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A General Framework for Architecture Composability

Paul Attie ∗ Eduard Baranov † Simon Bliudze † Mohamad Jaber ∗

Joseph Sifakis †

Abstract

Architectures depict design principles, paradigms that can be understood by all, allow
thinking on a higher plane and avoiding low-level mistakes. They provide means for ensuring
correctness by construction by enforcing global properties characterizing the coordination
between components. An architecture can be considered as an operator A that, applied to a
set of components B, builds a composite component A(B) meeting a characteristic property
Φ. Architecture composability is a basic and common problem faced by system designers.

In this paper, we propose a formal and general framework for architecture composability
based on an associative, commutative and idempotent architecture composition operator ‘⊕’.
The main result is that if two architectures A1 and A2 enforce respectively state properties
Φ1 and Φ2, the architecture A1 ⊕ A2 enforces the property Φ1 ∧ Φ2, that is both properties
are preserved by architecture composition. We also discuss preservation of liveness properties
by architecture composition. The presented results are illustrated by a running example and
a case study.

1 Introduction

Architectures depict design principles, paradigms that can be understood by all, allow thinking on
a higher plane and avoiding low-level mistakes. They provide means for ensuring correctness by
construction by enforcing global properties characterizing the coordination between components.

Using architectures largely accounts for our ability to master complexity and develop systems
cost-effectively. System developers extensively use libraries of reference architectures ensuring both
functional and non-functional properties, for example fault-tolerant architectures, architectures for
resource management and QoS control, time-triggered architectures, security architectures and
adaptive architectures. Nonetheless, we still lack theory and methods for combining architectures
in principled and disciplined fully correct-by-construction design flows.

Informally speaking, an architecture can be considered as an operator A that, applied to a
set of components B builds a composite component A(B) meeting a characteristic property Φ.
In a design process, it is often necessary to combine more than one architectural solution on a
set of components to achieve a global property. System engineers use libraries of solutions to
specific problems and they need methods for combining them without jeopardizing their charac-
teristic properties. For example, a fault-tolerant architecture combines a set of features building
into the environment protections against trustworthiness violations. These include 1) triple mod-
ular redundancy mechanisms ensuring continuous operation in case of single component failure;
2) hardware checks to be sure that programs use data only in their defined regions of memory, so
that there is no possibility of interference; 3) default to least privilege (least sharing) to enforce
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file protection. Is it possible to obtain a single fault-tolerant architecture consistently combining
these features? The key issue here is architecture composability in the integrated solution, which
can be formulated as follows:

Consider two architectures A1 and A2, enforcing respectively properties Φ1 and Φ2 on
a set of components B. That is, A1(B) and A2(B) satisfy respectively the properties
Φ1 and Φ2. Is it possible to find an architecture A1 ⊕ A2 such that the composite
component (A1⊕A2)(B) meets Φ1 ∧Φ2? For instance, if A1 ensures mutual exclusion
and A2 enforces a scheduling policy is it possible to find architectures on the same set
of components that satisfies both properties?

Architecture composability is a very basic and common problem faced by system designers.
Manifestations of lack of composability are also known as feature interaction in telecommunication
systems [10].

The development of a formal framework dealing with architecture composability implies a rig-
orous definition of the concept of architecture as well as of the underlying concepts of components
and their interaction. The paper proposes such a framework based on results showing how ar-
chitectures can be used for achieving correctness by construction in a rigorous component-based
design flow [22]. The underlying theory about components and their interaction is inspired from
BIP [8]. BIP is a component framework rooted in well-defined operational semantics. It proposes
an expressive and elegant notion of glue for component composition. Glue operators can be stud-
ied as sets of Boolean constraints expressing interactions between components. BIP has been fully
implemented in a language and supporting tools, e.g. compilers and code generators [6].

We consider that a component framework consists of a set B of atomic components and a set
Γ = {γk}k∈K of glue operators on these components. Atomic components are characterized by
their behaviour specified as a transition system. The glue Γ includes general composition operators
(behaviour transformers).

In this context, a glue operator γ is given by an interaction model, which is a set of interactions.
Each interaction is a set of actions of the composed components, executed synchronously. The
meaning of γ can be specified by using operational semantics rules defining the transition relation
of the composite component γ(B) in terms of transition relations of the composed components B.
Intuitively, for each interaction a ∈ γ, γ(B) can execute a transition labelled by a iff the components
involved in a can execute the corresponding transitions labelled by the actions composing a,
whereas other components do not move. A formal definition is given in Sect. 2 (Def. 2.2).

A component framework can be considered as a term algebra equipped with a congruence
relation compatible with strong bisimulation on transition systems. A composite component is a
well-formed expression built from atomic components.

Given a set of components B an architecture is an operator A such that A(B) = γ(C, B), where
γ is a glue operator and C a set of coordinating components, and A(B) satisfies a characteristic
property PA.

An architecture A adequately restricts the behaviour of a set of components so that the re-
sulting behaviour meets a characteristic property Φ. It is a solution to a specific coordination
problem specified by Φ by using a particular interaction model specified by γ and C. For instance,
for distributed architectures, interactions are point-to-point by asynchronous message passing.
Other architectures adopt a specific topology (e.g. ring architectures, hierarchically structured
architectures). These restrictions entail reduced expressiveness of the glue operator γ that must
be compensated by using the additional set of components C for coordination. The characteristic
property assigns a meaning to the architecture that can be informally understood without the
need for explicit formalization (e.g. mutual exclusion, scheduling policy, clock synchronization).

In this paper, we propose a general formal framework for architecture composability based on
an architecture composition operator ‘⊕’ which is associative, commutative and idempotent. The
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main result is that, if two architectures A1 and A2 enforce respectively state properties Φ1 and Φ2,
the architecture A1 ⊕ A2 enforces Φ1 ∧ Φ2, that is both properties are preserved by architecture
composition. Another family of results deals with preservation of liveness.

The paper is structured as follows. Sect. 2 introduces the notions of behaviour and architec-
ture, as well as the corresponding composition operators. Sect. 3 presents the key results about
the preservation of safety and liveness properties. Sect. 4 illustrates the the application of our
framework on an Elevator control use case. Some related work is discussed in Sect. 5.

2 The Theory of Architectures

2.1 Behaviours and Architectures

Definition 2.1 (Behaviour). A behaviour is a Labelled Transition System B = (Q, q0, P,−→),
where Q is a set of states, q0 ∈ Q is the initial state, P is a set of ports and −→⊆ Q × 2P × Q is
a transition relation. Each transition is labelled by an interaction a ⊆ P . We call P the interface
of B.

We use the notations q
a−→ q′, q

a−→ and q 6 a−→ as usual. We also denote QB , PB and −→B the
constituents of a behaviour B.

