resources needed for the
execution of an action from a given state, exact values are replaced by
bounds. For example, computing tight estimates of worst-case execu-
tion times is a hard problem that requires: (1) faithful modeling of the
hardware and features such as instruction pipelines, caches, and mem-
ory hierarchy and; (2) symbolic analysis techniques based on static
analysis and abstract interpretation. Owing to theoretical limitations,
the latter can compute only rough approximations of these bounds.

An additional difficulty is that incremental and parallel modification
of resource variables in a model should be consistent with physical laws
governing resources. For instance, physical time is steadily increasing
while in system models time progress may stop, block, or may involve
Zeno runs. This is a significant difference between model time and phys-
ical time. Physical time progress cannot be blocked. Deadline misses
occurring in the actual system correspond to deadlocks or time-locks

5.2 Separation of Concerns 327

in the relevant system model. Similarly, a lack of sufficient resources is
reflected in system models by the inability to execute actions. These
observations lead to the notion of feasibility of system models. System
model feasibility and associated analysis techniques deserve thorough
study.

An approach for analyzing model feasibility and better understand-
ing of the interplay between user-defined constraints and platform-
dependent constraints has been proposed for timed systems in [1].
The approach consists in comparing two system models: (1) an ideal
system model, representing the system’s behavior taking into account
user-defined constraints for unlimited resources; and (2) a physical
system model where both types of constraints are applied. For a given
ideal system model, many different physical models can be obtained
by changing the quantities of resources needed for the execution of
each action. Thus, a physical model is the ideal model equipped with a
function φ assigning to an action the quantity of resources needed for
its execution. The function 1/φ characterizes the performance of the
execution platform. For φ = 0 the two models coincide and performance
is infinite. For some function φ, a physical model can be considered as
a safe implementation of the ideal model if all its execution sequences
are also execution sequences of the ideal model. An interesting problem
is how to determine the worst performance ensuring safe implementa-
tions. Unfortunately, the intuitive idea that safety of implementation
is preserved for increasing performance turns out to be wrong. That
is if φ′ < φ, safety for φ does not imply safety for φ′, in general. This
phenomenon limits our capability to analyze system model feasibility.
When it relates to time-performance, it is called timing anomaly [31].
A direct consequence of timing anomalies is that safety for WCET
does not guarantee safety for smaller execution times. Preservation of
safety by time-performance is called time robustness in [1] where it is
shown that this property holds for deterministic models.

Resource robustness is essential for analyzing system models. It
captures a basic principle widely used in all areas of engineering.
As a rule, performance changes monotonically with resource param-
eters. For example, for a building, enhanced mechanical resistance is
achieved by increasing the strength of the materials of its components.

328 Four Principles for Rigorous System Design

Consequently, analysis for worst-case and best-case values of resource
parameters suffices to determine performance bounds.

Failure to determine more general robustness conditions would con-
cur with the thesis that predictability boils down to determinism.

5.3 Component-Based Design

Using components throughout a system design flow is essential for
enhanced productivity and correctness. Currently, system designers
deal with heterogeneous components, with different characteristics,
from a large variety of viewpoints, each highlighting the various dimen-
sions of a system. This contrasts with standard engineering practices
based on the disciplined composition of a limited number of types of
components. We advocate a common component framework for systems
engineering encompassing heterogeneous composition.

A key issue for the integration of languages used by system designers
is the definition of a general Common Component Model. There exist a
large number of component frameworks, including software component
frameworks, systems description languages, and hardware description
languages [3, 16, 36, 22, 12]. Nonetheless, despite an abundant litera-
ture and a considerable volume of research, there is no agreement on
a common concept of component. This is mainly due to heterogene-
ity of components and associated composition operations. There exist
various sources of heterogeneity [30]:

• Heterogeneity of computation: components may be syn-
chronous or asynchronous.

• Heterogeneity of interaction: various mechanisms are used
to coordinate the execution of components including
semaphores, rendezvous, broadcast, method call, etc.

• Heterogeneity of abstraction: components are used at differ-
ent abstraction levels from application software to its imple-
mentation.

• Heterogeneity of programming styles: components may be
actors (local control and disciplined communication) or
objects (transfer of locus of control).

5.3 Component-Based Design 329

We lack component frameworks based on a unified composition
paradigm for describing and analyzing coordination between com-
ponents in terms of tangible, well-founded, and organized concepts.
Coordination should be expressed by using architectural constraints
which are composition operators on components. Their meaning can be
defined by using operational semantics rules specifying the behavior of
a composite component as a function of the behavior of its constituent
components.

5.3.1 Needs and State of the Art

We need theory, models, and tools for the cost-effective building of
complex systems by assembling heterogeneous components.

System descriptions used along a design flow should be based on
a single semantic model to maintain its overall coherency by guaran-
teeing that a description at step n + 1 meets the essential properties
of a description at step n. The semantic model should be expressive
enough to directly encompass component heterogeneity. Existing theo-
retical frameworks for composition are based on a single operator (e.g.,
product of automata, function call). Poor expressiveness of these frame-
works may lead to complicated designs: achieving a given coordination
between components often requires additional components to manage
their interaction [5]. For instance, if the composition is by strong syn-
chronization (rendezvous), modeling broadcast requires components for
choosing the maximal amongst several possible strong synchroniza-
tions. We need frameworks providing families of composition operators
for a natural and direct description of coordination mechanisms such
as protocols, schedulers, and buses.

We discuss below general concepts and requirements for system
component frameworks formulated in [32].

5.3.2 Component Frameworks

A component framework consists of a set of atomic components B =
{Bi}i∈I and a glue GL = {glk}k∈K, set of operators on these compo-
nents. Atomic components are characterized by their behavior specified

330 Four Principles for Rigorous System Design

as a transition system. The glue GL includes general composition oper-
ators (behavior transformers).

The meaning of a glue operator gl can be specified by using a set
of operational semantics rules defining the transition relation of the
composite component gl(C1, . . . ,Cn) as a partial function of transition
relations of the composed components C1, . . . ,Cn. If from state si, com-
ponent Ci can perform an action ai by executing transitions of the form
si − ai → s′

i, then gl(C1, . . . ,Cn) can execute transitions of the form
(s1, . . . ,sn) − a → (s′′

1, . . . ,s
′′
n) where a is an interaction, a non-empty

subset of {a1, . . . ,an} such that s′′
i = s′

i if ai ∈ a and s′′
i = si, otherwise.

A technical definition for glue operators is provided in [5].
A component framework can be considered as a term algebra

equipped with a congruence relation ≈ compatible with strong
bisimulation on transition systems. A composite component is any
(well-formed) expression built from atomic components.

Moreover, glue operators must meet the following requirements:

(1) Incrementality : If a composite component is of the
form gl(C1,C2, . . . ,Cn) for n ≥ 2, then there exists glue
operators gl1 and gl2 such that gl(C1,C2, . . . ,Cn) ≈
gl1(C1,gl2(C2, . . . ,Cn)). Notice that incrementality is a kind
of generalized associativity. It requires that coordination
between n components can be expressed by first coordinat-
ing n − 1 components and then by coordinating the resulting
component with the remaining argument.

