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Abstract
BIP is a component-based framework for system design built on three pillars: behavior, interaction,

and priority. In this paper, we introduce first-order interaction logic (FOIL) that extends BIP without
priorities to systems parameterized in the number of components. We show that FOIL captures classical
parameterized architectures such as token-passing rings, cliques of identical components communicating
with rendezvous or broadcast, and client-server systems.

Although the BIP framework includes efficient verification tools for statically-defined systems, none
are available for parameterized systems with an unbounded number of components. On the other hand,
the parameterized model checking literature contains a wealth of techniques for systems of classical ar-
chitectures. However, application of these results requires a deep understanding of parameterized model
checking techniques and their underlying mathematical models. To overcome these difficulties, we intro-
duce a framework that automatically identifies parameterized model checking techniques applicable to a
BIP design. To our knowledge, this is the first framework that allows one to apply prominent parameter-
ized model checking results in a systematic way.
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1 Introduction

Design, manufacture and verification of large scale complex hardware/software systems (e.g., cyber-
physical systems) remains a grand challenge in system design automation [25]. To address this
challenge, the rigorous system design methodology [24] and the behaviour-interaction-priority (BIP)
framework [4] have been recently proposed. BIP comes with a formal framework and a toolchain.
The BIP framework has well-defined semantics for modeling system behavior and architectures. The
BIP toolchain supports verification of high-level system designs and automatic system synthesis of
low-level implementations from high-level system designs.

The existing BIP tools focus on design and verification of systems with a fixed number of commu-
nicating components [5, 22]. However, many distributed systems are designed with parameterization
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in mind. For instance, the number of components in the system is not typically fixed, but varies
depending on the system setup. In this case, one talks about parameterized verification, where the
number of components is a parameter.

Model checking is a pragmatic approach to verification that has found many applications in
industry, e.g., see [19]. Many efforts were invested into extension of model checking to the para-
meterized case, which led to numerous parameterized model checking techniques (see [9] for a
recent survey). Unfortunately, often parameterized model checking techniques come with their own
mathematical models, which makes their practical application difficult. To perform parameterized
model checking, the user has to thoroughly understand the research literature. Typically, the user
needs to first manually inspect the parameterized models and match them with the mathematical
formalisms from the relevant parameterized verification techniques. Using the match, the user would
then apply the decidability results (if any) for the parameterized models, e.g., by computing a cutoff or
translating the parameterized model into the language of a particular tool for the specific architecture.
Thus, there is a gap between the mathematical formalisms and algorithms from the parameterized
verification research and the practice of parameterized verification, which is usually done by engineers
who are not familiar with the details of the research literature. In this paper, we aim at closing this
gap by introducing a framework for design and verification of parameterized systems in BIP. With
this framework, we make the following contributions:

1. We extend propositional interaction logic to the parameterized case with arithmetics, which we
call first-order interaction logic (FOIL). We build on the ideas from configuration logic [21]
and dynamic BIP [10]. FOIL is powerful enough to express architectures found in distributed
systems, including the classical architectures: token-passing rings, rendezvous cliques, broadcast
cliques, and rendezvous stars. We also identify a decidable fragment of FOIL which has important
applications in practice. This contribution is covered by Section 3.

2. We provide a framework for integration of mathematical models from the parameterized model
checking literature in an automated way: given a parameterized BIP design, our framework
detects parameterized model checking techniques applicable to this design. This automation is
achieved by the use of SMT solvers and standard (non-parameterized) model checkers. This
contribution is covered by Sections 4 and 5.

3. We provide a preliminary prototype implementation of the proposed framework. Our prototype
tool takes a parameterized BIP design as its input and detects whether one of the following
classical results applies to this BIP design: the cut-off results for token-passing rings by Emerson
& Namjoshi [16], the VASS-based algorithms by German & Sistla [18], and the undecidability
and decidability results for broadcast systems by Abdulla et al. [1] and Esparza et al. [17].
More importantly, our framework is not specifically tailored to the mentioned techniques. This
contribution is covered by Sections 5 and 6.

We remark that our framework builds on the notions of BIP, which allows us to express complex
notions in terminology understood by engineers. Moreover, our framework allows an expert in
parameterized model checking to capture seminal mathematical models found in the verification
literature, e.g., [18, 17, 16, 13].

This paper is structured as follows. In Section 2, we briefly recall the BIP modeling framework. In
Section 3, we introduce our parameterized extension. In Sections 4 and 5, we present our verification
framework and the automatic system architecture identification technique. In Section 6, we present
the preliminary experiments. Section 7 closes with related work, conclusions, and future work.
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2 BIP without priorities

In this section, we review the notions of BIP [4] with the following restrictions: (i) states of the
components do not have specific internal structure; (ii) we do not consider interaction priorities.
While we believe that our approach can be extended to priorities, we leave this for future work.

As usual, a labeled transition system is a tuple (S , s0, A,R) with a set of locations S , an initial
location s0 ∈ S , a non-empty set of actions A, and a transition relation R ⊆ S × A × S .

I Definition 2.1 (Component type). A component type is a transition system B = 〈Q, `0,P,E〉 over
the finite sets Q and P. By convention, the set of actions P is called the set of ports.

Ports form the interface of a component type. We assume that, for each location, no two outgoing
transitions from this location are labeled with the same port. We also assume that the ports of each
component type, as well as the locations, are disjoint.

Let 〈B0, . . . ,Bk−1〉 be a tuple of component types, where each Bi is 〈Qi, `
0
i ,Pi,Ei〉 for i ∈ [0, k).

