
Configuration Logics: Modelling Architecture
Styles

Anastasia Mavridou, Eduard Baranov, Simon Bliudze, and Joseph Sifakis

École polytechnique fédérale de Lausanne, Station 14, 1015 Lausanne, Switzerland;
firstname.lastname@epfl.ch

Abstract. We study a framework for the specification of architecture
styles as families of architectures involving a common set of types of
components and coordination mechanisms. The framework combines two
logics: 1) interaction logics for the specification of architectures as generic
coordination schemes involving a configuration of interactions between
typed components; 2) configuration logics for the specification of ar-
chitecture styles as sets of interaction configurations. The presented re-
sults build on previous work on architecture modelling in BIP. We show
how propositional interaction logic can be extended into a corresponding
configuration logic by adding new operators on sets of interaction con-
figurations. We provide a complete axiomatisation of the propositional
configuration logic, as well as a decision procedure for checking that an
architecture satisfies given logical specifications. To allow genericity of
specifications, we study first-order and second-order extensions of the
propositional configuration logic. We provide examples illustrating the
application of the results to the characterization of architecture styles.
Finally, we provide an experimental evaluation using the Maude rewrit-
ing system to implement the decision procedure for the propositional
logic.

1 Introduction

Architectures are common means for organizing coordination between
components in order to build complex systems and to make them man-
ageable. They depict generic coordination principles between compo-
nents and embody design rules that can be understood by all. Architec-
tures allow thinking on a higher plane and avoiding low-level mistakes.
They are a means for ensuring global coordination properties between
components and thus, achieving correctness by construction [1]. Using
architectures largely accounts for our ability to master complexity and
develop systems cost-effectively. System developers extensively use refer-
ence architectures ensuring both functional and non-functional proper-
ties, e.g. fault-tolerant, time-triggered, adaptive, security architectures.

Informally architectures are characterized by the structure of the in-
teractions between a set of typed components. The structure is usually
specified as a relation, e.g. connectors between component ports.

Architecture styles characterize not a single architecture but a family
of architectures sharing common characteristics such as the type of the
involved components and the topology induced by their coordination

structure. Simple examples of architecture styles are Pipeline, Ring, Mas-
ter/Slave, Pipe and Filter. For instance, Master/Slave architectures in-
tegrate two types of components, masters and slaves, such that each
slave can interact only with one master. Figure 1 depicts four Mas-
ter/Slave architectures involving master components M1, M2 and slave
components S1, S2. Their communication ports are respectively m1,
m2 and s1, s2. The architectures correspond to interaction configura-
tions:

{
{s1,m1}, {s2,m2}

}
,
{
{s1,m1}, {s2,m1}

}
,
{
{s1,m2}, {s2,m1}

}
and

{
{s1,m2}, {s2,m2}

}
. The set {si,mj} denotes an interaction be-

tween ports si and mj . A configuration is a non-empty set of interactions.
The Master/Slave architecture style characterizes all the Master/Slave
architectures for arbitrary numbers of masters and slaves.

m1 m2

s1 s2

M2

S2

M1

S1

{{s1,m1}, {s2,m2}}

m1 m2

s1 s2

M2

S1 S2

M1

{{s1,m1}, {s2,m1}}

m1 m2

s1 s2

M2

S1 S2

M1

{{s1,m2}, {s2,m1}}

m1 m2

s1 s2

M2

S1 S2

M1

{{s1,m2}, {s2,m2}}

Fig. 1: Master/Slave architectures

The paper studies the relation between architectures and architecture
styles. This relation is similar to the relation between programs and their
specifications. As program specifications can be expressed by using logics,
e.g. temporal logics, architecture styles can be specified by configuration
logics characterizing classes of architectures.
First, we propose a propositional configuration logic whose formulas rep-
resent, for a given set of components, the allowed configuration sets.
Then, we introduce first-order and second-order logics as extensions of
the propositional logic. These allow genericity of description as they are
defined for types of components.
The meaning of a configuration logic formula is a configuration set. A
configuration on a set of components represents a particular architec-
ture. Defining configuration logics requires considering three hierarchi-
cally structured semantic domains:
The lattice of interactions. An interaction a is a non-empty subset

of P , the set of ports of the integrated components. Its execution
implies the atomic synchronization of all component actions (at most
one action per component) associated with the ports of a.

The lattice of configurations. Configurations are non-empty sets of
interactions characterizing architectures.

The lattice of configuration sets. Sets of configurations are proper-
ties described by the configuration logic.

Figure 2 shows the three lattices for P = {p, q}. For the lattice of con-
figuration sets, we show only how it is generated.
This work consistently extends results on modelling architectures by us-
ing propositional interaction logic [2–4], which are Boolean algebras on
the set of ports P of the composed components. Their semantics is de-
fined via a satisfaction relation between interactions and formulas. An

2

P = {p, q}

(a) I(P) = 2P (b) C(P) = 2I(P)\{∅} (c) CS(P) = 2C(P)\{∅}

Fig. 2: Lattices of interactions (a), configurations (b) and configuration sets (c).

interaction a ⊆ P satisfies a formula φ (we write a |=i φ) if φ eval-
uates to true for the valuation that assigns true to the ports belong-
ing to a and false otherwise. It is characterized exactly by the formula∧
p∈a p ∧

∧
p 6∈a p .