(2) Flattening : Conversely, if a composite component is of the
form gl1(C1,gl2(C2, . . . ,Cn)) then there exists an operator
gl such that gl1(C1,gl2(C2, . . . ,Cn)) ≈ gl(C1,C2, . . . ,Cn). This
property is essential for separating behavior from glue and
treating glue as an independent entity that can be studied
and analyzed separately.

It should be noted that almost all existing frameworks fail to meet both
requirements. Process algebras are based on two composition operators
(some form of parallel composition and hiding) which are orthogonal
to behavior, but fail to meet the flattening requirement. General com-
ponent frameworks, such as [14, 25], adopt more expressive notions of

5.3 Component-Based Design 331

composition by allowing the use of behavior for coordination between
components and thus do not separate behavior from interaction. Fur-
thermore, most of these frameworks are hardly amenable to formaliza-
tion through operational semantics.

Expressiveness: Comparison between different formalisms and models
is often made by flattening their structures and reducing them to behav-
iorally equivalent models (e.g., automata, Turing machine). This leads
to a notion of expressiveness which is not adequate for the comparison
of high-level languages. All programming languages are deemed equiv-
alent (Turing-complete) without regard to their adequacy for solving
problems. For component frameworks separation between behavior and
coordination mechanisms is essential.

A notion of expressiveness for component frameworks characteriz-
ing their ability to coordinate components is proposed in [5]. It allows
the comparison of two component frameworks with glues GL and GL′,
respectively, equipped with the same congruence relation ≈.

We say that GL′ is more expressive than GL if for any compos-
ite component gl(C1, . . . ,Cn) obtained by using gl ∈ GL there exists
gl′ ∈ GL′ such that gl(C1, . . . ,Cn) ≈ gl′(C1, . . . ,Cn). That is, any coor-
dination expressed by using GL can be expressed by using GL′. Such
a definition allows a comparison of glues characterizing coordination
mechanisms. For instance, is multiparty interaction by rendezvous more
expressive than broadcast?

There exists one most expressive component framework defined by
the universal glue GLuniv which contains all possible glue operators. An
interesting question is whether the same expressiveness can be achieved
with a minimal set of operators. Results in [5] bring a positive answer
to this question. It is shown that the glue of the BIP framework [30]
combining two classes of operators, interactions and priorities, is as
expressive as GLuniv. Furthermore, this glue is minimal in the sense
that it loses universal expressiveness if either interactions or priorities
are removed.

A consequence of these results is that most existing formal frame-
works using only interaction such as process algebras are less expressive.
It can be shown that they are even less expressive by using the following
weaker notion of expressiveness.

332 Four Principles for Rigorous System Design

GL′ is weakly more expressive than GL if for any compo-
nent gl(C1, . . . ,Cn) with gl ∈ GL there exist gl′ ∈ GL′ and a finite
set of atomic components {C′

1, . . . ,C
′
k} such that gl(C1, . . . ,Cn) ≈

gl′(C1, . . . ,Cn,C′
1, . . . ,C

′
k). That is, to realize the same coordination as

gl, additional behavior is needed. It can be shown that glues including
only interactions fail to match universal expressiveness even under this
definition [5]. Adding new atomic components does not suffice if the
behavior of the composed components is not modified.

Getting rid of the Babel syndrome: is it possible to find a rigorous
approach for dealing with components and their composition? It is hard
to bring precise technical answers to this question. Solutions should
be sought by proposing taxonomy of existing component frameworks
based on a single reference component model. The latter should be
expressively complete and rooted in well-defined semantics. Ideally, the
taxonomy should be obtained through specialization of the reference
component model by identifying types of atomic components and sets
of associated composition operators (glues).

5.4 Semantically Coherent Design

System designers deal with a variety of languages with different fea-
tures and characteristics including domain-specific languages, func-
tional or imperative programming languages, modeling, and simulation
languages. Consistent and effective use of such languages in a design
flow is essential for:

• preserving its overall coherency by relating system descrip-
tions and their properties for different abstraction levels and
purposes (validation, performance evaluation, code genera-
tion); and

• evaluating the impact of choices at different design steps.

System designers use multi-language frameworks consistently integrat-
ing programming and modeling languages and their associated sup-
porting tools. These include, in particular, DSLs which are high-level
languages encompassing specific programming models (e.g., data-flow,
event-driven, time-triggered, synchronous languages) in adequacy with
the application domain as well as the skills and culture of system

5.4 Semantically Coherent Design 333

developers. System development in plain procedural programming
languages (e.g., C and Java) may be counter-productive and error-
prone. Most of these languages lack formal operational semantics, their
meaning being defined by user manuals and their supporting tools.
Using semantically unrelated languages in a design flow breaks conti-
nuity of activities and jeopardizes its overall coherency.

To enforce coherency in design frameworks, their languages, DSLs in
particular, are translated into a common general-purpose programming
language like C, C++, or Java. The concept of embedding discussed
below defines a principle for structure-preserving language translation.

We consider two component-based languages H and L with well-
defined operational semantics. We assume that the terms (programs)
of these languages can be compared through a common congruence ≈
defined at semantic level and require that H is more expressive than L.

An embedding of L into H is defined as a two-step transformation
involving functions χ and σ, respectively.

• The first step is a homomorphism that fully preserves
the structure of the translated language. It takes into
account the “programmer’s view” of the language by trans-
lating all the coordination primitives explicitly manipulated
by the programmer. It consists in transforming a term t

of L into a term χ(t) ∈ H. The function χ is structure-
preserving. It associates with components and glue opera-
tors of L, components and glue operators of H so that: (1) if
B is an atomic component of L, then, χ(B) is an atomic
component of H; and (2) for any term t = gl(C1, . . . ,Cn) ∈ L,
χ(t) = χ(gl)(χ(C1), . . . ,χ(Cn)) ∈ H.

• The second step adds the glue and the behavior needed to
orchestrate the execution of the translated component χ(t),
by respecting the semantics of L. It consists in transforming
a term t ∈ L into a term σ(t) ∈ H, by using a semantics-
preserving function σ. The function σ can be expressed by
using two auxiliary functions σ1 and σ2 associating respec-
tively with any term t ∈ L its semantic glue σ1(t) and an
execution engine σ2(t) both expressed in H, so that σ(t) =
σ1(t)(χ(t),σ2(t)) ≈ t.

334 Four Principles for Rigorous System Design

Fig. 5.1 Embedding language L into the host language H.

Embeddings translate separately the coordination mechanism explicitly
handled by the programmer from additional coordination mechanisms
implied by the operational semantics. Figure 5.1 illustrates the concept
of embedding. On the left, the software written in L is a set of compo-
nents with their glue. The structured operational semantics (SOS) of L
defines an execution engine that coordinates the execution of compo-
nents as specified by the glue. The embedding preserves the structure
of the source. Atomic components of L are translated into atomic com-
ponents of H with additional ports. These are used by the additional
component representing the execution engine of L in H.

Embedding real executable languages is a non-trivial task as
it requires a formalization of their intuitive semantics. The inter-
ested reader can find in [30] papers dealing with the definition and
implementation of embeddings into BIP for languages such as nesC,
DOL, Lustre, and Simulink.