We introduce an infinite set of components {Bi[ j] | j ≥ 0} for i ∈ [0, k). A component Bi[ j] =

〈Qi[ j], `0
i [ j],Pi[ j],Ei[ j]〉 is obtained from the component type Bi by renaming the set of ports. Thus,

as transition systems, Bi[ j] and Bi are isomorphic. We postulate Pi[ j] ∩ Pi[ j′] = ∅, for j , j′.
A BIP model is a composition of finitely many components instantiated from the component

types 〈B0, . . . ,Bk−1〉. To denote the number of components of each type, we introduce a size vector
N̄ = 〈N0, . . . ,Nk−1〉: there are Ni components of component type Bi, for i ∈ [0, k).

Coordination of components is specified with interactions. Intuitively, an interaction defines a
multi-party synchronization of component transitions. A BIP interaction is a finite set of ports, which
defines a possible synchronization among components.

I Definition 2.2 (Interaction). Given a tuple of component types 〈B0, . . . ,Bk−1〉 and a size vector
N̄ = 〈N0, . . . ,Nk−1〉 , an interaction γ ⊆ {p ∈ Pi[ j] | i ∈ [0, k), j ∈ [0,Ni)} is a set of ports such that
|γ ∩ Pi[ j]| ≤ 1 for all i ∈ [0, k) and j ∈ [0,Ni), i.e., an interaction is a set of ports such that at most one
port of each component takes part in an interaction. If p ∈ γ, we say that p is active in γ.

I Definition 2.3 (BIP Model). Given a tuple of component types 〈B0, . . . ,Bk−1〉 and a size vector
N̄ = 〈N0, . . . ,Nk−1〉, a BIP model 〈B0, . . . ,Bk−1〉

N̄,Γ is a tuple 〈B,Γ〉, where B is the set {Bi[ j] | i ∈
[0, k), j ∈ [0,Ni)} and Γ is a set of interactions defined w.r.t. 〈B0, . . . ,Bk−1〉 and N̄.

I Definition 2.4 (BIP operational semantics). Given a BIP model 〈B0, . . . ,Bk−1〉
N̄,Γ, we define its

operational semantics as a transition system TS(〈B0, . . . ,Bk−1〉
N̄,Γ) = 〈S , s0,Γ,R〉, where:

1. The set of configurations S is defined as the Cartesian product of the sets of locations of the
components QN0

0 × · · · × Q
Nk−1
k−1 . Given a configuration s ∈ S , we denote by s(i, j) the jth member

of the tuple defined by the ith product QNi
i where j ∈ [0,Ni).

2. The initial configuration s0 ∈ S satisfies that s0(i, j) = `0
i [ j] for all i ∈ [0, k) and j ∈ [0,Ni).

3. The transition relation R contains a triple (s, γ, s′), if, for each i ∈ [0, k) and j ∈ [0,Ni), the jth

component of type i

either has an active port p ∈ γ ∩ Pi[ j] and 〈s(i, j), p, s′(i, j)〉 ∈ Ei[ j],
or is not participating in the interaction γ, i.e., γ ∩ Pi[ j] = ∅ and s′(i, j) = s(i, j).

Intuitively, the local transitions of components fire simultaneously, provided that their ports are
included in the interaction; other components do not move.

I Example 2.5 (Milner’s scheduler). We follow the formulation by Emerson & Namjoshi [16]. A
scheduler is modeled as a token-passing ring. Only the process that owns the token may start running
a new task. The component type B0 = 〈Q0, `

0
0,P0,E0〉 is given by the locations Q0 = {S 0, . . . , S 4}, the
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initial location `0
0 = S 0, the port types P0 = {snd, rcv, start,finish}, and the edges E0 that are shown in

the figure below:

S0 S1 S2

S3

S4

start snd rcv finish

finish

rcv

A component owns the token when in the location S 0, S 1, or S 3. In S 0, a component initiates its
task by interacting on port start. The token is then sent to the component’s right neighbor on the ring
via an interaction on port snd. The component then waits until (a) its initiated task has finished, and
(b) the component has received the token again. When both (a) and (b) have occurred, the component
may initiate a new task. Note that (a) and (b) may occur in either order.

Fix a number N0 ∈ N. The following set of interactions represents the ring structure:

Γ = {γi→ j, γstart(i), γfinish(i) | 0 ≤ i < N0 and j ≡ i + 1 mod n0}

where γi→ j = {(snd, i), (rcv, j)} is the interaction passing the token from the ith component to the next
component on the ring, while the interactions γstart(i) = {(start, i)} and γfinish(i) = {(finish, i)} allow the
ith component to take the internal transitions labeled ’start’ and ’finish’ respectively. The BIP model
of the Milner scheduler of size N0 is 〈B,Γ〉, where B is the set of components {B0[ j] | j ∈ [0,N0)}.

3 Parameterized BIP without priorities

Since the number of possible interactions in a parameterized system is unbounded, and each in-
teraction itself may involve an unbounded number of actions, the set of all possible interactions
is infinite. Hence, we need a symbolic representation of such a set. To this end, we propose first
order interaction logic—a uniform and formal language for system topologies and coordination
mechanisms in parameterized systems. Using this logic, we introduce a parameterized extension of
BIP, and show that this extension naturally captures standard examples.

3.1 FOIL: First order interaction logic

In this section, we fix a tuple of component types 〈B0, . . . ,Bk−1〉. For each port p ∈ Pi of an ith

component type, we introduce a unary port predicate with the same name p. Furthermore, we
introduce a tuple of constants n̄ = 〈n0, . . . , nk−1〉, which represents the number of components of each
type. We also assume the standard vocabulary of Presburger arithmetic, that is, 〈0, 1,≤,+〉.