Configuration logic is a powerset extension of the interaction logic. Its
formulas are generated from the formulas of the propositional interaction
logic by using the operators union, intersection and complementation as
well as a coalescing operator +. To avoid ambiguity, we refer to the for-
mulas of the configuration logic that syntactically are also formulas of the
interaction logics as interaction formulas. The semantics of the configura-
tion logic is defined via a satisfaction relation |= between configurations
γ = {a1, ..., an} and formulas. An interaction formula f represents any
configuration consisting of interactions satisfying it; that is γ |= f if, for
all a ∈ γ, a |=i f . For set-theoretic operators we take the standard mean-
ing. The meaning of formulas of the form f1 + f2 is all configurations γ
that can be decomposed into γ1 and γ2 (γ = γ1 ∪ γ2) satisfying respec-
tively f1 and f2. The formula f1 + f2 represents configurations obtained
as the union of configurations of f1 with configurations of f2.
Despite its apparent complexity, configuration logic is easy to use be-
cause of its stratified construction. From interaction logic it inherits the
Boolean connectives of conjunction (∧), disjunction (∨) and negation (̄).
It also uses the set-theoretic operations of union (t), complementation
(¬) and coalescing (+). It can be shown that intersection coincides with
conjunction.
Formulas of the form f + true, denoted ∼f , present a particular interest
for writing specifications. Their characteristic configuration set is the
largest set containing configurations satisfying f .
We provide a full axiomatisation of the propositional configuration logic
and a normal form similar to the disjunctive normal form in Boolean al-
gebras. The existence of such normal form implies the decidability of for-
mula equality and of satisfaction of a formula by an architecture model.
To allow genericity of specifications, we study first-order and second-
order extensions of the propositional configuration logic. First-order logic
formulas involve quantification over component variables. Second-order
logic formulas involve additionally quantification over sets of compo-
nents. Second-order logic is needed to express interesting topological
properties, e.g. the existence of interaction cycles.

3

A complete presentation, with proofs and additional examples, of the
results in this paper can be found in the technical report [22].

The paper is structured as follows. Section 2 recalls some basic facts
about the interaction logic. Section 3 presents the propositional configu-
ration logic, its properties and the definition of a normal form. Section 4
proposes a methodology for the specification of architecture styles. Sec-
tion 5 presents first-order and second-order extensions of the logic and
illustrates their use by several architecture style examples. Section 6
presents the results of an implementation of the decision procedure in
the Maude rewriting system. Section 7 discusses related work. Section 8
concludes the paper.

2 Propositional interaction logic

The propositional interaction logic (PIL), studied in [2, 3], is a Boolean
logic used to characterize the interactions between components on a
global set of ports P . In this section, we present only the results needed
to introduce the propositional configuration logic (Sect. 3). Below, we
assume that the set P is given.

Definition 1. An interaction is a set of ports a ⊆ P such that a 6= ∅.

Syntax. The propositional interaction logic is defined by the grammar:

φ ::= true | p | φ | φ ∨ φ , with any p ∈ P .

Conjunction is defined as usual: φ1 ∧ φ2
def
= (φ1 ∨ φ2) . To simplify the

notation, we omit it in monomials, e.g. writing pqr instead of p ∧ q ∧ r.

Semantics. The meaning of a PIL formula φ is defined by the following
satisfaction relation. Let a ⊆ P be a non-empty interaction. We define:
a |=i φ iff φ evaluates to true for the valuation p = true, for all p ∈ a,
and p = false, for all p 6∈ a. Thus, the semantic domain of PIL is the
lattice of configurations C(P) = 2I(P)\{∅}, where I(P) = 2P (Fig. 2).

The operators meet the usual Boolean axioms and the additional axiom∨
p∈P p = true meaning that interactions are non-empty sets of ports.

An interaction a can be associated to a characteristic monomial ma =∧
p∈a p ∧

∧
p 6∈a p such that a′ |=i ma iff a′ = a.

Example 1. Consider a system consisting of three components: a sender
with port p and two receivers with ports q and r respectively. We can
express the following interaction patterns:

– Strong synchronization between the components is specified by a
single interaction involving all components. This is represented by
the single monomial pqr.

– Broadcast defines weak synchronization among the sender and any
number of the receivers:

{
{p}, {p, q}, {p, r}, {p, q, r}

}
, represented by

the formula p, which can be expanded to pq r ∨ pqr ∨ pq r ∨ pqr.

4

3 Propositional configuration logic

3.1 Syntax and semantics

Syntax. The propositional configuration logic (PCL) is a powerset ex-
tension of PIL defined by the following grammar:

f ::= true | φ | ¬f | f + f | f t f ,

where φ is a PIL formula; ¬, + and t are respectively the complemen-
tation, coalescing and union operators.

We define the usual notation for intersection and implication: f1 u f2
def
=

¬(¬f1 t ¬f2) and f1 ⇒ f2
def
= ¬f1 t f2.

The language of PCL formulas is generated from PIL formulas by using
union, coalescing and complementation operators. The binding strength
of the operators is as follows (in decreasing order): PIL negation, comple-
mentation, PIL conjunction, PIL disjunction, coalescing, union. Hence-
forth, to avoid confusion, we refer as interaction formulas to the subset of
PCL formulas that syntactically are also PIL formulas. Furthermore, we
will use Latin letters f, g, h for general PCL formulas and Greek letters
φ, ψ, ξ for interaction formulas. Interaction formulas inherit all axioms of
PIL.

Semantics. Let P be a set of ports. The semantic domain of PCL is the
lattice of configuration sets CS(P) = 2C(P)\{∅} (Fig. 2(c)). The meaning
of a PCL formula f is defined by the following satisfaction relation. Let
γ ∈ C(P) be a non-empty configuration. We define:

γ |= true , always,

γ |= φ , if ∀a ∈ γ, a |=i φ, where φ is an interaction
formula and |=i is the satisfaction relation of
PIL,

γ |= f1 + f2 , if there exist γ1, γ2 ∈ C(P) \ {∅}, such that
γ = γ1 ∪ γ2, γ1 |= f1 and γ2 |= f2,

γ |= f1 t f2 , if γ |= f1 or γ |= f2,

γ |= ¬f , if γ 6|= f (i.e. γ |= f does not hold).

In particular, the meaning of an interaction formula φ in PCL is the set
2Ia \ {∅}, with Ia = {a ∈ I(P) | a |=i φ}, of all configurations involving
any number of interactions satisfying φ in PIL.
We say that two formulas are equivalent f1 ≡ f2 iff, for all γ ∈ C(P)
such that γ 6= ∅, γ |= f1 ⇔ γ |= f2.