Figure 5.2 explains the principle of translation of the Lustre lan-
guage [16] through an example. Lustre is a synchronous data-flow

5.4 Semantically Coherent Design 335

+

pre

B+

Bpre

X Y x y

str

cmpY=X+pre(Y)
Program in Lustre Program in BIP

+

pre

B+

Bpre

X Y x y

str

cmpY=X+pre(Y)
Program in Lustre Program in BIP

Fig. 5.2 Embedding Lustre into BIP.

language. The meaning of a program is a system of recurrence equa-
tions. Programs can be represented as block diagrams consisting of
functional nodes that synchronously transform their input data streams
into output strings. A node computes a function by exhibiting cyclic
behavior: when a cycle starts, it reads its current input values and
computes the corresponding function.

The considered Lustre program is an integrator. The variables X

and Y represent flows which are sequences of integers. The + operator
computes the sum of its inputs. The pre-operator is a unit delay. It
is easy to see that the program computes the sum of the integer val-
ues of the input flow X = (x0,x1, . . . ,xi, . . .) and produces the output
flow Y = (x0,x0 + x1, . . . ,xi + xi−1 + · · · + x0, . . .), assuming that the
initial state of the pre-operator is 0.

The structure of the BIP program obtained through embedding is
shown on the left of the figure. There is a one-to-one correspondence
between the components of the two programs. The behavior of the
BIP components is modeled by event-driven automata B+ and Bpre

extended with data. The automata are synchronized by interactions
(rendezvous between actions). They explicitly represent the control
needed for the execution of each node. They synchronously start and
complete cycles by executing interactions str and cmp, respectively.
This simple example does not require extra coordination components
in the translated system. Notice that the translation preserves the
structure of the Lustre program. Data-flow connections are replaced by
interactions. Connectors str and cmp are used to model synchronous
execution of components which is implicit in Lustre.

336 Four Principles for Rigorous System Design

x↑ τ:=0

x↓ τ:=0

τ=1τ=1

y=0 y=0

y=1y=1

Fig. 5.3 Timed automaton representing a unit delay y(t) = x(t − 1).

Embedding languages for modeling physical systems such as Mod-
elica into an executable language raises additional problems. These
languages are declarative with continuous dynamics parameterized by
a common time parameter. They model systems as networks of intrin-
sically parallel components with data-flow connectors. When they are
translated into executable languages, their inherent parallelism is sim-
ulated by using a shared state variable representing time. All events
are dated by using a common time base.

To illustrate these difficulties, consider a unit delay equational spec-
ification y(t) = x(t − 1), where x and y are binary variables and t

is time. Its behavior can be represented by the timed automaton in
Figure 5.3 with four states, provided that there is at most one change
of x in one time unit. The automaton detects for the input x, rais-
ing edge (x ↑) and falling edge (x ↓) events and reacts within time
unit. Reaction times are enforced by using a clock τ . Notice that the
number of states and clocks needed to represent a unit delay by a timed
automaton increases linearly with the maximum number of changes
allowed for x in one time unit.

5.5 Correct-by-Construction Design

5.5.1 Principles

Correct-by-construction approaches are at the root of any mature engi-
neering discipline. They are scalable and do not suffer limitations of
correctness-by-checking. Testing may be still necessary, but its role is
to validate the correct-by-construction process rather than to find bugs.

5.5 Correct-by-Construction Design 337

System developers extensively use algorithms, protocols, and archi-
tectures that have been proven to be correct. They also use compilers
to get across abstraction levels and translate high-level languages
into (semantically equivalent) object code. All of these results and
techniques largely account for our ability to master complexity and
develop systems cost-effectively. Nonetheless, we still lack theory
and methods for combining them in principled and disciplined fully
correct-by-construction flows.

Essential Properties

We present principles for a correct-by-construction methodology focus-
ing on the preservation of two types of essential properties.

• Invariants are state predicates preserved by the transition
relation. If an invariant holds at some state, then it holds
at all its successor states. State invariants characterize sets
that are over-approximations of reachability sets. Notice that
composition by using glue operators preserves the invariants
of their arguments.

• Deadlock-freedom means that at least one action is enabled
from any reachable state. It is the weakest progress property.
Notice that composition of deadlock-free components does
not give a deadlock-free component, in general.

Restriction to these two types of properties is motivated by pragmatic
reasons. Most trustworthiness requirements can be captured as the con-
junction of essential properties. Preservation for other types of proper-
ties such as individual deadlock-freedom of components, liveness, and
quantitative properties seems to be far beyond the current state of the
art. From now on, the term “correctness” will refer to satisfaction of
these two types of properties.

We propose a methodology to ensure correctness by construction
gradually throughout the design process by acting in two different
directions:

• Horizontally, within a design step, by providing rules
for enforcing global properties of composite components

338 Four Principles for Rigorous System Design

(horizontal correctness) while preserving essential properties
of atomic components; and

• Vertically, between design steps to guarantee that if some
property is established at some step then it will be preserved
at all subsequent steps (vertical correctness).

5.5.2 Horizontal Correctness

Horizontal correctness addresses the following problem: for a given com-
ponent framework with set of atomic components B = {Bi}i∈I and glue
GL = {glk}k∈K, build a component C meeting a given property P, from
components of B.

The construction process of component C is bottom-up. Increas-
ingly, complex composite components are built from atomic compo-
nents by using glue operators. Two principles can be used in this process
to obtain a component meeting P: property enforcement and property
composability.

Property enforcement

Property enforcement consists in applying architectures to restrict the
behavior of a set of components, so that the resulting behavior meets
a given property. Depending on the expressiveness of the glue opera-
tors, it may be necessary to use additional components to achieve a
coordination to satisfy the property.

Architectures depict design principles, paradigms that can be under-
stood by all, allowing thinking on a higher plane and avoiding low-level
mistakes. They are a means for ensuring global properties character-
izing the coordination between components. Using architectures is key
to ensuring trustworthiness and optimization in networks, OS, middle-
ware, HW devices, etc.

System developers extensively use libraries of reference architec-
tures ensuring both functional and non-functional properties, for exam-
ple, fault-tolerant architectures, architectures for resource management
and QoS control, time-triggered architectures, security architectures,
and adaptive architectures. The proposed definition is general and can
be applied not only to hardware or software architectures but also to
protocols, distributed algorithms, schedulers, etc.

5.5 Correct-by-Construction Design 339

An architecture is a context A(n)[X] = gl(n)(X,D(n)), where gl(n) is
a glue operator and D(n) a set of coordinating components, with a
characteristic property P(n), parameterized by an integer n such that:

• A(n) transforms a set of components C1, . . . ,Cn into
a composite component A(n)[C1, . . . ,Cn] = gl(n)(C1, . . . ,Cn,
D(n)), by preserving essential properties of the composed
components, that is,

1. Deadlock-freedom: if components Ci, are deadlock-
free then An[C1, . . . ,Cn] is deadlock-free too;

2. Invariants: any invariant of a component Ci is also
an invariant of An[C1, . . . ,Cn].

• A(n)[C1, . . . ,Cn] meets the characteristic property P(n).