Definition 2.2 (Interaction model). Let B = {B1, . . . , Bn} be a finite set of behaviours with
Bi = (Qi, q

0
i , Pi,−→),1 such that all Pi are pairwise disjoint, i.e. ∀i 6= j, Pi ∩ Pj = ∅. Let

P =
⋃n
i=1 Pi. An interaction model over P is a subset γ ⊆ 2P . We call the set of ports P the

domain of the interaction model.
The composition of B with the interaction model γ is given by the behaviour γ(B) = (Q, q0, P,−→

), where Q =
∏n
i=1Qi, q

0 = q0
1 . . . q

0
n and −→ is the minimal transition relation inductively defined

by the following rules:

qi
∅−→ q′i

q1 . . . qi . . . qn
∅−→ q1 . . . q

′
i . . . qn

, (1)

a ∈ γ qi
a∩Pi−−−→ q′i (if a ∩ Pi 6= ∅) qi = q′i (if a ∩ Pi = ∅)

q1 . . . qn
a−→ q′1 . . . q

′
n

. (2)

In the sequel, when speaking of a set of behaviours B = {B1, . . . , Bn}, we will always assume
that it satisfies all assumptions of Def. 2.2.

Definition 2.3 (Architecture). An architecture is a tuple A = (C, PA, γ), where C is a finite set
of coordinating behaviours with pairwise disjoint sets of ports, PA is a set of ports, such that⋃
C∈C PC ⊆ PA, and γ ⊆ 2PA is an interaction model.

Definition 2.4 (Application of an architecture). Let A = (C, PA, γ) be an architecture and let

B be a set of behaviours, such that
⋃
B∈B PB ∩

⋃
C∈C PC = ∅ and PA ⊆ P

∆
=
⋃
B∈B∪C PB . The

application of an architecture A to the behaviours B is the behaviour

A(B)
∆
=
(
γ ‖ 2P\PA

)
(C ∪ B) , (3)

where, for interaction models γ′ and γ′′ over disjoint domains P ′ and P ′′ respectively, γ′ ‖ γ′′ ∆
=

{a′ ∪ a′′ | a′ ∈ γ′, a′′ ∈ γ′′} is an interaction model over P ′ ∪ P ′′.
1 Here and below, we skip the index on the transition relation −→, since it is always clear from the context.
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Figure 1: Behaviour (a) and coordinator (b) for Ex. 2.5.

Intuitively, an architecture A enforces coordination constraints on the behaviours in B. The
interface PA of an architecture A contains all ports of the coordinating behaviours C and some
additional ports, which must belong to the behaviours in B. In the application A(B), the ports
belonging to PA can only participate in the interactions defined by the interaction model γ of A.
Ports, which do not belong to PA, are not restricted and can participate in any interaction. In
particular, they can join the interactions in γ (see (3)). If the interface of the architecture covers all
ports of the system, i.e. P = PA, we have 2P\PA = {∅} and the only interactions allowed in A(B)
are those belonging to γ. Finally, the definition of γ′ ‖ γ′′, above, requires that an interaction from
each of γ′ and γ′′ be involved in every interaction belonging to γ′ ‖ γ′′. To enable independent
progress in (3), one must have ∅ ∈ γ. (Notice that ∅ ∈ 2P\PA holds always.)

Example 2.5 (Mutual exclusion). Consider the behaviours B1 and B2 in Fig. 1(a). In order to en-
sure mutual exclusion of their work states, we apply the architecture A12 = ({C12}, P12, γ12), where
C12 is shown in Fig. 1(b), P12 = {b1, b2, b12, f1, f2, f12} and γ12 = {∅, b1b12, b2b12, f1f12, f2f12}.

The interface P12 ofA12 covers all ports ofB1, B2 and C12. Hence, the only possible interactions
are those explicitly belonging to γ12. Assuming that the initial states of B1 and B2 are sleep,
and that of C12 is free, neither of the two states (free, work, work) and (taken, work, work) is
reachable in A12(B1, B2).

Let B3 be a third behaviour, similar to B1 and B2, with the interface {b3, f3}. Since b3, f3 6∈
P12, the interaction model of the application A12(B1, B2, B3) is γ12 ‖ {∅, b3, f3}. (We exclude the
interaction b3 f3, since b3 and f3 are never enabled in the same state and, therefore, cannot be
fired simultaneously.) Thus, the behaviour of A12(B1, B2, B3) is the unrestricted product of the
behaviours A12(B1, B2) and B3. The application of A12 enforces mutual exclusion between the
work states of B1 and B2, but does not affect the behaviour of B3.

2.2 Composition of Architectures

As will be further illustrated in Sect. 3, architectures can be intuitively understood as enforcing
constraints on the global state space of the system [8, 24]. More precisely, behaviour coordination
is realised by limiting the allowed synchronisation possibilities, thus enforcing constraints on the
transitions behaviours can take. From this perspective, architecture composition can be under-
stood as the conjunction of their respective constraints. This intuitive notion is formalised by the
two definitions below.

Definition 2.6 (Characteristic predicates). Let γ ⊆ 2P be an interaction model over a set of
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ports P . Its characteristic predicate (ϕγ : BP → B) ∈ B[P ] is defined by putting

ϕγ
∆
=
∨
a∈γ

∧
p∈a

p ∧
∧
p 6∈a

p

 .

For any valuation v : P → B, ϕγ(v) = tt if and only if {p ∈ P | v(p) = tt} ∈ γ. A predicate
ϕ ∈ B[P ] uniquely defines an interaction model γϕ, such that ϕγϕ = ϕ.

Example 2.7 (Mutual exclusion (contd.)). Consider the interaction model

γ12 = {∅, b1b12, b2b12, f1f12, f2f12}

from Ex. 2.5. The domain of γ12 is P12 = {b1, b2, b12, f1, f2, f12}. Hence, the characteristic
predicate of γ12 is (omitting the conjunction operator):

ϕγ12 = b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12

∨ b1 b2 b12 f1 f2 f12 ∨ b1 b2 b12 f1 f2 f12

= (b1 ⇒ b12) ∧ (f1 ⇒ f12) ∧ (b2 ⇒ b12) ∧ (f2 ⇒ f12) (4)

∧ (b12 ⇒ b1 XOR b2) ∧ (f12 ⇒ f1 XOR f2) ∧ (b12 ⇒ f12) .

Intuitively, the implication b1 ⇒ b12, for instance, means that, for the port b1 to be fired, it is
necessary that the port b12 be fired in the same interaction.

Definition 2.8 (Architecture composition). Let Aj = (Cj , Pj , γj), for j = 1, 2 be two architec-
tures. The composition of A1 and A2 is an architecture A1 ⊕ A2 = (C1 ∪ C2, P1 ∪ P2, γϕ), where
ϕ = ϕγ1 ∧ ϕγ2 .

The following lemma states that the interaction model of the composed behaviour consists
precisely of the interactions, such that both their projections on the interfaces of the composed
architectures belong to the corresponding interaction models. In other words, these are precisely
the interactions that satisfy the coordination constraints enforced by both composed architectures.

Lemma 2.9. Consider two interaction models γi ⊆ 2Pi , for i = 1, 2, and let ϕ = ϕγ1 ∧ ϕγ2 . For
an interaction a ⊆ P1 ∪ P2, a ∈ γϕ iff a ∩ Pi ∈ γi, for i = 1, 2.