Proposition 1. Equivalence ≡ is a congruence w.r.t. all PCL operators.

Example 2. The Master/Slave architecture style for two masters M1,M2

and two slaves S1, S2 with ports m1, m2, s1 and s2 respectively charac-
terizes the four configurations of Fig. 1 as the union:⊔

i,j∈{1,2}

(φ1,i + φ2,j),

where, for i 6= i′ and j 6= j′, the monomial φi,j = simj si′ mj′ defines a
binary interaction between ports si and mj .

5

3.2 Conservative extension of PIL operators

Notice that from the PCL semantics of interaction formulas, it follows
immediately that PCL is a conservative extension of PIL. Below we ex-
tend the PIL conjunction and disjunction operators to PCL.
PCL intersection is a conservative extension of PIL conjunction.

Proposition 2. φ1∧φ2 ≡ φ1 u φ2, for any interaction formulas φ1, φ2.

Thus, conjunction and intersection coincide on interaction formulas. In
the rest of the paper, we use the same symbol ∧ to denote both operators.
Disjunction can be conservatively extended to PCL with the following
semantics: for any PCL formulas f1 and f2,

γ |= f1 ∨ f2 , if γ |= f1 t f2 t f1 + f2. (1)

Proposition 3. For any interaction formulas φ1 and φ2 and any γ ∈
C(P) such that γ 6= ∅, we have γ |= φ1 ∨ φ2 iff ∀a ∈ γ, a |=i φ1 ∨ φ2.

3.3 Properties of PCL operators

Union, complementation and conjunction operators have the standard
set-theoretic meaning and consequently, they satisfy the usual axioms of
propositional logic.
The coalescing operator + combines configurations, as opposed to the
union operator t , which combines configuration sets. Coalescing has
the following properties:

Proposition 4. + is associative, commutative and has an absorbing el-

ement false
def
= ¬true.

Proposition 5. For any formulas f, f1, f2 and any interaction formula
φ, we have the following distributivity results:
1. f ∨ (f1 t f2) ≡ (f ∨ f1) t (f ∨ f2),
2. f + (f1 ∨ f2) ≡ (f + f1) ∨ (f + f2),
3. f + (f1 t f2) ≡ f + f1 t f + f2,
4. φ ∧ (f1 + f2) ≡ (φ ∧ f1) + (φ ∧ f2).

Associativity of coalescing and union, together with the distributivity of
coalescing over union, immediately imply the following generalisation of
the extended semantics of disjunction (1).

Corollary 1. For any set of formulas {fi}i∈I , we have∨
i∈I

fi ≡
⊔
∅6=J⊆I

∑
j∈J

fj ,

where
∑
j∈J fj denotes the coalescing of formulas fj, for all j ∈ J .

Example 3. A configuration γ satisfying the formula f = f1 ∨ f2 ∨ f3
can be partitioned into γ = γ1 ∪ γ2 ∪ γ3, such that γi |= fi. However, by
the semantics of disjunction, some γi can be empty. On the contrary, the
semantics of coalescing requires all elements of such partition to be non-
empty. Hence, in order to rewrite f without the disjunction operator, we
take the union of all possible coalescings of f1, f2 and f3. Thus, we have
f ≡ f1 t f2 t f3 t (f1 + f2) t (f1 + f3) t (f2 + f3) t (f1 + f2 + f3).

6

Notice that in general coalescing does not distribute over conjunction.

Example 4. Let P = {p, q} and consider f = p t q, f1 = p and f2 = q.
Configuration

{
{p}, {q}

}
satisfies (f+f1)∧ (f+f2), but not f+(f1 ∧ f2).

Coalescing with true presents a particular interest for writing specifica-
tions, since they allow adding any set of interactions to the configurations
satisfying f . Notice that true is not a neutral element of coalescing: only
the implication f ⇒ f + true holds in general.

Definition 2. For any formula f , the closure operator ∼ is defined by

putting ∼f def
= f + true. We give ∼ the same binding power as ¬.

Example 5. For P = {p, q, r} the formula f characterizing all the config-
urations such that p must interact with both q and r, is f = ∼(pq+qr) =
pq + pr + true. Notice that the only constraint imposed by the formula
f is that configurations that satisfy it must contain an interaction pqr
or both interactions pq and qr. Configurations satisfying f can contain
any additional interactions.

Proposition 6. For any formula f , we have ∼∼f ≡ ∼f .

The closure operator can be interpreted as a modal operator with ex-
istential quantification. The formula ∼ f characterizes configurations γ,
such that there exists a sub-configuration of γ satisfying f . Thus, ∼ f
means “possible f”. Dually ¬ ∼¬f means “always f” in the following
sense: if a configuration γ satisfies ¬ ∼ ¬f , all sub-configurations of γ
satisfy f . Below, we show that, for an interaction formula φ, holds the
equivalence ∼ ¬φ ≡ ¬φ, which implies ¬ ∼ ¬φ ≡ ¬¬φ ≡ φ. However,
this is not true in general. Consider f = ma +mb, where ma and mb are
characteristic monomials of interactions a and b respectively. The only
configuration satisfying f is γ = {a, b}. In particular, none of the sub-
configurations {a}, {b} ⊂ γ satisfies f . Thus, ¬ ∼¬(ma +mb) ≡ false.

Proposition 7. For any f1 and f2, we have
1. ∼(f1 t f2) ≡ ∼f1 t ∼f2 ≡ ∼(f1 ∨ f2),
2. ∼(f1 + f2) ≡ ∼f1 + ∼f2 ≡ ∼f1 ∧ ∼f2.

The following proposition allows us to address the relation between com-
plementation and negation.

Proposition 8. For any interaction formula φ, we have

φ t φ t (φ + φ) ≡ true .