Architectures are partial operators as the interactions of gl should
match actions of the composed components. They are solutions to
a coordination problem specified by P by using a particular set of
interactions specified by gl. For instance, for distributed architectures,
interactions are point-to-point by asynchronous message passing. Other
architectures adopt a specific topology (e.g., ring architectures, hier-
archically structured architectures). These restrictions entail reduced
expressiveness of the glue operator gl that must be compensated
by using the additional set of components D for coordination. The
characteristic property assigns a meaning to the architecture that can
be informally understood without the need for explicit formalization
(e.g., mutual exclusion, scheduling policy, clock synchronization).

Property Composability :

In a design process, it is often necessary to combine more than one
architectural solution on a set of components to achieve a global prop-
erty. System engineers use libraries of solutions to specific problems
and they need methods for combining them without jeopardizing their
characteristic properties.

For example, a fault-tolerant architecture combines a set of features
building into the environment protections against trustworthiness
violations. These include: (1) triple modular redundancy mechanisms

340 Four Principles for Rigorous System Design

ensuring continuous operation in case of single component failure;
(2) hardware checks to be sure that programs use data only in their
defined regions of memory, so that there is no possibility of interfer-
ence; and (3) default to least privilege (least sharing) to enforce file
protection. Is it possible to obtain a single fault-tolerant architecture
consistently combining these features? The key issue here is feature
interaction in the integrated solution. Non-interaction of features is
characterized below as property composability based on our concept
of architecture.

Consider two architectures A1,A2, enforcing respectively properties
PA1,PA2 on a set of components C1, . . . ,Cn. That is, A1[C1, . . . ,Cn] and
A2[C1, . . . ,Cn] satisfy respectively the properties PA1, PA2. Is it possible
to find an architecture A(C1, . . . ,Cn) that meets both properties? For
instance, if A1 ensures mutual exclusion and A2 enforces a scheduling
policy, is it possible to find architectures on the same set of components
that satisfy both properties?

A theoretical solution to this problem can be formulated by showing
that the set of architectures satisfying a given property for a given set
of components {C1, . . . ,Cn} is a lattice equipped with a partial relation
〈 between architectures satisfying a given property. The top element
of the lattice is the most liberal architecture, that is, the architecture
enforcing no property. The bottom element represents all the coordi-
nation constraints that lead to deadlocked systems and thus do not
correspond to architectures. The partial order 〈 is defined by: A1〈A2 if
A1[C1, . . . ,Cn] satisfies a property P then A2[C1, . . . ,Cn] satisfies P. The
architecture satisfying both PA1 and PA2 can be defined as A1 ⊕ A2,
where ⊕ is a partial operation denoting the greatest lower bound of A1

and A2 if it is different from the bottom element of the architecture
lattice.

In [4] properties of the ⊕ operation on glue operators are studied and
applied for building incrementally correct-by-construction components.

To put this vision for horizontal correctness into practice, we need to
develop a repository of reference architectures. The repository should
classify existing architectures according to their characteristic prop-
erties. There exists a plethora of results on distributed algorithms,
protocols, and scheduling algorithms. Most of these results focus on

5.5 Correct-by-Construction Design 341

principles of solutions and discard essential operational details. Their
correctness is usually established by assume/guarantee reasoning: a
characteristic global property is implied from properties of the inte-
grated components. This is enough to validate the principle but does
not entail correctness of particular implementations. Often, these prin-
ciples of solutions do not specify concrete coordination mechanisms
(e.g., in terms of operational semantics), and ignore physical resources
such as time, memory, and energy. The reference architectures included
in the repository, should be

• described as executable models in the chosen component
framework;

• proven correct with respect to their characteristic properties;
and

• characterized in terms of performance, efficiency, and other
essential non-functional properties.

For enhanced reuse, reference architectures should be classified
according to their characteristic properties. A list of these properties
can be established; for instance, architectures for mutual exclusion,
time-triggered, security, fault-tolerance, clock synchronization, adap-
tive, scheduling, etc. Is it possible to find a taxonomy induced by
a hierarchy of characteristic properties? Moreover, is it possible
to determine a minimal set of basic properties and corresponding
architectural solutions from which more general properties and their
corresponding architectures can be obtained?

The example of the decomposition of fault-tolerant architectures
into basic features can be applied to other architectures. Time-triggered
architectures usually combine a clock synchronization algorithm and
a leader election algorithm. Security architectures integrate a variety
of mitigation mechanisms for intrusion detection, intrusion protection,
sampling, embedded cryptography, integrity checking, etc. Communica-
tion protocols combine sets of algorithms for signaling, authentication,
and error detection/correction. Is it possible to obtain by incremen-
tal composition of features and their characteristic properties, archi-
tectural solutions that meet given global properties? This is an open
problem whose solution would greatly enhance our capability to develop

342 Four Principles for Rigorous System Design

systems that are correct-by-construction and integrate only the features
needed for a target characteristic property.

5.5.3 Vertical Correctness

Moving downward in the abstraction hierarchy requires compo-
nent refinement. This can be achieved by transforming a composite
component gl(C1, . . . ,Cn) into an refined component A[C′

1, . . . ,C
′
n] =

gl′(C′
1, . . . ,C

′
n,D) preserving correctness of the initial system modulo

some observation criterion.
This transformation consists in refining the actions of components

C1, . . . ,Cn to obtain new components C′
1, . . . ,C

′
n. Action refinement in

some component Ci, consists in replacing an action a by its imple-
mentation as a sequence of actions str(a) . . . cmp(a). The first and
last elements of this sequence correspond respectively to the start and
the completion of the refined action. Action refinement also induces
a refinement of the state space of the initial components: new state
variables are introduced to control the execution of the refined actions.
The glue operator gl′ includes interactions involving refining actions.
It contains, in particular for each interaction a of gl, interactions str(a)
and cmp(a) corresponding to the start and the completion of a.

An instance of this problem is finding a distributed implementa-
tion for a system gl(C1, . . . ,Cn), where gl specifies multiparty interac-
tions between components. In that case, gl′ includes only point-to-point
interactions implementing asynchronous message passing coordinated
by an additional set of components D. These contain memory where
the exchanged messages are queued. Atomic actions of the initial com-
ponents are refined by sequences of send/receive actions implementing
a protocol.

The top of Figure 5.4 depicts, in the form of a Petri net, the
principle for this refinement which associates with gl(C1,C2) the sys-
tem gl′(C′

1,C
′
2,D), where gl consists of a single interaction a and

gl′ consists of the interactions str(a) (start a), rcv(a) (receive a),
ack(a) (acknowledge a), and cmp(a) (complete a). So, interaction a
is refined by the sequence: str(a)rcv(a)ack(a)cmp(a). The coordina-
tion component D contains two places for synchronization. The two

5.5 Correct-by-Construction Design 343

≥≥
str(a)

a

cmp(a)

rcv(a)

ack(a)

≥ab

str(a)

cmp(a)

rcv(a)

ack(a)cmp(b)

rcv(b)

ack(b)

C1

C1

C2
C’1 C’2D

C2C3
C’1 C’2C’3D13 D23

str(b)

Fig. 5.4 Interaction refinement by using Send/Receive primitives.

systems are observationally equivalent for the criterion that considers
as silent the interactions str(a), rcv(a) and ack(a) and associates cmp(a)
with a.