Proof. Let v(p) = (p ∈ a) be a valuation P1 ∪ P2 → B corresponding to a. As observed above,
a |= ϕγ1 ∧ϕγ2 iff (ϕγ1 ∧ϕγ2)(v) = tt, which is equivalent to ϕγ1(v) = tt and ϕγ2(v) = tt. Consider
a restriction v′ : P1 → B of v to P1, defined by putting ∀p ∈ P1, v

′(p) = v(p). Since the variables
p ∈ P2 \ P1 do not appear in ϕγ1 , we have ϕγ1(v) = tt iff ϕγ1(v′) = tt, i.e. a ∩ P1 ∈ γ1. The same
holds for a ∩ P2 ∈ γ2.

Lemma 2.10. Consider a set of behaviours B and two architectures Ai = (Ci, PAi
, γi), for i = 1, 2.

Let q̃1q̃2q
a−→ q̃′1q̃

′
2q
′ be a transition in (A1 ⊕ A2)(B), where, for i = 1, 2, q̃i, q̃

′
i ∈

∏
C∈Ci QC

and q, q′ ∈
∏
B∈BQB. Then, for i = 1, 2, q̃iq

a∩(PAi
∪P )

−−−−−−−→ q̃′iq
′ is a transition in Ai(B), where

P =
⋃
B∈B PB.

Proof. Without loss of generality, we can assume that each of the two architectures has only one
coordinating behaviour, i.e. Ci = {Ci}, for i = 1, 2.

By Def. 2.8, a ∩ (PA1
∪ PA2

) |= ϕγ1 ∧ ϕγ2 . By Lem. 2.9, a ∩ PA1
∈ γ1. Hence,

ã
∆
= a ∩ (PA1 ∪ P ) =

(
a ∩ PA1

)
∪
(
a ∩ (P \ PA1)

)
∈
(
γ1 ‖ 2P\PA1

)
.
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Furthermore, since q̃1q̃2q
a−→ q̃′1q̃

′
2q
′, we have by (2),{

q̃1

a∩PC1−−−−→ q̃′1, if a ∩ PC1
6= ∅,

q̃1 = q̃′1, if a ∩ PC1
= ∅,

and, for i ∈ [1, n],

{
qi

a∩Pi−−−→ q′i, if a ∩ Pi 6= ∅,
qi = q′i, if a ∩ Pi = ∅.

Since PC1 ⊆ PA1 , we have ã ∩ PC1 = a ∩ PC1 . Similarly, for any i ∈ [1, n], Pi ⊆ P , hence
ã ∩ Pi = a ∩ Pi. Thus, all premises of the instance of the rule (2) for ã in A1(B) are satisfied and

we have q̃1q
ã−→ q̃′1q

′ in A1(B). For A2(B), the result is obtained by a symmetrical argument.

Proposition 2.11. Architecture composition ‘⊕’ is commutative, associative and idempotent;
Aid =

(
∅, ∅, {∅}

)
is its neutral element, i.e. for any architecture A, holds A ⊕ Aid = A. Further-

more, for any behaviour B, holds Aid(B) = B.

Proof. Follows from the corresponding properties of set union and boolean conjunction. The
properties of Aid follow immediately from the definitions of architecture application and compo-
sition.

Notice that, for an arbitrary set of behaviours B with P =
⋃
B∈B PB , we have, by (3), Aid(B) =(

2P
)
(B) (cf. Def. 2.2).

Example 2.12 (Mutual exclusion (contd.)). Building upon Ex. 2.5, let B3 be a third behaviour,
similar to B1 and B2, with the interface {b3, f3}. We define two additional architectures A13

and A23 similar to A12: for i = 1, 2, Ai3 = ({Ci3}, Pi3, γi3), where, up to the renaming of
ports, Ci3 is the same as the behaviour C12 in Fig. 1(b), Pi3 = {bi, b3, bi3, fi, f3, fi3} and γi3 =
{∅, bibi3, b3bi3, fifi3, f3fi3}.

By considering, for ϕγ13 and ϕγ23 , expressions similar to (4), it is easy to compute ϕγ12 ∧ϕγ13 ∧
ϕγ23 as the conjunction of the following implications:

b1 ⇒ b12 ∧ b13 , f1 ⇒ f12 ∧ f13 , b12 ⇒ b1 XOR b2 , f12 ⇒ f1 XOR f2 , b12 ⇒ f12 ,

b2 ⇒ b12 ∧ b23 , f2 ⇒ f12 ∧ f23 , b13 ⇒ b1 XOR b3 , f13 ⇒ f1 XOR f3 , b13 ⇒ f13 ,

b3 ⇒ b13 ∧ b23 , f3 ⇒ f13 ∧ f23 , b23 ⇒ b2 XOR b3 , f23 ⇒ f2 XOR f3 , b23 ⇒ f23 .

Finally, it is straightforward to obtain the interaction model for A12 ⊕A13 ⊕A23:

{∅ , b1b12b13 , f1f12f13 , b2b12b23 , f2f12f23 , b3b13b23 , f3f13f23} .

Again, assuming that the initial states of B1, B2 and B3 are sleep, whereas those of C12, C13

and C23 are free, one can observe that, neither of the states (·, ·, ·, work, work, ·), (·, ·, ·, work, ·, work)
and (·, ·, ·, ·, work, work) is reachable in (A12⊕A13⊕A23)(B1, B2, B3). Thus, we conclude that the
composition of the three architectures, (A12 ⊕ A13 ⊕ A23)(B1, B2, B3), enforces mutual exclusion
among the work states of all three behaviours. In Sect. 3.1, we provide a general result stating
that architecture composition preserves the enforced properties.

2.3 Hierarchical Composition of Architectures

Proposition 2.13. Let B be a set of behaviours and let A1 = (C1, PA1 , γ1) and A2 = (C2, PA2 , γ2)

be two architectures, such that 1) PA1
⊆ P1

∆
=
⋃
B∈B∪C1 PB and 2) PA2

⊆ P2
∆
=
⋃
B∈B∪C1∪C2 PB.

Then A2(A1(B)) = (A1 ⊕A2)(B).

Proof. Clearly, the state spaces, initial states and interfaces of both behaviours coincide. Thus
we only have to prove that so do the transition relations. Without loss of generality, we assume
C1 = {C1}, C2 = {C2} and B = {B1, . . . , Bn}.

By Def. 2.4 a transition qC1qC2q1 . . . qn
a−→ q′C1

q′C2
q′1 . . . q

′
n is possible in A2(A1(B)) iff
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1. qC2

a∩PC2−−−−→ q′C2
is possible in C2,

2. qC1q1 . . . qn
a∩P1−−−→ q′C1

q′1 . . . q
′
n is possible in A1(B) and

3. a ∈ γ2||2P2\PA2 .

The transition in condition 2 above is possible in A1(B) iff

4. qC1

a∩PC1−−−−→ q′C1
is possible in C1,

5. for i ∈ [1, n], qi
a∩PBi−−−−→ q′i is possible in Bi and

6. a ∩ P1 ∈ γ1||2P1\PA1 .