Notice that the three terms on the left are mutually disjoint and there-
fore, for any interaction formula φ, we have

¬φ ≡ φ t (φ+ φ) ≡ φ + true ≡ ∼φ . (2)

In particular, this means that complementation can also be interpreted
as a modality. Prop. 8 shows that the complementation of an interac-
tion formula φ represents all configurations that contain φ . Equivalences
¬φ ≡ ∼ φ, ¬ ∼ φ ≡ φ , ¬ ∼ φ ≡ φ and ∼ ¬φ ≡ ¬φ, for interaction
formulas φ, are direct corollaries of Prop. 8 and, for the latter, Prop. 6.
The following proposition generalises (2) to coalescings of interaction
formulas.

7

Proposition 9. For any set of interaction formulas Φ, we have

¬
(∑
φ∈Φ

φ
)
≡
⊔
φ∈Φ

φ t ∼
(∧
φ∈Φ

φ
)
.

Example 6. Consider a formula f = ¬(pq+ pr) and a configuration γ |=
f . The PCL semantics requires that γ cannot be split into two non-empty
parts γ1 |= pq and γ2 |= pr. This can happen in two cases: 1) there exists
a ∈ γ such that a does not satisfy neither pq nor pr; 2) one of the
monomials is not satisfied by any interaction in γ. The former case can
be expressed as ∼(pq pr) and the latter as pq t pr . The union of these
formulas gives the equivalence ¬(pq + pr) ≡ pq t pr t ∼(pq pr).

Prop. 9 allows the elimination of complementation. It is also possible to
eliminate conjunction of coalescings by using the following distributivity
results to push it down within the formula.

Proposition 10. For two sets of interaction formulas Φ and Ψ , we have∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.

Example 7. Consider a formula f = (φ1 + φ2) ∧ (φ3 + φ4), where φ1,
φ2, φ3 and φ4 are interaction formulas, and a configuration γ |= f . The
semantics requires that there exists two partitions of γ: γ = γ1 ∪ γ2
and γ = γ3 ∪ γ4, such that γi |= φi for i ∈ [1, 4]. Considering an in-
tersection γi,j = γi ∩ γj we have γi,j |= φi ∧ φj . Thus, γ =

⋃
γi,j

satisfies φ1φ3 ∨φ1φ4 ∨φ2φ3 ∨φ2φ4 even if some γi,j are empty. However,
disjunction allows configurations such that no interaction satisfy one of
the disjunction terms and consequently some φi. A coalescing of φi al-
lows only configurations such that each φi is satisfied by at least one
interaction. Thus, the conjunction of these formulas gives the equivalent
representation:

f ≡ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) ∧ (φ1 + φ2 + φ3 + φ4)

≡ φ1 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4)

+ φ2 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4)

+ φ3 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4)

+ φ4 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) .

The PCL lattice is illustrated in Fig. 3. The circle nodes represent inter-
action formulas, whereas the red dot nodes represent all other formulas.
Notice that the PCL lattice has two sub-lattices generated by monomials:

– through disjunction and negation (isomorphic to the PIL lattice);
– through union and complementation (disjunction is not expressible).

Notice that coalescing cannot be expressed in any of these two sub-
lattices. Although some formulas involving the closure operator can be
expressed in the second sub-lattice, e.g. ∼φ ≡ ¬φ , in general this is not
the case, e.g. the formulas ∼ (φ ∧ ψ) and ∼ φ t ∼ ψ are not part of
either sub-lattice. However, the closure operator is expressible by taking
as generators the interaction formulas:

Proposition 11. The lattice generated by interaction formulas through
union and complementation is closed under the closure operator ∼.

8

∼ φ∧ ∼ ψ ≡ ¬(φ t ψ)

φ ∨ ψ

φ ∧ ψ ∼ (φ ∧ ψ) ≡ ¬(φ ∨ ψ)

∼ ψ ≡ ¬ψ

φ+ ψ

¬(φ+ ψ)
¬φ ≡∼ φ ¬ψ ≡∼ ψ

ψφ
¬(φ t ψ) ≡∼ φ∧ ∼ ψ

¬(φ ∨ ψ) ≡∼ (φ ∧ ψ)

¬(φ ∧ ψ) ≡ ∼ φ t ∼ ψ

ψφ

φ t ψ

φ ∧ ψ

∼ φt ∼ ψ ≡ ¬(φ ∧ ψ)

φ ∨ ψ

φ t ψ

∼ φ ≡ ¬φ

Fig. 3: PCL lattice (the blue arrows represent implications; red dashed and green
solid lines represent, respectively, PIL negation and complementation).

3.4 Deciding equivalence and satisfaction

In this subsection, we present an axiomatisation of the PCL equivalence
≡, which is sound and complete with respect to the definition in Sect. 3.1.
This axiomatisation allows us to define a normal form for PCL formulas,
similar to the disjunctive normal form in Boolean algebras. The existence
of such a normal form immediately implies the decidability of 1) the
equivalence of two PCL formulas and 2) the satisfaction of a formula by
a configuration.

Axioms. PCL operators satisfy the following axioms (for any formulas
f , f1 and f2 and any sets of interaction formulas Φ and Ψ):
1. The PIL axioms for interaction formulas.
2. The usual axioms of propositional logic for t , ∧ , ¬.
3. + is associative, commutative and has an absorbing element false.
4. f + (f1 t f2) ≡ f + f1 t f + f2.

5.
∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)

.

6. ¬
(∑
φ∈Φ

φ
)
≡
⊔
φ∈Φ

φ t ∼
(∧
φ∈Φ

φ
)

.

Theorem 1. The above set of axioms is sound and complete for the
equivalence ≡ in PCL.

Applying the axioms above, one can remove or push PCL operators down
in the expression tree of the formula. For instance, Ax. 5 allows one to
push the conjunction down, Ax. 6 removes the complementation.1

Definition 3. A PCL formula is in normal form iff it has the form⊔
i∈I
∑
j∈Ji

∨
k∈Ki,j

mi,j,k, where all mi,j,k are monomials.

Theorem 2. Any PCL formula has an equivalent normal form formula.