We say that S′ = gl′(C′
1, . . . ,C

′
n,D) refines S = gl(C1, . . . ,Cn),

denoted by S ≥ S′, if

(1) All traces of S′ are traces of S modulo the observation crite-
rion associating with each interaction of S the corresponding
finishing interaction in S′;

(2) If S is deadlock-free then S′ is deadlock-free; and
(3) The relation ≥ is stable under substitution, that is for

any systems S1, S2 and any architecture A: S1 ≥ S2

implies A[S1,X] ≥ A[S2,X] where X is an arbitrary tuple of
components.

Notice that in this definition we require only the inclusion of the
observable traces. Nonetheless, condition 2 guarantees preservation of
deadlock-freedom and precludes emptiness of the set of the traces
of S′. The stability of ≥ under substitution is essential for reusing

344 Four Principles for Rigorous System Design

C’1 C’2

C1 C2

C1 C2

≥

≥

C’1 C’2

Fig. 5.5 Stability of the refinement relation under substitution.

refinements and correctness-by-construction. As a rule, proving this
property requires non-trivial inductive reasoning on the structure of
the terms representing systems. Figure 5.5 depicts the stability rule.

Preservation of semantics under action refinement has been exten-
sively studied (e.g., [34]). Nevertheless, existing results have been devel-
oped for less expressive frameworks (e.g., process algebras). As already
pointed out in the literature, a key issue for refinement stability is
how causality and conflict relations between interactions of A[S1,X] are
inherited in A[S2, X]. A conflict resolution between two interactions a1,
a2 of A[S1, X] is resolved by choosing and executing atomically one of
these actions. The same conflict in A[S2, X] is resolved between inter-
actions str(a1) and str(a2) without taking into account the possibility
of completion of the corresponding execution sequence. The example at
the bottom of Figure 5.4 shows non-stability of the refinement relation
provided at the top. The refinement of interactions a and b in the sys-
tem consisting of three components C1, C2, and C3 gives a system with
a potential deadlock. For the initial state shown in Figure 5.4, only
interaction b is possible while the refined system can block if bgn(a) is
selected and executed.

To attain this vision for vertical correctness, we need to develop
component-refinement theory and tools to allow moving down-

5.6 Putting Rigorous System Design into Practice in BIP 345

stream in the abstraction hierarchy from application software to an
implementable system model. Application software usually involves
high-level primitives supporting abstractions such as:

• atomicity of interactions between components — in
particular multiparty interaction; and

• a logical notion of time assuming zero-time actions and syn-
chrony of execution with respect to the physical environment.

The generated system model should be obtained as a refinement of
application software parameterized by a mapping associating: (1) com-
ponents of application software to processing elements of the platform;
(2) data of the application software with memories of the platform;
and (3) interactions of the application software with execution paths
or protocols of the platform.

5.6 Putting Rigorous System Design into Practice in BIP

We show how the principles and technical ideas advocated in previous
sections have been implemented in a system design flow supported by
the BIP framework.

Figure 5.6 illustrates a rigorous system design flow that uses BIP as
a unifying semantic model to ensure coherency between the different
design steps. The design flow involves four distinct steps that translate
the application software into a BIP model and progressively derive an
implementation by applying source-to-source transformations. These
ensure vertical correctness by construction as the obtained BIP models
are refinements of the original model. In particular, they preserve the
application software’s safety properties. The D-Finder compositional
verification tool is used for checking essential safety properties of the
application software.

The translation of the application software into BIP is by embedding
as explained in 5. The development of embedding tools focuses on the
coordination mechanisms of the source language and the definition of
adequate interfaces for atomic components. It encapsulates and reuses
the application software’s data structures and functions. BIP model
generators are available for DSLs such as Lustre, Simulink, nesC, and

346 Four Principles for Rigorous System Design

Integration of

Architectural Constraints

Code Generation
Integration of

Communication Glue

RequirementsRequirements

D-Finder

Performance
Analysis

Embedding

Application SW
Model in BIP

Deployable Code Distributed System Model

in S/R-BIP

System Model in BIP

MappingExecution Platform
Model

Application SW

D-Finder

Fig. 5.6 BIP design flow. An implementation — that is, deployable code — is generated
from the application software, a model of the execution platform, and a mapping.

DOL. The generated BIP models preserve the structure of the initial
programs, their size is linear with respect to the initial program size,
and they are easy for the system developers to understand.

Functional correctness of the application software model can be
checked using the D-Finder tool. D-Finder applies symbolic compo-
sitional verification heuristic techniques by using invariants. It com-
putes increasingly stronger invariants for composite components as con-
junctions of invariants of atomic components’ and interaction invari-
ants. The former are computed by application of static analysis tech-
niques to atomic components. The latter are computed from abstrac-
tions of the composite component to be verified. They characterize the
way glue operators restrict the product space of the composed atomic
components.

We recently improved this method to take advantage of the
incremental system design process, which proceeds by adding new
interactions to a component under construction. Each time a new

5.6 Putting Rigorous System Design into Practice in BIP 347

interaction is added, it is possible to verify whether the resulting
component violates a given property and so discover design errors
as they appear. The incremental verification technique uses sufficient
conditions to ensure the preservation of invariants when new interac-
tions are added during the component construction process. If these
conditions are not satisfied, D-Finder generates new invariants by
reusing invariants of the constituent components. Reusing invariants
considerably reduces the verification effort.

Experimental results on standard benchmarks show that D-Finder
can run exponentially faster than existing monolithic verification tools,
such as NuSMV.

To generate system models and implementations from the applica-
tion software, we use an extensible toolset including source-to-source
transformers and compilers as depicted in Figure 5.7. The BIP toolset
offers several compilation chains, targeting different execution plat-
forms. To implement BIP on single-core platforms we use engines —
dedicated middleware for the execution of the C++ code generated

Distributed Computing Infrastructure

C nesC DOL Lustre Simulink
BIP

Parser
Language
Factory

Embedding Tool s

Verification
D-Finder

BIP Compiler

BIP model

S/R BIP
model

C++ generator
(engine-based)

Distributed BIP
generator

C/C++ C/C++

Code generation
and runtimes

BIP Runtime Engine

BIP
executable

C/C++ C/C++

BIP
executable

S2S
Transformers

Platform
model

BIP
executable

BIP
executable

BIP metamodel

Model Repository

Fig. 5.7 BIP toolset. It includes translators from various programming models, verification
tools, source-to-source transformers, and C/C++ code generators for BIP models.

348 Four Principles for Rigorous System Design

from BIP descriptions. The BIP toolset currently provides two engines:
one for real-time single-thread and one for multi-thread execution. For
multi-thread execution, each atomic component is assigned to a thread,
with the engine itself being a thread. Communication occurs only
between atomic components and the engine — never directly between
different atomic components.

Source-to-source transformations in BIP are intended to derive from
the application software model, correct system models taking into
account features of the execution platform. They combine hardware-
driven and distribution-driven transformations.

Hardware-driven transformations allow the generation of a system
model from hardware architecture and a mapping associating compo-
nents of the source model with processing elements of the platform
and data of the source model with memory of the hardware platform.
The generation process is parameterized by choices regarding possible
scheduling and arbitration policies. It also uses a library of hardware-
dependent components providing models of physical and middleware
components [8].

Distribution-driven transformations generate S/R-BIP models, a
subclass of models in which protocols using Send/Receive primitives
replace multiparty interactions [7].