Similarly, the above transition is possible in (A1 ⊕A2)(B) iff

1. for i = 1, 2, qCi

a∩PCi−−−−→ q′Ci
is possible in Ci,

2. for i ∈ [1, n], qi
a∩PBi−−−−→ q′i is possible in Bi and

3. a ∈ γA1⊕A2
‖ 2P2\(PA1

∪PA2
).

Thus, to prove the proposition it is sufficient to show that a ∈ γA1⊕A2
‖ 2P2\(PA1

∪PA2
) iff a ∈

γ2||2P2\PA2 and a ∩ P1 ∈ γ1||2P1\PA1 .
For a ⊆ P2, we have a ∈ γA1⊕A2 ‖ 2P2\(PA1

∪PA2
) iff a ∩ (PA1 ∪ PA2) ∈ γA1⊕A2 , i.e. a ∩ (PA1 ∪

PA2
) |= ϕγ1 ∧ ϕγ2 . By Lem. 2.9, this is equivalent to a ∩ (PA1

∪ PA2
) ∩ PA1

= a ∩ PA1
∈ γ1 and

a ∩ (PA1
∪ PA2

) ∩ PA2
= a ∩ PA2

∈ γ2. Since a ⊆ P2, we have a ∩ PA2
∈ γ2 iff a ∈ γ2 ‖ 2P2\PA2 .

Finally, since PA1
⊆ P1, we have a ∩ PA1

∈ γ1 iff a ∩ P1 ∈ γ1 ‖ 2P1\PA1 .

The first condition in Prop. 2.13 states that A1 can be applied to the behaviours in B (cf.
Def. 2.4). Similarly, the second condition states that A2 can be applied to A1(B). Clearly, when
condition 1) of Prop. 2.13 holds for both A1 and A2 and none of the architectures involves the
ports of the other, i.e. PAi

∩
⋃
C∈Cj PC = ∅, for i 6= j ∈ {1, 2}, the two are independent and their

composition is commutative: A2(A1(B)) = (A1 ⊕ A2)(B) = A1(A2(B)). The restrictions on the
architectures are lifted in Prop. 2.20, generalising this proposition.

Proposition 2.14. Let B1,B2 be two sets of behaviours, such that
⋃
B∈B1

PB ∩
⋃
B∈B2

PB = ∅.
Let A1 = (C1, PA1

, γ1) and A2 = (C2, PA2
, γ2) be two architectures, such that PA1

⊆
⋃
B∈B1∪C1 PB

and PA2
⊆
⋃
B∈B1∪B2∪C1∪C2 PB. Then A2(A1(B1,B2)) = A2(A1(B1),B2).

Proof. Similarly, as in Prop. 2.13 the set of states is equal in both composed behaviours, thus we
only have to prove the equality of transitions relations. Without loss of generality, we assume, for
i = 1, 2, Bi = {Bi} and Ci = {Ci}.

Let P = PC1
∪PC2

∪PB1
∪PB2

be a union of ports from all behaviours including the coordinating
behaviours of the architectures and let P ′ = PC1

∪ PB1
∪ PB2

.

Assume, we have a transition qC1qC2qB1qB2

a−→ q′C1
q′C2

q′B1
q′B2

in the composed systemA2(A1(B1, B2)).
All behaviours can make a corresponding transition and a can be represented as a = ac2 ∪aγ1 ∪a′,
where aC2

⊆ PC2
, aγ1 ∈ γ1 and a′ ∈ 2P

′\PA1 . As Pa1 ∩P2 = ∅, all the ports of B2 that belong to a
are in a′. Let a′ = aB2

∪ a′′, where aB2
= a ∩ P2. Then interaction aγ1 ∪ a′′ is enabled in A1(B1),

and interaction aC2
∪ aγ1 ∪ a′′ ∪ aB2

is enabled in A2(A1(B1), B2).
Assume interaction a is enabled in A2(A1(B1), B2). It can be represented as a = aC2 ∪ aγ1 ∪

a′′ ∪ aB2 . Then interaction aγ1 ∪ a′′ ∪ aB2 is enabled in A1(B1, B2) and consequently a is enabled
in A2(A1(B1, B2)) in the corresponding state.
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Intuitively, Prop. 2.14 states that one only has to apply the architecture A1 to those behaviours
that have ports involved in its interface. Notice that, in order to compare the semantics of two sets
of behaviours, one has to compose them into compound behaviours, by applying some architecture.
Hence the need for A2 in Prop. 2.14. As a special case, one can consider the “most liberal” identity
architecture Aid (see Prop. 2.11). Aid does not impose any coordination constraints, allowing all
possible interactions between the behaviours it is applied to.

Example 2.15 (Mutual exclusion (contd.)). It is clear that Ex. 2.12 can be generalised to an
arbitrary number n of behaviours. However, such solution would require n(n− 1)/2 architectures,
and so may not scale up well. Instead, one can apply architectures hierarchically.

Let n = 4 and consider two architectures A12 and A34, with the respective coordination be-
haviours C12 and C34, that enforce mutual exclusion between B1, B2 and B3, B4 respectively in a
similar manner to Ex. 2.12. Assume furthermore, that an architecture A enforces mutual exclusion
between the taken states of C12 and C34. It is clear that the system A(A12(B1, B2), A34(B3, B4))
ensures mutual exclusion between all four behaviours (Bi)

4
i=1. Furthermore, by the above propo-

sitions,

A(A12(B1, B2), A34(B3, B4)) = A(A12(B1, B2, A34(B3, B4))) =

A(A12(A34(B1, B2, B3, B4))) = (A⊕A12 ⊕A34)(B1, B2, B3, B4) .

2.4 Partial Application of Architectures

Notice that the main condition, limiting the application of Prop. 2.13 and Prop. 2.14, is that
the architectures must be applicable, i.e. every port of the architecture interface must belong to
some behaviour. Below we lift this restriction by introducing the notion of partial application.
We generalise Def. 2.4 for architectures A = (C, PA, γ) applied to sets of behaviours B, such that
PA 6⊆

⋃
B∈B∪C PB . This means that the architecture enforces constraints on some ports which are

not present in any of the coordinating or base behaviours. In other words, the system obtained by
applying the architecture to the set of behaviours B is not complete. The result can then itself be
considered as an architecture where the coordinating behaviour is the one obtained by applying
to B ∪ C the projection of interactions in γ.

Definition 2.16. Let A = (C, PA, γ) be an architecture and B be a set of behaviours. Let P =⋃
B∈B∪C PB . A partial application of A to B is an architecture A[B]

∆
= ({C ′}, P ∪ PA, γ ‖ 2P\PA),

where C ′
∆
= (γP ‖ 2P\PA)(C ∪ B) with γP = {a ∩ P | a ∈ γ} and the operator ‘‖’ as in Def. 2.4.