FOIL syntax Assume an infinite set of index variables I. We say that ψ is a first order interaction
logic formula, if it is constructed according to the following grammar:

ψ ::= p(i) | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ∃i :: type j : φ. ψ | ∀i :: type j : φ. ψ ,

where p ∈ P0 ∪ · · · ∪ Pk−1, i ∈ I, and φ is a formula in Presburger arithmetic over index variables and
the vocabulary 〈0, 1,≤,+, n̄〉.

Informally, the syntax Q i :: type j : φ. ψ, where Q ∈ {∃,∀}, restricts the index variable i to be
associated with the component type B j. Notice, however, that this syntax does not enforce type
correctness of ports. For instance, one can write a formula ∃i :: type j : p(i) with some p < P j. While
this formula is syntactically correct, it is not in line with Definition 2.2 of interaction given in Section 2.
To this end, we say that a FOIL formula is natural, if for each of its subformulae Q i :: type j : φ. ψ(i),
for Q ∈ {∃,∀}, and every atomic formula p(i) of ψ, it holds that p ∈ P j. From here on, we assume
FOIL formulae to be natural. We write ∃i :: type j. ψ as a shorthand for ∃i :: type j : true. ψ.



I. Konnov, T. Kotek, Q. Wang, H. Veith, S. Bliudze, J. Sifakis 30:5

FOIL semantics We give the semantics of a FOIL formula by means of structures. A first-order
interaction logic structure (FOIL structure) is a pair ξ = (N, αξ): the set of natural numbers N is the
domain of ξ, while αξ is the interpretation of all the predicates and of the constants n̄. The symbols 0,
1, ≤, and + have the natural interpretations over N.

A valuation σ is a function σ : I → N. We denote by σ[x 7→ j] the valuation obtained from σ by
mapping the index variable x to the value j. Assignments are used to give values to free variables
in formulae. For a FOIL structure ξ and a valuation σ, the semantics of FOIL is formally given as
follows (the semantics of Boolean operators and universal quantifiers is defined in the standard way):

ξ, σ |=FOIL p(i) iff αξ(p) is true on σ(i)
ξ, σ |=FOIL ∃i :: type j : φ. ψ iff there is l ∈ [0, αξ(n j)) such that

ξ, σ[i 7→ l] |=FO φ and ξ, σ[i 7→ l] |=FOIL ψ

where |=FO to denotes the standard ’models’ relation of first-order logic.
Finally, for a FOIL formula ψ without free variables and a structure ξ, we write ξ |=FOIL ψ, if

ξ, σ0 |=FOIL ψ for the valuation σ0 that assigns 0 to every index i ∈ I.1

Decidability It is easy to show that checking validity of a FOIL sentence2 is undecidable, and that
FOIL contains an important decidable fragment:

I Theorem 3.1 (Decidability of FOIL). The following results about FOIL hold:

(i) Validity of FOIL sentences is undecidable.
(ii) Validity of FOIL sentences in which all additions are of the form i + 1 is decidable.

Proof. (i) FOIL contains Presburger arithmetic with unary predicates, which is known to be as strong
as Peano arithmetic [20]. Hence, satisfiability and validity of FOIL formulae are undecidable.

(ii) The formula j = i + 1 is definable in FOIL by i ≤ j ∧ j , i ∧ ψconsecutive(i, j), where
ψconsecutive(i, j) = ∀` :: typet. ( j ≤ ` ∧ ` ≤ i) → (` = i ∨ ` = j), where t is the type of i and j. Hence,
we can rewrite any FOIL sentence ψ in which all additions are of the form i + 1 as an equi-satisfiable
first-order logic sentence ψ′ without using addition (+). The sentence ψ′ belongs to S1S, the monadic
second order theory of (N, 0, 1,≤), which is decidable, see [27]. J

In the following, we restrict addition to the form i + 1, and thus stay in the decidable fragment.

3.2 Interactions as FOIL structures

In contrast to Definition 2.2 of a standard interaction, which is represented explicitly as a finite
set of ports, we use first order interaction logic formulae to define all the possible interactions in
parameterized systems. Our key insight is that each structure of a formula uniquely defines at most
one interaction, and the set of all possible interactions is the union of the interactions derived from
the structures that satisfy the formula.

Intuitively, if p( j) evaluates to true in a structure ξ, then the jth instance of the respective
component type—uniquely identified by the port p—takes part in the interaction identified with ξ.
Thus, we can reconstruct a standard BIP interaction from a FOIL structure by taking the set of ports,
whose indices are evaluated to true by the unary predicates. Formally, given a FOIL structure ξ =

(N, αξ), we define the set γξ = {(p, j) | i ∈ [0, k), p ∈ Pi, j ∈ [0, αξ(n j)), αξ(p)( j) = true}. In the
following, the notation (p, j) denotes the port p of the jth component of the type Bi with p ∈ Pi.

1 Since ψ has no free variables, our choice of σ0 is arbitrary: for all σ we have ξ, σ |=FOIL ψ if and only if ξ, σ0 |=FOIL ψ.
2 A FOIL formula with no free variables is called a sentence. A sentence is valid if it is satisfied by all structures.
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Notice that γξ does not have to be an interaction in the sense of Definition 2.2. Indeed, one can
define ξ whose set γξ includes two ports of the same component. We say that ξ induces an interaction,
if γξ is an interaction in the sense of Definition 2.2.

I Definition 3.2 (Parameterized BIP Model). A parameterized BIP model is a tuple 〈�, n̄, ψ, ε〉,
where � = 〈B0, . . . ,Bk−1〉 is a tuple of component types, ψ is a sentence in FOIL over port predicates
and a tuple n̄ = 〈n0, . . . , nk−1〉 of size parameters, and ε is a linear constraint over n̄.

The tuple n̄ consists of the size parameters for all component types, and the constraint ε restricts
these parameters. For example, the formula (n0 = 1) ∧ (n1 ≥ 10) requires every instance of a
parameterized BIP model to have only one component of the first type and at least ten components of
the second type. The FOIL sentence ψ restricts both the system topology and the communication
mechanisms, see Example 3.4.