1 Full details of the normal form derivation can be found in the technical report [22].

9

Example 8. The following example illustrates the normalization process:

(pq t r) ∧ (pr + ¬q) ≡ (pq t r) ∧ (pr + q + true) // Ax. 6

≡ (pq ∧ (pr + q + true)) t (r ∧ (pr + q + true)) // Ax. 2

≡ ((pq ∧ pr) + (pq ∧ q) + (pq ∧ true)) // Ax. 5

t ((r ∧ pr) + (r ∧ q) + (r ∧ true))

≡ (pqr + false + pq) t (pr + rq + r) // Ax. 1

≡ pr + rq + r . // Ax. 2, 3

The first step removes the complementation. Then the application of
distributivity rules pushes conjunction down in the expression tree of
the formula, to the level of monomials. Finally, the formula is simplified,
by observing that false is the absorbing element of coalescing and the
identity of union.

4 Architecture style specification methodology
The methodology for writing architecture style specifications can be con-
ceptually simplified due to the fact that an architecture can be considered
as a hypergraph whose vertices are ports and edges are interactions. If a
is an interaction then, its characteristic monomial ma specifies in PCL
a single configuration (hypergraph) that contains only the interaction
(edge) a. The formula ∼ma specifies all the configurations (hypergraphs)
that contain the interaction (edge) a. It can be considered as a predicate
on ports expressing their connectivity.
A key idea in writing architecture style specifications is that these can be
expressed as logical relations between connectivity formulas of the form
∼φ where φ is an interaction formula. This allows simplification through
separation of concerns: first configurations are specified as the conjunc-
tion of formulas on Boolean variables representing connectivity formulas;
then, after simplification, the connectivity formulas are replaced. This
may require another round of simplifications based on specific properties
of PCL. This idea is illustrated in the following example.

Example 9. Consider a system with three ports p, q, r and the following
connectivity constraint: If any port is connected to the two others, the
latter have to be connected between themselves. In order to specify this
constraint in PCL, we first define three predicatesX =∼(pq), Y =∼(qr)
and Z = ∼ (pr). The constraint we wish to impose is then specified by
the conjunction of the three implications: (X ∧ Y ⇒ Z) ∧ (Y ∧ Z ⇒
X) ∧ (Z ∧ X ⇒ Y) ≡ ¬Z ∧ ¬Y t ¬Y ∧ ¬X t ¬X ∧ ¬Z t X ∧ Y ∧ Z.
Substituting ∼(pq), ∼(qr), ∼(pr) for X, Y , Z, respectively, we obtain

(p ∨ r) ∧ (q ∨ r) t (q ∨ r) ∧ (p ∨ q) t (p ∨ q) ∧ (p ∨ r)

t ∼(pq) ∧ ∼(qr) ∧ ∼(pr)

≡ ¬(r ∨ p q) ∧ ¬(q ∨ p r) ∧ ¬(p ∨ q r)⇒ ∼(pq)∧ ∼(qr)∧ ∼(pr)

≡ ∼(pr ∨ qr)∧ ∼(qr ∨ pq)∧ ∼(pq ∨ pr)⇒ ∼(pq)∧ ∼(qr)∧ ∼(pr)

≡ ∼(pr)∧ ∼(qr)t ∼(qr)∧ ∼(pq)t ∼(pq)∧ ∼(pr)

⇒ ∼(pq)∧ ∼(qr)∧ ∼(pr)

≡ ∼(pr + qr)t ∼(pq + qr)t ∼(pq + pr)⇒ ∼(pq + qr + pr) .

10

5 First and second order extensions of PCL

PCL is defined for a given set of ports and a given set of components. In
order to specify architecture styles, we need quantification over compo-
nent variables. We make the following assumptions:

– A finite set of component types T = {T1, . . . , Tn} is given. Instances
of a component type have the same interface and behaviour. We
write c :T to denote a component c of type T .

– The interface of each component type has a distinct set of ports. We
write c.p to denote the port p of component c and c.P to denote the
set of ports of component c.

5.1 First-order configuration logic

Syntax. The language of the formulas of the first-order configuration
logic extends the language of PCL by allowing Boolean expressions on
component variables, universal quantification and a specific coalescing
quantifier Σc :T . Let φ denote any interaction formula:

F ::= true | φ | ∀c :T
(
Φ(c)

)
.F | Σc :T

(
Φ(c)

)
.F | F t F | ¬F | F + F ,

where Φ(c) is some set-theoretic predicate on c (omitted when Φ = true).

Semantics. The semantics is defined for closed formulas, where, for
each variable in the formula, there is a quantifier over this variable in a
higher nesting level. As above, we assume that the finite set of component
types T = {T1, . . . , Tn} is given. Models are pairs 〈B, γ〉, where B is a
set of component instances of types from T and γ is a configuration on
the set of ports P of these components. For quantifier-free formulas, the
semantics is the same as for PCL formulas. For formulas with quantifiers,
the satisfaction relation is defined by the following rules:

〈B, γ〉 |= ∀c :T
(
Φ(c)

)
.F , iff γ |=

∧
c′:T∈B ∧Φ(c′)

F [c′/c],

〈B, γ〉 |= Σc :T
(
Φ(c)

)
.F , iff γ |=

∑
c′:T∈B ∧Φ(c′)

F [c′/c],

where c′ : T ranges over all component instances of type T ∈ T satisfying
Φ and F [c′/c] is obtained by replacing all occurrences of c in F by c′.