Notice that an architecture obtained by partial application has precisely one coordinating
behaviour C ′. It is also important to notice that the interaction model in A[B] is not the same
as in the definition of C ′. On the other hand, if PA ⊆ P (as in Def. 2.4), we have γP = γ and
A[B] =

(
{A(B)}, P, γ ‖ 2P\PA

)
.

Lemma 2.17. Let B be set of behaviours and A = (C, PA, γ) be an architecture, such that PA ⊆⋃
B∈B∪C PB. Then A(B) = A[B](∅).

Proposition 2.18. Let B1 and B2 be two sets of behaviours, such that B1 ∩ B2 = ∅, and let
A = (C, PA, γ) be an architecture. Then A[B1,B2] =

(
A[B1]

)
[B2].

Proof. Clearly the interfaces of both architectures coincide. Furthermore, since the two architec-
tures are obtained by partial application, each has only one coordinating behaviour (see Def. 2.16).
Thus we have to show that the coordinating behaviours and the interaction models of both archi-
tectures coincide.

8



Let P1 =
⋃
B∈C∪B1

PB and P2 =
⋃
B∈C∪B2

PB . By Def. 2.16, the interaction models of A[B1,B2]

and
(
A[B1]

)
[B2] are, respectively γ ‖ 2(P1∪P2)\PA and

(
γ ‖ 2P1\PA

)
‖ 2P2\PA . Since 2P1\PA ‖

2P2\PA = 2(P1∪P2)\PA , we conclude that the interaction models coincide.
It is also clear that the state spaces, initial states and interfaces of both coordination behaviours

coincide. Thus, we only have to show that so do the transition relations. Let us consider the
coordinating behaviours of the two architectures. By Def. 2.16, we have2

A[B1,B2] =
(
{C12}, PA ∪ P1 ∪ P2, γ ‖ 2(P1∪P2)\PA

)
,

with C12 =
(
γP1∪P2 ‖ 2(P1∪P2)\PA

)
(C ∪ B1 ∪ B2) ,

where γP1∪P2 = {a ∩ (P1 ∪ P2) | a ∈ γ} . (5)

Similarly,

A[B1] =
(
{C1}, PA ∪ P1, γ ‖ 2P1\PA

)
,

with C1 =
(
γP1 ‖ 2P1\PA

)
(C ∪ B1) , where γP1 = {a ∩ P1 | a ∈ γ} . (6)

and

(A[B1])[B2] =
(
{C2}, PA ∪ P1 ∪ P2, γ ‖ 2(P1∪P2)\PA

)
,

with C2 =
(
γP1∪P2 ‖ 2(P1∪P2)\PA

)
({C1} ∪ B2) . (7)

Since the interaction models and the constituent atomic behaviours of C12 and C2 coincide,
any transition allowed in C2 is also allowed in C12. Hence, to prove that C12 = C2, we have to
show that any interaction allowed in C12, after projection, is allowed in C1. Notice, further, that
the interface of C1 is P1, whereas those of C2 and C12 are both P1 ∪ P2.

Consider a ∈ γP1∪P2 ‖ 2(P1∪P2)\PA . By definition of ‘‖’, a = a1 ∪ a2, with a1 ∈ γP1∪P2 and
a2 ⊆ (P1 ∪ P2) \ PA. By (5), we have a1 = ã1 ∩ (P1 ∪ P2) with some ã1 ∈ γ. We deduce that
a1∩P1 = ã1∩(P1∪P2)∩P1 = ã1∩P1 and, therefore a1∩P1 ∈ γP1 . Since, a∩P1 = (a1∩P1)∪(a2∩P1)
and a2 ∩ P1 ⊆ ((P1 ∪ P2) \ PA) ∩ P1 = P1 \ PA, we have a ∩ P1 ∈ γP1 ‖ 2P1\PA . Thus, the part of
a relevant to the atomic components comprising C1 belongs to the interaction model in (6). By
(2), we conclude that any transition labelled by a in C12 is also a transition of C2.

Prop. 2.18 generalises Prop. 2.14. In order to generalise Prop. 2.13, we first define the appli-
cation of one architecture to another, by putting

A1[A2]
∆
= (A1 ⊕A2)[∅] . (8)

Lemma 2.19. For any set of behaviours B and any architectures A1 and A2, holds (A1⊕A2)[B] =
(A1[B]⊕A2)[∅] = (A1 ⊕A2[B])[∅].

Proof. We only prove (A1 ⊕A2)[B] = (A1[B]⊕A2)[∅]. The other equality is symmetrical.
Let Ai = (Ci, PAi

, γi), for i = 1, 2, A1[B] = ({C ′1}, P ′A1
, γ′1). Let P1 =

⋃
B∈B∪C1 PB and

P2 =
⋃
B∈B∪C1∪C2 PB .

Clearly the interfaces of both architectures coincide. Furthermore, since the two architectures
are obtained by partial application, each has only one coordinating behaviour (see Def. 2.16). Thus
we have to show that the coordinating behaviours and the interaction models of both architectures
coincide.

2 Keep in mind the difference between roman C, denoting a single coordinating behaviour, and calligraphic C,
denoting a set of coordinating behaviours.
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Let us consider the characteristic predicates of the interaction models. Notice, first, that for
any two interaction models γ′ ⊆ 2P

′
and γ′′ ⊆ 2P

′′
, over disjoint sets of ports P ′ ∩ P ′′ = ∅, one

has (cf. Def. 2.4)
ϕγ′ ∧ ϕγ′′ = ϕγ′||γ′′ . (9)

Denote the interaction model of A1[B] by γ′1 = γ1||2P1\PA1 . Clearly, ϕ(
2
P1\PA1

) = tt. Hence,

by (9), we have ϕγ′1 = ϕγ1 ∧ ϕ(2P1\PA1

) = ϕγ1 and, consequently, the characteristic predicate of

the interaction model of (A1[B]⊕A2)[∅] is ϕγ′1 ∧ ϕγ2 = ϕγ1 ∧ ϕγ2 . By a similar argument, we can
conclude that the characteristic predicate of the interaction model of (A1⊕A2)[B] is also ϕγ1∧ϕγ2 .
Since the interfaces of the two architectures coincide, this implies that so do their interaction
models. We denote the interaction model in question by γ12. Recall that ϕγ12 = ϕγ1 ∧ ϕγ2 .

Let us consider the coordinating behaviours of the two architectures. By Def. 2.16, we have3

(A1 ⊕A2)[B] =
(
{C12}, P2 ∪ PA1

∪ PA2
, γ12 ‖ 2P2\(PA1

∪PA2
)
)
,

with C12 =
(
γP2

12 ‖ 2P2\(PA1
∪PA2

)
)
(C1 ∪ C2 ∪ B) , where γP2

12 = {a ∩ P2 | a ∈ γ12} . (10)

Similarly,

A1[B] =
(
{C1}, P1 ∪ PA1

, γ1 ‖ 2P1\PA1

)
,

with C1 =
(
γP1

1 ‖ 2P1\PA1

)
(C1 ∪ B) , where γP1

1 = {a ∩ P1 | a ∈ γ1} . (11)

and

(A1[B]⊕A2)[∅] =
(
{C2}, P2 ∪ PA1 ∪ PA2 , γ12 ‖ 2P2\(PA1

∪PA2
)
)
,

with C2 =
(
γP2

12 ‖ 2P2\(PA1
∪PA2

)
)
({C1} ∪ C2) . (12)

Notice that the interaction models and the constituent atomic behaviours in (10) and (12)
coincide. Therefore, any transition allowed in C2 is also allowed in C12. Hence, to prove that
C12 = C2, we have to show that any interaction allowed in C12, after projection, is allowed in C1.
Notice, further, that the interface of C1 is P1, whereas those of C2 and C12 are both P2.