We explain below the principle of distribution-driven transforma-
tions. These are applied to BIP models with a user-defined partition
of their interactions. The number of blocks of the partition determines
the degree of parallelism between interactions. The initial model is
transformed into an S/R-BIP model structured in three hierarchically
structured layers. Each layer is obtained by a corresponding transfor-
mation:

1. The component layer consists of the original model’s atomic
components in which each port involved in strong interac-
tions is replaced by a pair consisting of a send and a receive
port.

2. The interaction protocol layer consists of a set of components,
each of which manages a block of the interactions’ partition.
Each component detects whether the associated interactions

5.6 Putting Rigorous System Design into Practice in BIP 349

are enabled and executes them after resolving conflicts either
locally or with assistance from the third layer.

3. The conflict resolution protocol layer implements a dis-
tributed algorithm for resolving conflicts as requested by the
interaction protocol layer. It basically solves a committee
coordination problem, that can be solved by using either a
fully centralized arbiter or a distributed one e.g., token-ring
or dining philosophers algorithm.

These transformations have been proven correct by construction. They
are based on the generic and modular reuse of protocols described as
architectures in BIP. The degree of parallelism of the distributed model
depends on the choice of both the interactions’ partition and the conflict
resolution protocol.

Given the three-layer S/R-BIP model and a mapping of its atomic
components on processors, we can generate either an MPI program or
a set of plain C/C++ programs that use TCP/IP communication. This
generation process statically composes atomic components running on
the same processor to obtain a single observationally equivalent com-
ponent, and reduce coordination overhead at runtime.

6
A System-Centric Vision for Computing

In this section, we discuss four issues raised by a system-centric vision
for computing.

• How can computing systems engineering be linked to other
systems engineering theories and practices? Establishing
links can mutually enrich and cross-fertilize engineering disci-
plines. Furthermore, this is essential for matching the needs
for increasing immersion of the cyber-world in human and
physical environments.

• Is design central to computing? Today, large computing sys-
tems are developed in an ad hoc manner without caring
so much about disciplined and rigorous design. Currently,
empiricism is gaining ground and becoming the dominant
doctrine in large system development. In our opinion, sooner
or later, it will hit the wall of trustworthy and cost-effective
systems integration.

• What are the limits of understanding and mastering the
Cyber-world? Awareness of current limitations should allow
the finding of avenues for overcoming them as much as pos-
sible or mitigating their effects.

350

6.1 Linking Computing to Other Disciplines 351

• What type of theory is the most adequate for system design?
Can mathematical elegance and practical relevance be rec-
onciled?

6.1 Linking Computing to Other Disciplines

The increasing immersion and interaction of computing systems with
both physical and societal systems inevitably poses the problem of
the very nature of computing and its relationship with other scientific
disciplines. How can the interplay between different types of systems
(physical, computing, biological) be understood and mastered? To what
extent can multi-disciplinary approaches enrich computing with new
paradigms and concepts?

Computing is a scientific discipline in its own right with its own con-
cepts and paradigms. It deals with problems related to the represen-
tation, transformation, and transmission of information. Information
is an entity distinct from matter and energy. It is defined as a rela-
tionship involving the syntax and the semantics of a given language.
By its nature, it is immaterial but needs media for its representation.
The concept of information should not be confused with “syntactic
information” which is a quantity characterizing the minimal amount
of resources needed for a representation (e.g., number of bits or the
complexity of computational resources).

Computing is not merely a branch of mathematics. Just as any other
scientific discipline, it seeks validation of its theories on mathematical
grounds. But mainly, and most importantly, it develops specific theory
intended to explain and predict properties of systems that can be tested
experimentally.

The advent of embedded systems brings computing closer to
physics. Linking physical systems and computing systems requires a
better understanding of differences and points of contact between them.
Is it possible to define models of computation encompassing quanti-
ties such as physical time, physical memory, and energy? Significant
differences exist in the approaches and paradigms adopted by the two
disciplines.

352 A System-Centric Vision for Computing

Classical physics is primarily based on continuous mathematics
while computing is rooted in discrete non-invertible mathematics. It
focuses mainly on the discovery of laws governing the physical world
as it is, while computing is rooted in a priori concepts and deals with
building artifacts. Physical laws are declarative by their nature. Phys-
ical systems are specified by differential equations involving relations
between physical quantities. The essence of basic physical phenomena
can be captured by simple linear laws. They are, to a large extent,
deterministic and predictable. Synthesis is the dominant paradigm in
physical systems engineering. We know how to build artifacts meeting
given requirements (e.g., bridges or circuits), by solving equations
describing their behavior. By contrast, state equations of very simple
computing systems, such as an RS flip-flop, do not admit linear
representations in any finite field. Computing systems are described in
executable formalisms such as programs and machines. Their behavior
is intrinsically non-deterministic. Non-decidability of their essential
properties implies poor predictability.

Despite these differences, both disciplines share a common objective
which is the study of dynamic systems. We attempt below a comparison
for a simplified notion of dynamic system. A dynamic system can be
described by a set of equations of the form X ′ = f(X,Y) where X ′ is a
“next state” variable, X is the current state and Y is the current input
of the system. For physical systems the variables are usually real-valued
functions of a single real-valued time parameter while for computing
systems the variables range over discrete domains. The next state vari-
able X ′ is typically dX/dt for physical systems, while for computing
systems it denotes the state of the system in the next computation step.

Figure 6.1 shows a program computing the GCD of two integer
variables and a mass–spring system. The operational semantics of the
programming language associate with the program a next-state func-
tion, while the solution of the differential equation describes the move-
ment of the mass. The reachable states of the program are characterized
by the invariant GCD(x,y) = GCD(x0,y0) where x0,y0 are the initial
values of x and y, respectively. This invariant can be used to prove that
the program is correct if it terminates. In exactly the same manner, the

6.1 Linking Computing to Other Disciplines 353

Fig. 6.1 Dynamic systems and laws characterizing a GCD program and a spring–mass
system.

law of conservation of energy 1/2kx2
0 − 1/2kx2 = 1/2 kv2 characterizes

the movement of the mass as a function of its distance from the origin,
its initial position, and its speed.

This example illustrates remarkable similarities and also highlights
some significant differences. Computing systems can be certainly con-
sidered as scientific theories. However, they are subject to specific laws
that are not easy to discover. Computing program invariants is a well-
known non-tractable problem. On the contrary, all physical systems,
and electromechanical systems in particular, are subject to uniform
laws governing their behavior. Another important difference is that for
physical systems, variables are all functions of a single time parame-
ter and this drastically simplifies their specification and analysis. For
instance, operations on variables are defined on streams of values while
operations of computing system variables are on single values. From
this point of view, physical systems are closer to synchronous comput-
ing systems. However, models of computation do not have a built-in
notion of time. The latter can be, of course, represented as a state
variable (clock). Nonetheless, clock synchronization can be achieved
only at some degree of precision and is algorithmically expensive. As
already discussed in Section 5.2.2, this computational notion of time
as a state variable explicitly handled by a system, significantly differs
from physical time modeled as an ever-increasing time parameter.

Computing enriches our knowledge with theory and models enabling
a deeper understanding of discrete dynamic systems. It proposes a con-
structive and operational view of the world which complements the
classic declarative approach adopted by physics.