I Definition 3.3 (PBIP Instance). Given a parameterized BIP model 〈�, n̄, ψ, ε〉 and a size vector N̄,
a PBIP instance is a BIP model 〈B0, . . . ,Bk−1〉

N̄,Γ = 〈B,Γ〉, where B and Γ are defined as follows:

1. the numbers N̄ satisfy the size constraint ε,
2. the set of components B is {Bi[ j] | i ∈ [0, k) and j ∈ [0,N j)}, and
3. the set of interactions Γ consists of all interactions γξ induced by a FOIL structure ξ such that the

size parameters n̄ are interpreted in ξ as N̄, and ξ satisfies ψ, i.e. αξ(n̄) = N̄ and ξ |=FOIL ψ.

In the rest of this section, we give three examples that show expressiveness of parameterized BIP.

I Example 3.4 (Milner’s scheduler revisited). The parameterized BIP model of Milner’s scheduler
is 〈〈B0〉, 〈n0〉, ψ, true〉, where B0 is from Example 2.5 and ψ = ψtoken ∨ ψinternal defined as follows.
The formula ψtoken defines the token-passing interactions and the formula ψinternal defines the internal
interactions of starting or finishing a task:

ψtoken = ∃i, j :: type0 : j = (i + 1) mod n0. snd(i) ∧ rcv( j) ∧ ψonly(i, j)
ψonly(i, j) = ∀` :: type0 : ` , i ∧ ` , j. ¬snd(`) ∧ ¬rcv(`) ∧ ¬start(i) ∧ ¬finish(i)
ψinternal = ∃i :: type0. ψonly(i, i) ∧ (start(i) ∨ finish(i))

The formula ψtoken does not have free variables and holds for a structure ξ, if the induced interaction
γξ is a send-receive interaction along some edge i→ j of the ring, where j = (i + 1) mod n0. In fact,
j = (i + 1) mod n0 is just a shorthand for the formula: (i + 1 < n0 ∧ j = i + 1) ∨ (i + 1 = n0 ∧ j = 0).
The formula ψonly(i, j) excludes any component other than i and j from participating in the interaction.
(If i = j then all components other than i are excluded.) The formula ψinternal enables the transitions
labeled with ’start’ and ’finish’, in which only one component changes its location.

Observe that the semantics of FOIL forces the quantified variables i, j, ` to be in the range from 0
to N0 − 1. Hence, we omit explicit range constraints. For instance, ψtoken is equivalent to the formula:

∃i, j :: type0 : 0 ≤ i, j < n0 ∧ ( j = (i + 1) mod n0). snd(i) ∧ rcv( j) ∧ ψonly(i, j)

The set of FOIL structures ξ that satisfy ψ induces the same set of interactions Γ as in Example 2.5.
While Example 2.5 defines the set Γ explicitly for any fixed value N0, in the parameterized setting the
interactions are defined uniformly by a single FOIL formula ψ, for all values of N0.

In this example we do not restrict the initial locations so that exactly one process owns the token
in the initial configuration. This delicate issue is resolved in Section 5.4.

I Example 3.5 (Broadcast in a star). Let 〈〈B0,B1〉, 〈n0, n1〉, ψ, ε〉 be a parameterized BIP model
with two component types and the size constraint ε ≡ (n0 = 1). We also assume that component
type B0 (resp. B1) has only one port send (resp. receive), i.e., P0 = {send} and P1 = {receive}. The
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FOIL formula ψ = ∃i :: type0. send(i) specifies broadcast from the component B0[0], the center of the
star, to the leaves of type B1. The set of interactions defined by ψ consists of all sets of ports of the
form {(send, 0)} ∪ {(receive, d) | d ∈ D)} for all D ⊆ [0, n1), including the empty set D = ∅.

I Example 3.6 (Barrier). Consider a barrier synchronization protocol, cf. [9, Example 6.6]. The
component type B0 is as shown below:

master
neutral

slave

loopM loopN loopS
exit

go exit

follow

The location neutral is the initial location. A synchronization episode consists of three stages:
(i) First, a single component enters the barrier by moving to master. (ii) Then, each of the others
components moves to slave. (iii) Finally, the master triggers a broadcast and all components leave the
barrier by moving to neutral. The parameterized BIP model of the barrier synchronization protocol is
〈〈B0〉, 〈n0〉, ψ, true〉, where ψ = ψgo ∨ ψfollow ∨ ψexit, and the following formulae ψgo, ψfollow, and ψexit

describe the interactions of stages (i), (ii), and (iii) respectively:

ψgo = ∃i :: type0. go(i) ∧ ∀ j :: type0 : i , j. loopN( j)
ψfollow = ∃i, j :: type0. follow(i) ∧ loopM( j)∧

∀` :: type0 : i , `. loopM(`) ∨ loopN(`) ∨ loopS(`)
ψexit = ∀i :: type0. exit(i)

All three formulae enforce progress by requiring at least one process to change its state.

4 Parameterized model checking

In this section, we review the syntax and semantics of the indexed version of CTL∗, called ICTL?,
which is often used to specify the properties of parameterized systems [9]. Though we use indexed
temporal logics to define the standard parameterized model checking problem, these logics are
not the focus of this paper. Further, we introduce the parameterized model checking problem for
parameterized BIP design, and show its undecidability.