Consider a ∈ γP2
12 ‖ 2P2\(PA1

∪PA2
). By definition of ‘‖’, a = a1 ∪ a2 with a1 ∈ γP2

12 and
a2 ⊆ P2 \ (PA1 ∪ PA2) ⊆ P1 \ PA1 . By (10), we have a1 = ã1 ∩ P2 with some ã1 ∈ γ12. Since
ϕγ12 = ϕγ1 ∧ ϕγ2 , by Lem. 2.9, we have ã1 ∩ PA1 ∈ γ1 and ã1 ∩ P1 ∈ γP1

1 . Notice that P1 ⊆ P2.

Hence a1 ∩ P1 = ã1 ∩ P2 ∩ P1 = ã1 ∩ P1 ∈ γP1
1 . We conclude that a∩ P1 = (a1 ∩ P1)∪ (a2 ∩ P1) =

(a1 ∩P1)∪ a2 ∈ γP1
1 ‖ 2P1\PA1 . Thus, the part of a relevant to the atomic components comprising

C1 belongs to the interaction model in (11). By (2), we conclude that any transition labelled by
a in C12 is also a transition of C2.

As a consequence of Lem. 2.19, we immediately obtain the following generalisation of Prop. 2.13.

Proposition 2.20. For any set of behaviours B and any architectures A1 and A2, holds A2

[
A1[B]

]
=

A1

[
A2[B]

]
.

Proof. By (8) and Lem. 2.19, we have

A2

[
A1[B]

]
=
(
A2 ⊕A1[B]

)
[∅] = (A1 ⊕A2)[B] =

(
A1 ⊕A2[B]

)
[∅] = A1

[
A2[B]

]
.

3 Again, keep in mind the difference between roman C, denoting a single coordinating behaviour, and calligraphic
C, denoting a set of coordinating behaviours.
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Notice, furthermore, that (8) generalises Def. 2.16. Indeed, to a given set of behaviours B, we

can associate the architecture AB
∆
= Aid[B] (cf. Prop. 2.11). By (8) and Lem. 2.19, we obtain, for

any architecture A,

A[AB] = A
[
Aid[B]

]
= (A⊕Aid[B])[∅] = (A⊕Aid)[B] = A[B] .

Thus, partial application of an architecture to a set of behaviours can be considered a special case
of the application of an architecture to another architecture.

The results of the last two subsections provide two ways for using architectures at early design
stages, by partially applying them to other architectures or to behaviours that are already defined.
An architecture restricts the behaviour of it’s arguments, which can be both behaviours and other
architectures.

3 Property Preservation

3.1 Safety Properties

Definition 3.1 (Paths and path fragments). Let B = (Q, q0, P,−→) be a behaviour. A finite or

infinite sequence q0
a1−→ q1

a2−→ · · · ai−1−−−→ qi−1
ai−→ qi · · · is a path in B if q0 = q0, otherwise it is a

path fragment.

Definition 3.2 (Properties and invariants). Let B = (Q, q0, P,−→) be a behaviour. A property of

B is a subset of states Φ ⊆ Q. A property Φ is an invariant of B iff ∀q ∈ Φ,∀a ∈ 2P , (q
a−→ q′ =⇒

q′ ∈ Φ). Φ is reachable iff there exists a, possibly empty, path q0 a1−→ q1 a2−→ · · · an−−→ qn, such that
qn ∈ Φ. If q0 ∈ Φ, then Φ is called initial.

Definition 3.3 (Projection). Consider a set of behaviours B and an architecture A = (C, Pa, γ)
with Pa ⊆ P =

⋃
B∈B∪C PB . The projection of A(B) onto the behaviours B is the behaviour

A(B)
∆
= (Q, q0, P,−→), where Q =

∏
B∈BQB , q0 = (q0

B)B∈B and, for any states q, q′ ∈ Q, q
a−→ q′

iff there exist q̃, q̃′ ∈
∏
C∈C QC , such that q̃q

a−→ q̃′q′ in A(B).

Notice that, since we are interested in enforcing properties, which are defined in terms of
states, it is sufficient, in Def. 3.3, to project the states of A(B), keeping the actions of coordinating
behaviours in the transition labels. This choice does not affect the properties of the system, but
simplifies the presentation and proofs.

Theorem 3.4 (Invariant preservation). Let B be a set of behaviours; let Ai = (Ci, PAi
, γi), for

i = 1, 2, be two architectures, such that Φ1 and Φ2 are respectively invariants of A1(B) and A2(B).
Then Φ1 ∩ Φ2 is an invariant of (A1 ⊕A2)(B).

Proof. Without loss of generality, we can assume that each of the two architectures has only
one coordinating behaviour, i.e. Ci = {Ci}, for i = 1, 2. We also denote, for i = 1, 2, Pi =
PCi
∪
⋃
B∈B PB .

Consider a state q ∈ Φ1 ∩ Φ2 and a transition q
a−→ q′ in (A1 ⊕A2)(B). We have to show that

q′ ∈ Φ1 ∩ Φ2.
By Def. 3.3, there exist some states q̃1, q̃

′
1 ∈ QC1 and q̃2, q̃

′
2 ∈ QC2 , such that q̃1q̃2q

a−→ q̃′1q̃
′
2q
′

in (A1 ⊕ A2)(B). Thus, by Lem. 2.10, we have q̃1q
a∩P1−−−→ q̃′1q

′ in A1(B) and, consequently, by

Def. 3.3, q
a∩P1−−−→ q′ in A1(B). As observed above q ∈ Φ1 and, since Φ1 is an invariant for A1(B),

we deduce that q′ ∈ Φ1. By symmetry, we also have q′ ∈ Φ2, which concludes the proof.
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Figure 2: Behaviours from Ex. 3.5 (states merged at projection shown by red ellipses).

Th. 3.4 can be further strengthened. Indeed, the definition of the projection does not exclude

the existence of a path fragment of the form q1
a−→ q2

b−→ q3 in A(B) generated by some transitions

q̃1q1
a−→ q̃2q2 and q̃′2q2

b−→ q̃3q3 in A(B) with q̃2 6= q̃′2. It is possible furthermore, for some Φ, that
q3 6∈ Φ, but q̃′2q2 is unreachable in A(B). Thus, even though Φ is not an invariant of A(B), it can
still represent a property enforced by A on B.