For a more concise representation of formulas, we introduce the notation
](c1.p1, . . . , cn.pn), which expresses an exact interaction, i.e. all ports in
the arguments and only they participate in the interaction:

](c1.p1, . . . , cn.pn)
def
=

n∧
i=1

ci.pi ∧
n∧
i=1

∧
p∈ci.P\{pi}

ci.p

∧
∧
T∈T

∧
c:T 6∈{c1,...,cn}

∧
p∈c.P

c.p . (3)

11

Example 10. The Star architecture style is defined for a set of compo-
nents of the same type. One central component s is connected to every
other component through a binary interaction, and there are no other
interactions. It can be specified as follows:

∃s :T. ∀c :T (c 6= s).
(
∼(c.p s.p) ∧ ∀c′ :T (c′ 6∈ {c, s}). (c′.p c.p)

)
∧
(
∀c :T. ¬ ∼](c.p)

)
. (4)

The three conjuncts of this formula express respectively the properties:
1) any component is connected to the center; 2) components other than
the center are not connected; and 3) unary interactions are forbidden.
Notice that the semantics of the first part of the specification, ∀c :T (c 6=
s). ∼ (c.p s.p), is a conjunction of closure formulas. In this conjunc-
tion, the closure operator also allows interactions in addition to the ones
explicitly defined. Therefore, to correctly specify this style, we need to
forbid all other interactions with the second and third conjuncts of the
specification. A simpler alternative specification uses the Σ quantifier:

∃s :T. Σc :T (c 6= s).](c.p, s.p) . (5)

The] notation requires interactions to be binary and the Σ quantifier
allows configurations that contain only interactions satisfying](c.p, s.p),
for some c. Thus, contrary to (4), we do not need to explicitly forbid
unary interactions and connections between non-center components.

Example 11. The Pipes and Filters architecture style [13] involves two
types of components, P and F , each having two ports in and out. Each
input (resp. output) of a filter is connected to an output (resp. input) of
a single pipe. The output of any pipe can be connected to at most one
filter. This style can be specified as follows:

∀f :F. ∃p :P. ∼(f.in p.out) ∧ ∀p′ :P (p 6= p′).
(
f.in p′.out

)
(6)

∧ ∀f :F. ∃p :P. ∼(f.out p.in) ∧ ∀p′ :P (p 6= p′).
(
f.out p′.in

)
(7)

∧ ∀p :P. ∃f :F. ∀f ′ :F (f 6= f ′).
(
p.out f ′.in

)
(8)

∧ ∀p :P.
(
p.in p.out ∧ ∀p′ :P (p 6= p′).

(
p.in p′.in ∧ p.in p′.out

))
(9)

∧ ∀f :F.
(
f.in f.out ∧ ∀f ′ :F (f 6= f ′).

(
f.in f ′.in ∧ f.in f ′.out

))
.

(10)

The first conjunct (6) requires that the input of each filter be connected
to the output of a single pipe. The second conjunct (7) requires that the
output of each filter be connected to the input of a single pipe. The third
conjunct (8) requires that the output of a pipe be connected to at most
one filter. Finally, the fourth and fifth conjuncts (9) and (10) require that
pipes only be connected to filters and vice-versa.

Notice that (6) and (7) in Ex. 11 can be simplified by introducing the
additional notation for “exists unique”:

∃!c :T
(
Φ(c)

)
.F (c)

def
= ∃c :T

(
Φ(c)

)
.F (c) ∧ ∀c′ :T

(
c 6= c′ ∧ Φ(c′)

)
.¬F (c′) .

(11)

12

Using this notation, (6) and (7) can be rewritten respectively as

∀f :F. ∃!p :P. ∼(f.in p.out) and ∀f :F. ∃!p :P. ∼(f.out p.in) .

5.2 Second-order configuration logic

Properties stating that two components are connected through a chain
of interactions, are essential for architecture style specification. For in-
stance, the property that all components form a single ring and not
several disjoint ones can be reformulated as such a property. In [18], it
is shown that transitive closure, necessary to specify such reachability
properties, cannot be expressed in the first-order logic. This motivates
the introduction of the second-order configuration logic with quantifica-
tion over sets of components.
This logic further extends PCL with variables ranging over component
sets. We write C :T to express the fact that all components belonging to
C are of type T . Additionally, we denote CT the set of all the components
of type T . Finally, we assume the existence of the universal component
type U , such that any component or component set is of this type. Thus,
CU represents all the components of a model.

Syntax. The syntax of the second-order configuration logic is defined
by the following grammar (φ is an interaction formula):

S ::= true | φ | ∀c :T
(
Φ(c)

)
.S | Σc :T

(
Φ(c)

)
.S | S t S | ¬S | S + S

| ∀C : T
(
Ψ(C)

)
.S | ΣC : T

(
Ψ(C)

)
.S ,

where Φ(c), Ψ(C) are some set-theoretic predicates (omitted when true).

Semantics. Models are pairs 〈B, γ〉, where B is a set of component
instances of types from T and γ is a configuration on the set of ports P of
these components. The meaning of quantifier-free formulas or formulas
with quantification only over component variables is as for first-order
logic. We define the meaning of quantifiers over component set variables:

〈B, γ〉 |= ∀C :T
(
Ψ(C)

)
.S , iff γ |=

∧
C′:T⊆B∧Ψ(C′)

S[C′/C],

〈B, γ〉 |= ΣC :T
(
Ψ(C)

)
.S , iff γ |=

∑
C′:T⊆B∧Ψ(C′)

S[C′/C],

where C′ :T ranges over all sets of components of type T that satisfy Ψ .

Example 12. The Repository architecture style [7] consists of a reposi-
tory component r with a port p and a set of data-accessor components
of type A with ports q. We provide below a list of increasingly strong
properties that may be used to characterize this style:

1. The basic property “there exists a single repository and all interac-
tions involve it” is specified as follows:

∃r :R. (r.p) ∧ ∀r :R. ∀r′ :R. (r = r′),

where the subterm ∀r :R. ∀r′ :R. (r = r′) can be expressed in the
logic as ∀r :R. ∀r′ :R(r′ 6= r). false.

13

2. The additional property “there are some data-accessors and any
data-accessor must be connected to the repository” is enforced by
extending the formula as follows:

∃r :R. (r.p) ∧ ∀r :R. ∀r′ :R. (r = r′)

∧ ∃a :A. true ∧ ∀a :A. ∃r :R. ∼(r.p a.q)

3. Finally, the additional property “there are no components of other
types than Repository and Data-accessor” is enforced by the formula:

∃r :R. (r.p) ∧ ∃a :A. true ∧ ∀a :A. ∃r :R. ∼(r.p a.q)

∧ ∀r :R. ∀r′ :R. (r = r′) ∧ ∀c :U. (c ∈ CR t c ∈ CA) ,

where the subterm ∀c :U. (c ∈ CR t c ∈ CA) can be expressed as
∀c :U(c 6∈ CR ∧ c 6∈ CA). false.