354 A System-Centric Vision for Computing

Living organisms intimately combine physical and computational
processes that have a deep impact on their development and evolu-
tion. They share several characteristics with computing systems such
as the use of memory, the distinction between hardware and software,
and the use of languages. However, some essential differences exist.
Computation in living organisms is robust, has built-in mechanisms for
adaptivity and, most importantly, it allows the emergence of abstrac-
tions and concepts.

I believe that these differences delimit a gap that is hard to be
filled by actual models of computing systems. At the same time, they
determine challenges for research in computing and can inspire ground-
breaking paradigm shifts that could liberate computing from its current
limitations.

6.2 Rigorous Design versus Controlled Experiments

The need for rigorous design is sometimes directly or indirectly ques-
tioned by developers of large-scale systems (e.g., web-based systems).
These systems of overwhelming complexity have been built incremen-
tally in an ad hoc manner. Their behavior can be studied only empiri-
cally by testing and through controlled experiments. The key issue is to
determine trade-offs between performance and cost by iterative tuning
of parameters. Currently, a good deal of research on web-based systems
privileges an analytic approach that aims to find laws that generate or
explain observed phenomena rather than to investigate design princi-
ples for achieving a desired behavior. It is reported in [17] that “On
line companies don’t anguish over how to design their Web sites.
Instead they conduct controlled experiments by showing different ver-
sions to different groups of users until they have iterated to an optimal
solution” .

This trend calls for two remarks.

• In contrast to physical sciences, computing is predominantly
synthetic. Its main goal is to develop theory, methods, and
tools for building trustworthy and optimized systems. Con-
sidering the cyber-universe as a “given reality” driven by

6.3 The Limits of Understanding and Mastering the Cyber-world 355

its own laws and privileging analytic approaches for their
discovery and study, is epistemologically absurd and can have
only limited scientific impact. The physical world is the result
of a long and well-orchestrated evolution. It is governed by
simple laws. To quote Einstein, “the most incomprehensible
thing about the world is that it is at all comprehensible”. The
trajectory of a projectile under gravity is a parabola which is
a very simple and easy to understand law. There is nothing
similar about the traces of computing systems.

• Ad hoc and experimental approaches can be useful only for
optimization purposes. Trustworthiness is a qualitative prop-
erty and by its nature, it cannot be achieved by the fine tun-
ing of parameters. Small changes can have a dramatic impact
on safety and security properties.

6.3 The Limits of Understanding and Mastering
the Cyber-world

As pointed out in the Introduction, proceduralization of declara-
tive specifications is intractable. This seriously limits our ability to
transform requirements into provably correct programs. An interesting
question is finding domain-specific declarative languages whose expres-
siveness does not completely compromise tractability of synthesis.

Abstraction hierarchies are a methodological simplification of the
real world to cope with its inherent complexity and better figure our
relevant properties at different levels of observation. They are used in
all scientific disciplines to determine successive levels of granularity of
observation at which system properties can be studied (Figure 6.2).
Theory should allow the prediction of how properties at some level are
reflected upstream or downstream in the hierarchy. When we move to a
higher abstraction level, new properties may emerge which are intrinsic
to this level. Emerging properties at some level cannot be inferred only
from properties of lower levels. Mutual exclusion on a set of tasks cannot
be inferred from individual properties of the tasks for the same reason
as the properties of a molecule of water cannot be solely deduced from
properties of hydrogen and oxygen atoms.

356 A System-Centric Vision for Computing

The Physical Hierarchy

The Universe

Galaxy

Solar System

Electro-mechanical System

Crystals-Fluids-Gases

Molecules

Atoms

Particles

The Computing Hierarchy

The Cyber-world

Networked System

Reactive System

Virtual Machine

Instruction Set Architecture

Integrated Circuit

Logical Gate

Transistor

The Bio-Hierarchy

Organism

Organ

Tissue

Cell

Protein and RNA networks

Protein and RNA

Genes

Ecosystem

Fig. 6.2 Abstraction hierarchies for physical, computing, and biological systems.

Within the computing systems globe, it is essential to develop
theory methods and tools for climbing up and down the cyber-
hierarchy. How can energy-efficiency influence the way we are program-
ming? Which models most adequately feature system behavior at each
abstraction level? How can models and their properties, at different
abstraction levels, be related through well-founded abstraction rela-
tions? These problems remain unsolved and will probably remain open
for quite a long time. Their answers will largely determine our ability
to master the cyber-physical world.

Naturally, discreteness of computation and uncertainty seriously
compromise our ability to guarantee correctness. Traditional engineer-
ing amply relies on robust system behavior: small changes of parame-
ters within an interval of values have commensurable effects. Owing to
the discreteness of computation, qualitative properties are not robust.
Safety or security properties may be jeopardized by the slightest hard-
ware or software modification. Even quantitative properties such as
performance are not robust because of non-determinism and uncer-
tainty (e.g., timing anomalies).

We need theory and methods for enhancing robustness of computing
systems. For trustworthiness properties, a mitigation of failures can

6.4 The Quest for Mathematically Tractable and Practically Relevant Theory 357

be achieved either by using redundancy techniques or monitoring at
runtime. For quantitative properties, we need a deeper understanding
of the interplay between their predictability and uncertainty.

6.4 The Quest for Mathematically Tractable and
Practically Relevant Theory

The proper goal of theory in any field is to make models that accurately
describe real systems. Models can be used to explain phenomena and
predict system behavior. They should help system builders do their
jobs better.

There is currently a harmful separation between theoretical and
applied research in computing.

Theoretical research has a predilection for mathematically clean
theoretical frameworks, no matter how relevant they can be. Many
theoretical frameworks and results are “low-level” and have no point
of contact with real computing. They are mainly based on transition
systems which are structure-agnostic and cannot account for phenom-
ena such as coordination and communication. They can be badly lifted
from semantic to syntactic level. They certainly can provide a deep
insight into hard problems raised by correct system design but they fail
to provide a basis for practicable and scalable techniques. We believe
that theoretical research should be refocused to address system design
challenges at the right level of abstraction by eventually sacrificing
mathematical elegance for practicality.

A quite different attitude is adopted by practically oriented research.
Existing frameworks for programming or modeling real systems are con-
structed in an ad hoc manner. They are obtained by putting together
a large number of semantically unrelated constructs and primitives. It
is practically impossible to get any rigorous formalization and build
any useful theory for such frameworks. It is also problematic to assim-
ilate and master their concepts by reading manuals of hundreds of
pages. System development remains by far an art owing to unharnessed
expressiveness and the fuzzy semantics of existing frameworks. Lack of
rigorousness is routinely compensated by tricks, hacks, and other mag-
ics that are beyond any scientific explanation and analysis.

358 A System-Centric Vision for Computing

We need theoretical frameworks that are expressive, make use of a
minimal set of high-level concepts and primitives for system description,
and that are amenable to formalization and analysis.

Is it possible to find a mathematically elegant and still practicable
theoretical framework for computing systems? As explained, we cannot
expect to have theoretical settings as beautiful and as powerful as those
for physical systems. One profound reason is that computing systems
are human artifacts while the physical systems are the result of a very
long evolution.