Example 3.5. Consider again the mutual exclusion in Ex. 2.5. The behaviours of A12(B1, B2)
and its projection A12(B1, B2) are shown in Fig. 2(a) and Fig. 2(b) respectively (we abbreviate
sleep, work, free and taken to s, w, f and t respectively). Although mutual exclusion property
Φ = {ss, ws, sw} is not an invariant of A12(B1, B2), it is clearly enforced by A12 on {B1, B2}.

Definition 3.6 (Enforcing properties). Let A = (C, Pa, γ) be an architecture; let B be behaviours;
let Φ be an initial property of their parallel composition Aid(B) (see Prop. 2.11). We say that A
enforces Φ on B iff, for every state q reachable in A(B), the projection of q in A(B) belongs to Φ.

According to the above definition, when we say that an architecture enforces some property Φ,
it is implicitly assumed that Φ is initial for the considered behaviours. Below, we omit mentioning
this explicitly.

Theorem 3.7 (Combining enforced properties). Let B be a set of behaviours; let Ai = (Ci, PAi
, γi),

for i = 1, 2, be two architectures enforcing on B the properties Φ1 and Φ2 respectively. The
composition A1 ⊕A2 enforces on B the property Φ1 ∩ Φ2.

Proof. Again, without loss of generality, we can assume that each of the two architectures has
only one coordinating behaviour, i.e. Ci = {Ci}, for i = 1, 2. We also denote, for i = 1, 2,
Pi = PCi ∪

⋃
B∈B PB .

The initiality of Φ1 ∩ Φ2, is trivial: both Φ1 and Φ2 are initial, hence q0 ∈ Φ1 ∩ Φ2.
Consider a path q̃0

1 q̃
0
2q

0 a1−→ q̃1
1 q̃

1
2q

1 a2−→ · · · ak−→ q̃k1 q̃
k
2q
k in (A1 ⊕ A2)(B), where q0, . . . , qk ∈∏

B∈BQB and q̃0
i , . . . , q̃

k
i ∈ QCi

, for i = 1, 2.

By Lem. 2.10, q̃0
1q

0 a1∩P1−−−−→ q̃1
1q

1 a2∩P1−−−−→ · · · ak∩P1−−−−→ q̃k1q
k is a path in A1(B). Thus the state

q̃k1q
k is reachable in A1(B). Since A1 imposes Φ1 on B, this implies that qk ∈ Φ1. Symmetrically,

qk ∈ Φ2, which concludes the proof.

Example 3.8. In the context of Ex. 2.12, consider the application of architectures A12 and
A23 to the behaviours B1, B2 and B3. The former enforces the property Φ12 = {ss∗, ws∗, sw∗}
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Figure 3: Projections of reachable states of Ex. 3.8 behaviours onto Aid(B1, B2, B3).
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(the projections of reachable states of A12(B1, B2, B3) are shown in Fig. 3(a)), whereas the latter
enforces Φ23 = {∗ss, ∗ws, ∗sw} (the projections of reachable states of A23(B1, B2, B3) are shown in
Fig. 3(b)). Notice that the composition A12 ⊕A23 enforces Φ12 ∩Φ23 = {sss, wss, sws, ssw, wsw},
i.e. mutual exclusion between the work states of B1 and B2, and between those of B2 and B3 (see
Fig. 3(c)). Mutual exclusion between the work states of B1 and B3 is not enforced.

3.2 Liveness Properties

Our treatment of liveness properties derives from the Büchi-acceptance condition: we designate a
subset of the states of each coordinator as “idle”, meaning that it is permissible (w.r.t. liveness)
for the coordinator to remain in such a state forever. However, we depart from Büchi as follows:
if the coordinator executes infinitely often, then we consider it to be live regardless of whether or
not it visits an idle state infinitely often.

Definition 3.9 (Architecture with liveness conditions). An architecture with liveness conditions
is a tuple A = (C, PA, γ), where C is the set of coordinating behaviours with liveness condition,
PA is a set of ports, such that

⋃
C∈C PC ⊆ PA, γ ⊆ 2PA is an interaction model. A coordinating

behaviour with liveness condition is a behavior C = (Q, q0, Qidle, PC ,−→), where Qidle ⊆ Q, and
the other components are as in Def. 2.1.

Hence, we augment each coordinator with a liveness condition: a subset Qidle of its states Q,
which are considered “idle”, and in which it can remain forever without violating liveness.

Definition 3.10 (Live path). Let A = (C, PA, γ) be an architecture with liveness conditions and
B a set of behaviours. An infinite path α in A(B) is live iff, for every C ∈ C, α contains infinitely
many occurrences of interactions containing some port from C, or α contains infinitely many states
whose projection onto C is an idle state of C.

That is, if α
∆
= q̃0q0

a1−→ q̃1q1
a2−→ · · · ai−→ q̃iqi · · · then, for every C ∈ C, for infinitely many i:

ai ∩ P 6= ∅ or q̃i � C ∈ Qidle, where C = (Q, q0, Qidle, P,−→), and q̃i � C denotes the local state of
C in q̃i.

The intuition behind this definition is that each liveness condition guarantees that its coordina-
tor executes “sufficiently often”, i.e. infinitely often unless it is in an idle state. When architectures
are composed, we take the union of all the coordinators. Since each coordinator carries its liveness
condition with it, we obtain that each coordinator is also executed sufficiently often in the com-
posed architecture. We also obtain that architecture composition is as before, i.e. we use Def. 2.8,
with the understanding that we compose two architectures with liveness conditions. For the rest
of this section, we use “architecture” to mean “architecture with liveness conditions”.

When we apply an architecture with liveness conditions to a set of behaviors, thereby obtaining
a system, we need the notion of machine closure [1]: every finite path can be extended to a live
one.

Definition 3.11 (Live w.r.t. a set of behaviors). Let A be an architecture with liveness conditions
and B be a set of behaviours. A is live w.r.t. B iff every finite path in A(B) can be extended to a
live path.

Even if A1, . . . , Am are each live w.r.t. B, it is still possible for (A1 ⊕ · · · ⊕ Am)(B) to be not
live w.r.t. B, due to “interference” between the coordinators of the Ai. For example, consider
two architectures that enforce contradictory scheduling policies. Hence, we define a notion of
“non-interference” which guarantees that (A1 ⊕ · · · ⊕Am)(B) is live w.r.t. B.

We use the following definitions in discussing liveness. A transition q
a−→ q′ executes a coordi-

nator C iff a∩PC 6= ∅, where PC is the set of ports of C. An infinite path α executes C infinitely
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often iff α contains an infinite number of transitions that execute C. An infinite path fragment
q̃0q0

a1−→ q̃1q1 · · · visits an idle state of coordinator C infinitely often iff, for infinitely many i ≥ 0,
q̃i � C (the state component of C in q̃i) is an idle state of C.

A system is free of global deadlock iff, in every reachable global state, there is at least one
enabled interaction. We show in [3] how to verify that a system is free of global deadlock, using
a sufficient but not necessary condition that, in many cases, can be evaluated quickly, without
state-explosion. Essentially, we check, for every interaction a in the system, that the execution of
a cannot possibly lead to a deadlock state. The check can often be discharged within a “small
subsystem,” which contains all of the components that participate in a.