Example 13. In the Ring architecture style (with only one component
type T), all components form a single ring by connecting their in and
out ports. This style can be specified as follows:

Σc :T. ∃c′ :T (c 6= c′).](c.in, c′.out)

∧Σc :T. ∃c′ :T (c 6= c′).](c.out, c′.in)

∧ ∀C :T (C 6= U). (∃c :T (c ∈ C). ∃c′ :T (c′ 6∈ C). ∼(c.in c′.out)) .

The third conjunct ensures that there is a single ring and not several
disjoint ones.

6 Implementation of the decision procedure

The PCL decision procedure is based on the computation of the normal
form followed by a decision whether a model satisfies at least one union
term of the normal form or not. For the first- and second-order exten-
sions, satisfaction of a formula by a model can be decided by reduction
to the decision procedure of PCL. Indeed, given a model, all quantifiers
can be effectively eliminated, transforming a formula into a PCL one.
Details of the procedure can be found in the technical report [22].
We implemented the decision procedure for PCL using Maude 2.0. Maude
is a language and an efficient rewriting system supporting both equa-
tional and rewriting logic specification and programming for a wide range
of applications. In the experimental evaluation we used a set of archi-
tecture styles including Star, Ring, Request-Response pattern [9], Pipes-
Filters, Repository and Blackboard [8]. We used configuration logic for-
mulas (all of them can be found in the technical report [22]) and models
of different sizes, including both correct and incorrect models. Quanti-
fiers were eliminated externally and the decision procedure was applied
to quantifier-free formulas. All experiments have been performed on a 64-
bit Linux machine with a 2.8 Ghz Intel i7-2640M CPU with a memory
limit of 1Gb and time limit of 600 seconds.
Fig. 4 shows the average duration of the decision procedure for the six
examples, as a function of the total number of ports involved in the for-
mula. Simple architecture styles like Star are decidable within seconds

14

0

2

4

6

8

10

12

0 10 20 30 40 50

T
im

e
(s
e
c
)

Number of ports

Ring
Star

Blackboard
Repository

Request-Response
Pipes-Filters

Fig. 4: Decision procedure for architecture styles

even for 50 ports. For architecture styles requiring more complex spec-
ifications, the number of ports that can be managed in 600 seconds is
smaller. For the Ring architecture the memory limit is attained for the
model with 24 ports.

7 Related work

A plethora of approaches exist for characterizing architecture styles. Pat-
terns [9, 16] are commonly used for this purpose in practical applications.
They incorporate explicit constructs for architecture modelling but, lack-
ing formal semantics, are not amenable to formal analysis.
Among the formal approaches for representing and analysing architecture
styles, we distinguish two main categories:

– Extensional approaches, where one explicitly specifies all interactions
among the components (cf. the specification (5) of the Star pattern).
All connections, other than the ones specified, are excluded.

– Intentional approaches, where one does not explicitly specify all the
connections among the components, but these are derived from a set
of logical constraints, formulating the intentions of the designer (cf.
the specification (4) of the Star pattern). In this case specifications
are conjunctions of logical formulas.

The proposed framework encompasses both approaches. It allows explicit
specification of individual interactions, e.g. by using interaction formu-
las, as well as explicit specification of configuration sets, e.g. by using
formulas of the form ∼f .
A large body of literature, originating in [15, 21], studies the use of graph
grammars and transformations [24] to define software architectures. Al-
though this work focuses mainly on dynamic reconfiguration of archi-
tectures, e.g. [6, 19, 20], graph grammars can be used to extensionally

15

define architecture styles: a style admits all the configurations that can
be derived by its defining grammar. The main limitations, outlined al-
ready in [21], are the following: 1) the difficulty of understanding the
architecture style defined by a grammar; 2) the fact that the restric-
tion to context-free grammars precludes the specification of certain styles
(e.g. trees with unbounded number of components or interactions, square
grids); 3) the impossibility of combining several styles in a homogeneous
manner. To some extent, the latter two are addressed, respectively, by
considering synchronised hyperedge replacement [11], context-sensitive
grammars [10, 27] and architecture views [23]. Our approach avoids these
problems. Combining the extensional and intentional approaches allows
intuitive specification of architecture styles. The higher-order extensions
of PCL allow imposing global constraints necessary to specify styles that
are not expressible by context-free graph grammars. Finally, the combi-
nation of several architecture styles is defined by the conjunction of the
corresponding PCL formulas.
The proposed framework has similarities, but also significant differences,
with the use of Alloy [17] and OCL [26] for intentional specification of
architecture styles, respectively, in ACME and Darwin [12, 14] and in
UML [5]. Our approach achieves a strong semantic integration between
architectures and architecture styles. Moreover, configuration logic allows
a fine characterization of the coordination structure by using n-ary con-
nectivity predicates. On the contrary, the connectivity primitives in [12,
14, 26] are binary predicates and cannot tightly characterize coordination
structures involving multiparty interaction. To specify an n-ary interac-
tion, these approaches require an additional entity connected by n binary
links with the interacting ports. Since the behaviour of such entities is
not part of the architecture style, it is impossible to distinguish, e.g.,
between an n-ary synchronisation and a sequence of n binary ones.
Both Alloy and OCL rely on first-order logics extended with some form
of the Kleene closure operator that allows to iterate over a transitive rela-
tionship. In particular, this operator allows defining reachability among
components. It is known that the addition of the Kleene closure in-
creases the expressive power w.r.t. a first-order logic [18]. To the best
of our knowledge, the expressiveness relation between a first-order logic
extended with Kleene closure and a corresponding second-order logic
remains to be established.