Syntax For a set of index variables I, the ICTL? state and path formulae follow the grammar:

θ ::= true | at(q, i) | ¬θ | θ1 ∧ θ2 | ∃i :: type j : φ. θ | ∀i :: type j : φ. θ | Eϕ | Aϕ , (state formulae)

ϕ ::= θ | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | Fϕ | Gϕ | ϕ1Uϕ2 . (path formulae)

where q ∈
⋃

0≤ j<k Q j is a location, i ∈ I is an index, and φ is a formula in Presburger arithmetic over
size variables n̄ and index variables from the set I.

Semantics Fix a BIP model 〈B0, . . . ,Bk−1〉
N̄,Γ and its transition system M = 〈S , s0,Γ,R〉 =

TS(〈B0, . . . ,Bk−1〉
N̄,Γ) as per Definition 2.4. To evaluate Presburger formulae, we use the first-order

structure PA =
〈
N, 0, 1,≤,+, N̄

〉
. The semantics of ICTL? formulae is defined inductively using M

and PA. We only briefly discuss semantics to highlight the role of quantifiers in indexed temporal
logics. For further discussions, we refer the reader to the textbook [12].

State formulae are interpreted over a configuration s and a valuation of index variables σ : I → N
(the semantics of Boolean operators and universal quantifiers is defined in the standard way):

M, s, σ |=ICTL? at(q, i) iff q = s( j, σ(i)), where q ∈ Q j

M, s, σ |=ICTL? ∃i :: type j : φ. θ iff PA, σ[i 7→ l] |=FO φ and M, s, σ[i 7→ l] |=ICTL? θ hold,
for some l ∈ [0,N j)

M, s, σ |=ICTL? Eϕ iff M, π, σ |=ICTL? ϕ for some infinite path π starting from s
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Path formulae are interpreted over an infinite path π, and the valuation function σ as follows (the
semantics for Boolean operators and temporal operators F and G is defined in the standard way):

M, π, σ |=ICTL? θ iff M, s, σ |=ICTL? θ, where s is the first configuration of the path π
M, π, σ |=ICTL? Xϕ iff M, π1, σ |=ICTL? ϕ

M, π, σ |=ICTL? ϕ1Uϕ2 iff ∃ j ≥ 0. M, π j, σ |=ICTL? ϕ2 and ∀i < j. M, πi, σ |=ICTL? ϕ1,

where πi is the suffix of the path π starting with the ith configuration.
Finally, given a formula ϕ without free variables, we say that M satisfies ϕ, written as M |=ICTL? ϕ,

if M, s0, σ0 |=ICTL? ϕ for the valuation σ0 that assigns zero to each index from the set I. The choice
of σ0 is arbitrary, as for all σ, it holds that M, s0, σ |=ICTL? ϕ if and only if M, s0, σ0 |=ICTL? ϕ.

Now we are in the position to formulate the parameterized model checking problem for BIP:

I Problem 4.1 (Parameterized model checking). The verification problem for a parameterized
BIP model 〈�, n̄, ψ, ε〉 and an ICTL? state formula θ without free variables, is whether every in-
stance 〈B0, . . . ,Bk−1〉

N̄,Γ satisfies θ.

Not surprisingly, Problem 4.1 is undecidable in general. For instance, one can use the proof
idea [16] to obtain the following theorem. We do not give a detailed proof here: to a large extent, it
repeats the encoding of a unidirectional token ring, which we discuss later in Section 5.4.

I Theorem 4.2 (Undecidability). Given a two-counter machine M2, one can construct an ICTL?-
formula G¬halt and a parameterized BIP model B = 〈�, n̄, ψ, ε〉 that simulates M2 and has the
property: M2 does not halt if and only if 〈B0, . . . ,Bk−1〉

N̄,Γ |= G¬halt for all instances of B.

5 Identifying the architecture of a parameterized BIP model

In the non-parameterized case, knowing the architecture is not crucial, as there are model checking
algorithms that apply in general to arbitrary finite transition systems. However, the architecture
dramatically affects decidability of parameterized model checking. Architecture identification plays
an important step in our verification framework. In this section, we show how to identify system
architectures automatically, and present applications to verification.

Our framework For the sake of exposition, we assume that parameterized BIP models have only
one component type. Our identification framework extends easily to the general case.

Given an architecture A, e.g., the token ring architecture, an expert in parameterized model
checking creates formula templates in FOIL (FOIL-templates) and in temporal logic (TL-templates).
FOIL-templates describe the system topology and communication mechanism for the architectureA.
TL-templates describe the behaviour of the component type required by the architectureA, e.g., in a
token ring, a component which does not have the token cannot send the token. These templates are
designed once for all parameterized BIP models compliant withA. In the sequel, TL-templates are
only used for token rings, thus we omit them from the discussion of other architectures.

Given a parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉—not necessarily compliant with the archi-
tecture A—the templates for the architecture A are instantiated to FOIL formulae ϕFOIL

1 , . . . , ϕFOIL
m ,

and temporal logic formulae ϕTL
1 , . . . , ϕ

TL
` . The FOIL formulae guarantee that the set of interactions

expressed by the FOIL formula ψ adheres to A. The temporal logic formulae guarantee that the
behaviour of the component type B adheres to A. The identification criterion is as follows: if
ϕFOIL

1 ∧ · · · ∧ϕFOIL
m is valid and B |=TL ϕ

TL
1 ∧ · · · ∧ϕ

TL
` holds, then the parameterized model 〈〈B〉, 〈n〉, ψ, ε〉

is compliant with the architectureA. In practice, we use an SMT solver to check validity of the FOIL
formulae and a model checker to check that the component type B satisfies the temporal formulae.
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In the rest of this section we construct FOIL-templates and TL-templates for well-known architec-
tures: cliques of processes communicating via broadcast, cliques of processes communicating via
rendezvous, token rings, and server-client systems in which processes are organized in a star and
communicate via rendezvous. We show that the provided templates identify the architectures in a
sound way.