In contrast to physical sciences which focus mainly on the discov-
ery of laws, computing should focus mainly on developing theory for
system “constructivity” and predictability. Design is central to the dis-
cipline. Awareness of its centrality is a chance to reinvigorate research,
and build new scientific foundations matching the needs for increasing
system integration and new applications.

There already exists a large body of constructivity results such as
algorithms, architectures, and protocols. Their application allows cor-
rectness for (almost) free. How can global properties of a composite
system be effectively inferred from the properties of its constituents?
This remains an old open problem that urgently needs answers. Failure
to bring satisfactory solutions will be a limiting factor for system inte-
gration. It would also mean that computing is definitely relegated to
second-class status with respect to other scientific disciplines.

Acknowledgments

The presented vision presented amply relies on theory, and exper-
imental results developed by the BIP team. I would like to thank
in particular Saddek Bensalem, Marius Bozga, Jacques Combaz, and
Simon Bliudze for their contribution to the development of the BIP
framework.

The paper has benefited from constructive comments and criticism
by Peter Denning and two anonymous reviewers.

359

References

[1] T. Abdellatif, J. Combaz, and J. Sifakis, “Model-based implementation of real-
time applications,” EMSOFT, pp. 229–238, 2010.

[2] K. J. Astrom and B. Wittenmark, Adaptive Control. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., 2nd ed., 1994.

[3] Beck, Kent; et al., Manifesto for Agile Software Development. Agile Alliance,
2001.

[4] S. Bensalem, M. Bozga, A. Legay, T.-H. Nguyen, J. Sifakis, and R. Yan, “Incre-
mental component-based construction and verification using invariants,” in
FMCAD, pp. 257–256, Lugano, Switzerland, October 20–23 2010.

[5] S. Bliudze and J. Sifakis, “A Notion of Glue Expressiveness for Component-
Based Systems,” Lecturer Notes in Computer Science, vol. 5201, pp. 508–522,
2008.

[6] P. Bogdan and R. Marculescu, “Towards a science of cyber-physical systems
design,” Proceeding ICCPS ’11 Proceedings of the 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems, pp. 99–108.

[7] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis, “From high-
level component-based models to distributed implementations,” EMSOFT,
pp. 209–218, 2010.

[8] P. Bourgos, A. Basu, M. Bozga, S. Bensalem, J. Sifakis, and K. Huang, “Rig-
orous system level modeling and analysis of mixed HW/SW systems,” MEM-
OCODE, pp. 11–20, 2011.

[9] M. Butler, M. Leuschel, S. L. Presti, and P. Turner, “The use of formal methods
in the analysis of trust (Position Paper),” Lecture Notes in Computer Science,
vol. 2995/2004, pp. 333–339, 2004.

360

References 361

[10] G. Buttazzo, Hard Real-Time Computing Systems, Predictable Scheduling Algo-
rithms and Applications. Real-Time Systems Series, Springer, vol. 24, 2001.

[11] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking: Algorithmic
verification and debugging,” CACM, vol. 52, no. 11, November 2009.

[12] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke, “Breaking up is hard to do:
An evaluation of automated assume-guarantee reasoning,” ACM Transactions
on Software Engineering and Methodology, vol. 17, no. 2, 2008.

[13] P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling cyber-physical
systems,” Proceedings of the IEEE (special issue on CPS), vol. 100, no. 1,
pp. 13–28, January 2012.

[14] D. Garlan, R. Monroe, and D. Wile, “Acme: An architecture description inter-
change language,” in Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON 97), pp. 169–183, IBM
Press, 1997.

[15] D. Q. Goldin, S. A. Smolka, P. C. Attie, and E. L. Sonderegger, “Turing
machines, transition systems, and interaction,” Information and Computation,
vol. 194, no. 2, pp. 101–128, November 2004.

[16] N. Halbwachs, Synchronous Programming of Reactive Systems. Kluwer Aca-
demic Pub., 1993.

[17] T. Hannay, “The controlled experiment,” in This Will Make You Smarter,
(J. Brockman, ed.), Happer Perennial.

[18] D. Harel, A. Marron, and G. Weiss, “Behavioral programming,” Communica-
tions of the ACM, vol. 55, no. 7, July 2012.

[19] T. A. Henzinger and J. Sifakis, “The discipline of embedded systems design,”
COMPUTER, vol. 40, pp. 36–44, 2007.

[20] H. Hoos, “Programming by optimization,” Communications of the ACM,
vol. 55, no. 2, February 2012.

[21] International Council on Systems Engineering (INCOSE), Systems Engineering
Handbook Version 3.1. August 2007.

[22] H. Kopetz, “The rationale for time-triggered ethernet,” Proceedings of the 29th
IEEE Real-Time Systems Symposium.

[23] H. Kopetz, R. Obermaisser, C. E. Salloum, and B. Huber, “Automotive soft-
ware development for a multi-core system-on-a-chip,” Fourth International
Workshop on Software Engineering for Automotive Systems (SEAS’07), 2007.

[24] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings of the
IEEE, vol. 83, no. 5, pp. 773–801, May 1995.

[25] J. Magee and J. Kramer, “Dynamic structure in software architectures,” in
Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of Software
Engineering (SIGSOFT 96), pp. 3–14, ACM Press, 1996.

[26] S. Maoz, D. Harel, and A. Kleinbort, “A compiler for multimodal scenarios:
Transforming LSCs into AspectJ, September 2011,” Transactions on Software
Engineering and Methodology (TOSEM), vol. 20, no. 4.

[27] D. H. Mcknight and N. L. Chervany, “The meanings of trust,” Trust in Cyber-
Societies-LNAI, pp. 27–54, 2001.

[28] R. A. D. Millo, R. J. Lipton, and A. J. Perlis, “Social Processes and Proofs of
Theorems and Programs,” CACM, vol. 22, no. 5, May 1979.

362 References

[29] D. K. Mulligany and F. B. Schneider, “Doctrine for Cybersecurity,” Technical
Report, Cornell University, May 2011.

[30] Rigorous Design of Component-Based Systems — The BIP Component
Framework: http://www-verimag.imag.fr/Rigorous-Design-of-Component-
Based.html.

[31] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and
B. Becker, “A definition and classification of timing anomalies,” in Sixth Inter-
national Workshop on Worst-Case Execution Time (WCET) Analysis, Dres-
den, Germany, July 4 2006.

[32] J. Sifakis, “A framework for component-based construction,” in IEEE Inter-
national Conference on Software Engineering and Formal Methods (SEFM05),
pp. 293–300, Koblenz, September 7–9 2005.

[33] SOFTWARE 2015: A national software strategy to ensure U.S. security and
competitiveness report of the 2nd national software summit, April 29, 2005.

[34] R. J. van Glabbeek, “Ursula Goltz: Refinement of actions and equiva-
lence notions for concurrent systems,” Acta Information, vol. 37, no. 4/5,
pp. 229–327, 2001.

[35] J. van Leeuwen and J. Wiedermann, “The turing machine paradigm in
contemporary computing,” in Mathematics Unlimited — 2001 and Beyond,
(B. Enquist and W. Schmidt, eds.), LNCS, Springer-Verlag, 2000.

[36] D. A. Watt, B. A. Wichmann, and W. Findlay, “Ada: Language and Method-
ology,” 1987.