8 Conclusion

The presented work is a contribution to a long-term research program
that we have been pursuing for more than 15 years. The program aims
at developing the BIP component framework for rigorous systems de-
sign [25]. BIP is a language and a set of supporting tools including code
generators, verification and simulation tools. So far the theoretical work
has focused on the study of expressive composition frameworks and their
algebraic and logical formalization. This led in particular, to the formal-
ization of architectures as a generic coordination schemes applied to sets
of components in order to enforce a given global property [1].
The presented work nicely complements the existing component frame-
work with logics for the specification of architecture styles. Configuration

16

logic formulas characterize interaction configurations between instances
of typed components. Quantification over components and sets of com-
ponents allows the genericity needed for architecture styles. We have
shown through examples that configuration logic allows full expressive-
ness combined with ease of use.
Configuration logic is a powerset extension of interaction logic used to
describe architectures. It is integrated in a unified semantic framework
which is equipped with a decision procedure for checking that a given
architecture model meets given style requirements.
As part of the future work, we will extend our results in several direc-
tions. From the specification perspective, we are planning to incorporate
hierarchically structured interactions and data transfer among the par-
ticipating ports. From the analysis perspective, we will study techniques
for deciding satisfiability of higher-order extensions of PCL. Finally, from
the practical perspective, we also plan to extend to the higher-order log-
ics the Maude implementation of the decision procedures. We will also
study sublogics that are practically relevant and for which more efficient
decision procedures can be applied.
In parallel, we are currently using configuration logic to formally specify
reference architectures for avionics systems, in a project with ESA.

References

1. Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber, and
Joseph Sifakis. A general framework for architecture composability.
In SEFM’14, number 8702 in LNCS, pages 128–143. Springer, 2014.

2. Simon Bliudze and Joseph Sifakis. The algebra of connectors—
structuring interaction in BIP. IEEE Transactions on Computers,
57(10):1315–1330, 2008.

3. Simon Bliudze and Joseph Sifakis. Causal semantics for the algebra
of connectors. FMSD, 36(2):167–194, 2010.

4. Simon Bliudze and Joseph Sifakis. Synthesizing glue operators from
glue constraints for the construction of component-based systems.
In SC ’11, volume 6708 of LNCS, pages 51–67. Springer, 2011.

5. Grady Booch, James Rumbaugh, and Ivar Jacobson. The unified
modeling language user guide. Addison-Welsley Longman Inc, 1999.

6. Roberto Bruni, Alberto Lluch-Lafuente, Ugo Montanari, and Emilio
Tuosto. Style-based architectural reconfigurations. Bulletin of the
EATCS, 94:161–180, 2008.

7. Paul Clements, David Garlan, Len Bass, Judith Stafford, Robert
Nord, James Ivers, and Reed Little. Documenting software architec-
tures: views and beyond. Pearson Education, 2002.

8. Daniel D. Corkill. Blackboard systems. AI expert, 6(9):40–47, 1991.
9. Robert Daigneau. Service Design Patterns: fundamental design so-

lutions for SOAP/WSDL and restful Web Services. Addison-Wesley,
2011.

10. Hartmut Ehrig and Barbara Konig. Deriving bisimulation congru-
ences in the DPO approach to graph rewriting. In FoSSaCS, volume
2987 of LNCS, pages 151–166. Springer, 2004.

11. Gian Luigi Ferrari, Dan Hirsch, Ivan Lanese, Ugo Montanari, and
Emilio Tuosto. Synchronised hyperedge replacement as a model for

17

service oriented computing. In Formal Methods for Components and
Objects, pages 22–43. Springer, 2006.

12. David Garlan, Robert Monroe, and David Wile. Acme: An archi-
tecture description interchange language. In CASCON ’97, pages
159–173. IBM Press, 1997.

13. David Garlan and Mary Shaw. An introduction to software archi-
tecture. In Advances in Software Engineering and Knowledge Engi-
neering, pages 1–39. World Scientific Publishing Company, 1993.

14. Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organising
software architectures for distributed systems. In Proceedings of the
first workshop on Self-healing systems, pages 33–38. ACM, 2002.

15. Dan Hirsch, Paola Inverardi, and Ugo Montanari. Modeling software
architectures and styles with graph grammars and constraint solv-
ing. In Patrick Donohoe, editor, Software Architecture, volume 12 of
IFIP, pages 127–143. Springer, 1999.

16. Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

17. Daniel Jackson. Alloy: A lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, April 2002.

18. Uwe Keller. Some remarks on the definability of transitive closure
in first-order logic and Datalog. Internal report, Digital Enterprise
Research Institute (DERI), University of Innsbruck, 2004.

19. Christian Koehler, Alexander Lazovik, and Farhad Arbab. Connec-
tor rewriting with high-level replacement systems. Electronic Notes
in Theoretical Computer Science, 194(4):77–92, 2008.

20. Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad
Arbab. Modeling dynamic reconfigurations in Reo using high-level
replacement systems. Sci. of Comp. Prog., 76(1):23–36, 2011.

21. Daniel Le Métayer. Describing software architecture styles us-
ing graph grammars. IEEE Transactions on Software Engineering,
24(7):521–533, July 1998.

22. Anastasia Mavridou, Eduard Baranov, Simon Bliudze, and Joseph
Sifakis. Configuration logics - modelling architecture styles. Tech-
nical Report EPFL-REPORT-206825, EPFL IC IIF RiSD, March
2015. Available at: http://infoscience.epfl.ch/record/206825.

23. Dewayne E. Perry and Alexander L. Wolf. Foundations for the
study of software architecture. ACM SIGSOFT Software Engineer-
ing Notes, 17(4):40–52, 1992.

24. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation. World Scientific, 1997.

25. Joseph Sifakis. Rigorous system design. Foundations and Trends in
Electronic Design Automation, 6:293–362, 2012.

26. Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Lan-
guage: Precise Modeling With UML. Addison-Wesley, 1998.

27. Da-Qian Zhang, Kang Zhang, and Jiannong Cao. A context-sensitive
graph grammar formalism for the specification of visual languages.
The Computer Journal, 44(3):186–200, 2001.

18