5.1 The common templates for BIP semantics

As we discussed in Section 3.2, not every FOIL structure induces a BIP interaction. We show
that one can write a FOIL-template that restricts FOIL structures to induce BIP interactions. The
following template ηFOIL

interaction(P0) expresses that there is no component with more than one active port:
∀ j :: type0.

∧
p,q ∈P0, q,p ¬p( j) ∨ ¬q( j)

As expected, the template ηFOIL
interaction(P0) restricts FOIL structures to BIP interactions:

I Proposition 5.1. Let P0 be a set of ports, and η be the instantiation of ηFOIL
interaction with P0. A FOIL

structure ξ satisfies η if and only if ξ induces an interaction.

To express that a component has at least one active port, we introduce template active( j) ≡∨
p∈P0

p( j). To simplify notation, parameterization of active( j) by P0 is omitted.

5.2 Pairwise rendezvous in a clique

In a BIP model, components are said to communicate by binary rendezvous, if all the allowed
interactions consist of exactly two ports. The communication is said to be by pairwise rendezvous, if
there is a binary rendezvous between every two components. Pairwise rendezvous has been widely
used as a basic primitive in the parameterized model checking literature, e.g., in [18, 3].

FOIL-templates We construct a template using two formulae ηFOIL
≤2 (P0) and ηFOIL

≥2 (P0):

The formula ηFOIL
≤2 (P0) expresses that every interaction has at most two ports:

∀i, j, ` :: type0. active(i) ∧ active( j) ∧ active(`)→ i = j ∨ j = ` ∨ i = `.
The formula ηFOIL

≥2 (P0) expresses that every interaction has at least two ports:
∃i, j :: type0 : i , j. active(i) ∧ active( j).

We show that the combination of ηFOIL
interaction, ηFOIL

≥2 , and ηFOIL
≤2 defines pairwise rendezvous commu-

nication in cliques of all sizes:

I Theorem 5.2. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if (ψ ∧ ηFOIL
interaction) ↔

(ηFOIL
interaction ∧ η

FOIL
≥2 ∧ η

FOIL
≤2 ) is valid, then for every instance BN,Γ, the following holds:

1. every interaction is of size 2, that is, |γ| = 2 for γ ∈ Γ, and
2. for every pair of indices i and j such that 0 ≤ i, j < N and i , j and every pair of ports p, q ∈ P0,

there is a FOIL structure ξ such that ξ |=FOIL ψ ∧ p(i) ∧ q( j).

Proof. Fix an instance BN,Γ of 〈〈B〉, 〈n〉, ψ, ε〉.
To show Point 1, fix an interaction γ of BN,Γ. By Definition 3.3, there is a FOIL structure ξ such

that ξ |=FOIL ψ and γ = γξ. As ξ induces an interaction, by Proposition 5.1, we immediately have that γξ
satisfies the instantiation of ηFOIL

interaction. Hence, since (ψ∧ηFOIL
interaction)↔ (ηFOIL

interaction∧η
FOIL
≥2 ∧η

FOIL
≤2 ) is valid

we conclude that ξ also satisfies ηFOIL
≥2 ∧ η

FOIL
≤2 . This immediately gives us the required equality |γξ | = 2.

To show Point 2, fix a pair of indices i and j such that 0 ≤ i, j < N and i , j and a pair of
ports p, q ∈ P0. The set γ = {(p, i), (q, j)} is an interaction. Obviously, one can construct a FOIL
structure ξ that induces γ. Since i , j and |γξ | = 2, it holds that ξ |=FOIL η

FOIL
interaction ∧ η

FOIL
≥2 ∧ η

FOIL
≤2 . Thus,
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since (ψ ∧ ηFOIL
interaction) ↔ (ηFOIL

interaction ∧ η
FOIL
≥2 ∧ η

FOIL
≤2 ) is valid, it follows that ξ |=FOIL ψ. From this and

that ξ induces the interaction γ, we conclude that ξ |=FOIL ψ ∧ p(i) ∧ q( j). J

In Theorem 5.2, the right-hand side of the equivalence does not restrict which pairs of ports may
interact, e.g., it does not require the ports to be the same. Thus, if ψ is more restrictive than the
right-hand side of the equivalence, validity will not hold. Obviously, one can further restrict the
equivalence to reflect additional constraints on the allowed pairs of ports. Moreover, one may restrict
which ports are required by the template to communicate via pairwise rendezvous for compositionality,
e.g. to allow other ports to participate in other communication primitives and in internal transitions.
(One may augment or restrict the templates of all the architectures below similarly.)

Applications Theorem 5.2 gives us a criterion for identifying parameterized BIP models, where
all processes may interact with each other using rendezvous communication. To verify such paramet-
erized BIP models, we can immediately invoke the seminal result by German & Sistla [18, Sec. 4].
Their result applies to specifications written in indexed linear temporal logic without the operator X .

More formally, we say that an ICTL? path formula χ(i) is a 1-LTL\X formula, if χ has only one
index variable i and χ does not contain quantifiers ∃, ∀, A , E , nor temporal operator X . Given a
parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉 and a 1-LTL\X formula χ, one can check in polynomial
time, whether every instance BN, Γ satisfies the formula E ∃i :: type0 : true. χ(i).

5.3 Broadcast in a clique

In BIP, components communicate via broadcast, if there is a “trigger” component whose sending
port is active, and the other components either have their receiving port active, or have no active
ports. In this section, we denote the sending port with send and the receiving port with receive. Our
results can be easily extended to treat multiple sending and receiving ports. In a broadcast step, all the
components with the active ports make their transitions simultaneously. Broadcasts were extensively
studied in the parameterized model checking literature [17, 23].

One way to enforce all the processes to receive a broadcast, if they are ready to do so, is to use
priorities in BIP: an interaction has priority over any of its subsets. In this paper, we consider BIP
without priorities. In this case, one can express broadcast by imposing the following restriction on the
structure of the component type B: every location has a transition labeled with the port receive. This
restriction enforces all interactions to involve all the components, though some of the components
may not change their location by firing a self-loop transition. This requirement can be statically
checked on the transition system of B, and if the component type does not fulfill the requirement, it is
easy to modify the component type’s transition system by adding required self-loops.

FOIL-templates First, we define the formula ηFOIL
bcast(P0), which guarantees that every interaction

includes one sending port by one component and the receiving ports of the other components:

∃i :: type0. send(i) ∧ ∀ j :: type0 : j , i. receive( j)

We show that the combination of ηFOIL
interaction and ηFOIL

bcast defines broadcast in cliques of all sizes:

I Theorem 5.3. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if (ψ ∧ ηFOIL
interaction) ↔

(ηFOIL
interaction ∧ η

FOIL
bcast) is valid, then for every instance BN,Γ, the following holds:

1. every interaction consists of one send port and N − 1 receive ports.
2. for every index c, such that 0 ≤ c < N, there is a FOIL structure ξ satisfying the following:

ξ |=FOIL ψ ∧ send(c) ∧ ∀ j :: type0 : j , c. receive( j).

Proof. The proof follows the same principle as the proof of Theorem 5.2. J
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Applications Theorem 5.3 gives a criterion for identifying parameterized BIP models in which all
components may send and receive broadcast. Its implications are two-fold. First, it is well-known that
parameterized model checking of safety properties is decidable [1] (cf. the discussion in [17]), and
there are tools for well-structured transition systems applicable to model checking of parameterized
BIP. Second, parameterized model checking of liveness properties is undecidable [17]. From the user
perspective, this indicates the need to construct abstractions, or to use semi-decision procedures.

Identifying sending and receiving ports Now we illustrate how to automatically detect the
sending and receiving ports in a parameterized BIP model. We say that a port p ∈ P0 in the
component type may be a sending port, if in every interaction exactly one component uses this port.
Similarly, we say that a port q ∈ P0 in the component type may be a receiving port, if in every
interaction all but one component use this port. Intuitively, we have to enumerate all port types and
check whether they are acting as sending ports or receiving ports. Formally, to find whether p is a
potential sending port and q is a potential receiving port, we check whether the following is valid:

ψ ∧ ηFOIL
interaction ∧ ∃i :: type0.

(
p(i) ∨ q(i)

)
→

(
∃i :: type0. p(i) ∧ ∀ j :: type0 : j , i. q( j)

)
5.4 Token rings

Token ring is a classical architecture: (i) all processes are arranged in a ring, (ii) the ring size is
parameterized but fixed in each run, and (iii) one component owns the token and can pass the token
to its neighbor(s). It is easy to express token-passing with rendezvous, so we re-use the templates
from Section 5.2. We assume that there is a pair of ports: the port send giving away the token and the
port receive accepting the token. We do not allow the token to change its type, as the parameterized
model checking problem is undecidable in this case [26, 16]. Nevertheless, it is easy to extend our
results to multiple token types. Here the token is passed in one direction, that is, every component
may only receive the token from one neighbor and may only send the token to its other neighbor.

TL-templates Following the standard assumption [16], we require that every process sends and
receives the token infinitely often. We encode this requirement as a local constraint in a form of an
LTL formula that is checked against the component type (and not against a BIP instance):

G
(
receive→ X (¬receive U send)

)
∧G

(
send → X

(
¬send U receive)

)
The left conjunct forces a component that has the token to eventually send it. The right conjunct

prevents a component from sending the token twice before receiving it back.

FOIL-templates We extend the pairwise rendezvous templates with a formula ηFOIL
uniring(P0) that

restricts the interactions to be performed only among the neighbors in one direction:

∃i, j :: type0. ( j = (i + 1) mod n0). send(i) ∧ receive( j)

The modulo notation “ j = (i + 1) mod n0” can be seen as syntactic sugar, as it expands into
(i = n0 − 1→ j = 0) ∧ (i < n0 − 1→ j = i + 1).

I Theorem 5.4. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if (ψ ∧ ηFOIL
interaction) ↔

(ηFOIL
interaction ∧ η

FOIL
≥2 ∧ η

FOIL
≤2 ∧ η

FOIL
uniring) is valid, then every instance BN,Γ satisfies:

1. every interaction γ ∈ Γ is of the form {send(c), receive(d)} for some indices c and d such that 0 ≤
c, d < N and d = (c + 1) mod N, and
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2. for every index c such that 0 ≤ c < N and the index d = (c + 1) mod N, there is a FOIL structure ξ
such that ξ |=FOIL ψ ∧ send(c) ∧ receive(d).

Proof. The proof follows the same principle as the proof of Theorem 5.2. J

Distributing the token The token ring architecture assumes that initially only one component has
the token. Emerson & Namjoshi [16] assumed that the token was distributed using a “daemon”, but
this primitive is obviously outside of the token ring architecture. Our framework encompasses token
distribution. To this end, we restrict the transition system of the component as follows:

We assume that the location set Q0 of the component type B0 is partitioned into two sets: Qtok
0 is

the set of locations possessing the token, and Qntok
0 is the set of locations without the token. The

initial location does not possess the token: `0 ∈ Qntok
0 .

We assume that there are two auxiliary ports called master and slave that are only used in a
transition from the initial location `0. There are only two transitions involving `0: the transition
from `0 to a location in Qtok

0 that broadcasts via the port master, and the transition from `0 to a
location in Qntok

0 that receives the broadcast via the port slave. The broadcast interaction can be
checked with the constraints similar to those in Section 5.3.

Applications Theorem 5.4 gives us a criterion for identifying parameterized BIP models that
express a unidirectional token ring. This criterion has a great impact: one can apply non-parameterized
BIP tools to verify parameterized BIP designs expressing token rings. As Emerson & Namjoshi
showed in their celebrated paper [16], to verify parameterized token rings, it is sufficient to run model
checking on rings of small sizes. The bound on the ring size—called a cut-off—depends on the
specification and typically requires two or three components.

5.5 Pairwise rendezvous in a star

In a star architecture, one component acts as the center, and the other components communicate
only with the center. The components communicate via rendezvous (considered in Section 5.2).
This architecture is used in client-server applications. Parameterized model checking for the star
architecture was investigated by German & Sistla [18]. We assume that a parameterized BIP model
contains two component types: B0 with only one instance, and B1 that may have many instances.

FOIL-templates The requirements of rendezvous communication are defined in Section 5.2. We
add the restriction ηFOIL

center that the center is involved in every interaction: ∃i :: type0. active0(i). By
restricting ε to have only one instance of type B0, we arrive at Theorem 5.5, which to a large extent is
a consequence of Theorem 5.2.

I Theorem 5.5. Given a two-component parameterized BIP model 〈〈B0,B1〉, 〈n0, n1〉, ψ, ε〉, if (ψ ∧
ηFOIL

interaction) ↔ (ηFOIL
interaction ∧ η

FOIL
≥2 ∧ η

FOIL
≤2 ∧ η

FOIL
center) and ε ↔ (n0 = 1) are both valid, then every

instance 〈B0,B1〉
〈N0,N1〉,Γ admits only the rendezvous interactions with the center, i.e., the only

component of type B0.

Applications Theorem 5.5 gives us a criterion for identifying parameterized BIP models, where
the user processes communicate with the coordinator via rendezvous. To verify such parameterized
BIP models, we can immediately invoke several results by German & Sistla [18, Sec. 3]. First,
one can analyze such parameterized BIP models for deadlocks, which is of extreme importance to
the practical applications of BIP. Second, the results [18] reduce parameterized model checking to
reachability in Petri nets, which allows one to use the existing tools for Petri nets.
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Benchmark Architecture model Outcome Time (sec.) Memory (MB)
Milner’s scheduler uni-directional token ring positive 0.068 ≤ 10
Milner’s scheduler broadcast in clique negative 0.016 ≤ 10
Semaphore pairwise rendezvous in star positive 0.096 ≤ 10
Semaphore pairwise rendezvous in clique negative 0.084 ≤ 10
Barrier broadcast in clique positive 0.028 ≤ 10
Barrier pairwise rendezvous in star negative 0.008 ≤ 10

Table 1 Experimental results of identifying architecture models. The column “Outcome” indicates, whether
the benchmark was recognized to have the given architecture (positive), or not (negative). The experiments were
performed on a 64-bit Linux machine with 2.8GHz × 4 CPU and 7.8GiB memory.

6 Prototype implementation and experiments

We have implemented a prototype of the framework introduced in Section 5. This prototype uses
the following architecture templates: (a) pairwise rendezvous and broadcast in cliques, (b) token
rings, (c) and pairwise rendezvous in stars. As described in Section 5 (see our framework), given a
parameterized BIP model, the tool constructs a set of FOIL formulae and a set of temporal formulae.
The parameterized BIP model follows a predefined architecture, if the FOIL formulae are valid
and the component types satisfy the temporal formulae. Our implementation uses nuXmv [11] to
check temporal formulae and Z3 [14] to check validity of first-order formulae. FOIL formulae are
translated to first-order formulae by guarding the range of quantification explicitly, e.g. ∃i :: type0. θ

is substituted with ∃i. 0 ≤ i < n0 ∧ θ. To deal with quantifiers, we run a customized solver
with tactic ’qe’ (i.e. quantifier elimination). The implementation and benchmarks are available at
http://risd.epfl.ch/parambip.

Table 1 summarizes our experiments with three benchmarks. We conducted each experiment
using two kinds of templates: the expected architecture of the benchmark, and an architecture different
from the expected one. In all cases, the architectures were identified as expected. Our preliminary
results demonstrate both correctness and efficiency of our approach.

7 Related work and conclusions

We have shown that our framework encompasses several prominent parameterized model checking
techniques. To our understanding, the other seminal results can be integrated into our framework: the
cut-off results for disjunctive and conjunctive guards [15], network decomposition techniques [13, 3],
and techniques based on well-structured transition systems [1] and monotonic abstraction [2].

First-order interaction logic extends propositional interaction logic [6, 7], which was also extended
by Dy-BIP [10] and configuration logic [21]. Dy-BIP extends propositional interaction logic with
quantification to define interaction topology independent of the number of component instances.
It uses dedicated history variables to break the symmetry and specify that, throughout the system
execution, successive interactions happen among the same components. Dy-BIP does not have a
mechanism, such as indexing, to statically distinguish instances of the same component type. Hence,
many architectures, e.g., token rings, cannot be expressed. Configuration logic uses higher-order
formulae to represent sets of topologies. It does not use indexing either, thereby requiring the second-
order extension to express simple architectures such as token rings and linear architectures. Finally,
no decidability results or decision procedures have been proposed for the configuration logic yet.

In the future, we will study second-order extensions of FOIL to express more complex architec-
tures such as server-client whose coordinator is chosen non-deterministically. In the long term, we
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plan to implement a tool that integrates multiple parameterized model checking techniques and uses
our framework to guide the verification of parameterized BIP designs. FOIL can also be seen as a
specification language for BIP interactions and used for their synthesis similarly to [7]. Finally, it is
worth investigating, whether FOIL can be extended to include priorities as in [8].
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