We now give a criterion for liveness that can be evaluated without state-explosion. For sim-
plicity, we assume in the sequel that each architecture Ai has exactly one coordinating component
Ci.

Definition 3.12 (Noninterfering live architectures). Let architectures Ai = ({Ci}, PAi , γi), for
i = 1, 2 be live w.r.t. a set of behaviours B. Then A1 is non-interfering with respect to A2 and
behaviors B iff, for every infinite path fragment α in (A1 ⊕ A2)(B) which executes C1 infinitely
often: either α executes C2 infinitely often or α visits an idle state of C2 infinitely often.

Theorem 3.13 (Pairwise noninterfering live architectures). Let architectures Ai = ({Ci}, PAi
, γi),

for i ∈ {1, . . . ,m} be live w.r.t. a set of behaviours B. Assume that (a) for all j, k ∈ {1, . . . ,m}, j 6=
k: Aj is non-interfering w.r.t Ak and behaviors B, (b) (

⊕m
i=1Ai)(B) is free of global deadlock.

Then (
⊕m

i=1Ai) is live w.r.t B.

Proof. Let αfin be a finite path in (
⊕m

i=1Ai)(B). By assumption (b), there exists at least one
extension of αfin to an infinite path, which we call α. Since there are a finite number of controllers,
and since, by construction, every interaction of (

⊕m
i=1Ai)(B) involves at least one controller, it

follows that at least one controller executes infinitely often along α. Hence for some j ∈ {1, . . . ,m},
Cj executes infinitely often along α. Now consider Ck for arbitrary k ∈ {1, . . . ,m} \ {j}. Let αjk
be the projection of α onto (Aj ⊕Ak)(B), which is constructed as follows.

A transition that involves either or both of Cj , Ck is retained in αjk.
A transition that involves neither Cj nor Ck is dealt with as follows. Let a be the interaction

executed along this transition. Hence a is supplied by some architecture A`, where ` 6= j, ` 6= k.
There are two cases. First, suppose that a contains some port p which is also contained in some
a′ which involves at least one of Cj , Ck. Then, a and a′ will be “fused” in (

⊕m
i=1Ai)(B), and so

the projection of this transition onto (Aj ⊕ Ak)(B) is a valid transition of (Aj ⊕ Ak)(B). Onthe
other hand, suppose that is is not the case. Then a includes only ports that are not in the port
set of Aj ⊕Ak). We emulate the effect of a on B by a sequence of local transitions of the involved
components. Since the behavior in (Aj ⊕ Ak)(B) of ports in B which are not in the port set of
Aj⊕Ak) is unrestricted, this is always possible. We then “project” the transition onto (Aj⊕Ak)(B)
by replacing it by such a sequence of local transitions.

We conclude that αjk is a path in (Aj ⊕ Ak)(B). Furthermore, αjk is an infinite path in
(Aj ⊕ Ak)(B), since it contains an infintie number of transiitons by Cj . By assumption (a), we
conclude that, along αjk, Ck is either executed infinitely often, or visits an idle state infintiely
often. HEnce, the same holds along α. Since Ck was chosen arbitrarily, we conclude that α is a
live path.

Example 3.14 (Noninterference in mutual exclusion). Consider the system (A12⊕A23⊕A13)(B1, B2, B3),
as in Ex. 2.12. Let each coordinator have a single idle state, namely the free state. Consider
the applications of each pair of coordinators, i.e. (A12⊕A23)(B1, B2, B3), (A23⊕A13)(B1, B2, B3)
and (A12 ⊕ A13)(B1, B2, B3). For (A12 ⊕ A23)(B1, B2, B3), we observe that along any infinite
path, either C12 executes infinitely often, or remains forever in its idle state after some point.
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Hence A23 is non-interfering w.r.t. A12 and B1, B2, B3. Likewise for the five other ordered pairs
of coordinators. We verify that (A12⊕A23⊕A13)(B1, B2, B3) is free from local deadlock using the
method of [3]. Hence by Th. 3.13, we conclude that (A12 ⊕A23 ⊕A13) is live w.r.t. (B1, B2, B3),

We have implemented an algorithm to check (for finite-state systems) that A1 is non-interfering
with respect to A2 and behaviors B. We generate the state-transition diagram of (A1 ⊕ A2)(B),
remove all transitions of C2 and all global states whose C2-component is an idle state of C2. We
then check for the existence of a non-trivial strongly connected components. We consider a strongly
connected component to be nontrivial if it is either a single state with a self-loop, or it contains
at least two states. The existence of such a nontrivial strongly connected component certifies the
existence of an infinite path fragment along which C1 executes forever, while C2 does not execute
and is not in an idle state. Hence non-interference is violated. Figure 4 gives pseudocode for our
algorithm.

checkStrongNonIntrf(A1, A2,B)
//check that A1 is non-interfering with respect to A2 and B
1. compute the state transition diagram M of (A1 ⊕A2)(B)
2. let M ′ be the result of removing from M all transitions that involve C2

3. let M ′′ be the result of removing from M ′ all global states that project onto an idle state of C2

4. compute the set of maximal strongly connected components of M ′′

5. if there exists a maximal strongly connected component ϕ of M ′′ such that
6. ϕ contains more than one state, or
7. ϕ consists of a single state with a self-loop,
8. then return(ff)
9. else return(tt) //return tt if A1 does not interfere with A2

Figure 4: Pseudo-code for checking strong non-interference

Proposition 3.15. checkStrongNonIntrf(A1, A2,B) returns true iff A1 is non-interfering with
respect to A2 and B.

Proof. Call a maximal strongly connected component ϕ of M ′′ non-trivial iff either ϕ contains
more than one state, or ϕ consists of a single state with a self-loop. Proof is by double implication.

Suppose first that checkStrongNonIntrf(A1, A2,B) returns tt. Then, M ′′ contains non non-
trivial maximal strongly connected components. Hence, every cycle in M must contain either a
transition involving C2, or a global state that projects onto an idle state of C2, since otherwise
this cycle would project onto a non-trivial maximal strongly connected component in M ′′. Hence,
there is no infinite path fragment in M along which C2 never executes and is never in an idle
state. Hence, along every infinite path in M , either C2 executes infinitely often, or it is in an idle
state infinitely often. Hence A1 is non-interfering with respect to A2.

Now suppose that A1 is non-interfering with respect to A2. Hence along every infinite path
in M , either C2 executes infinitely often, or it is in an idle state infinitely often. Let Cy be an
arbitrary cycle in M , where we consider a state with a self-loop to be a cycle. Hence, Cy either
contains a transition by C2, or it contains some state that projects onto an idle state of C2. Hence
Cy cannot project onto M ′′ as a cycle, by construction of checkStrongNonIntrf(A1, A2,B). Hence,
M ′′ contains no cycles , and so no non-trivial maximal strongly connected components. Hence
checkStrongNonIntrf(A1, A2,B) returns tt.
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Figure 6: Coordinating behaviours for the elevator example.

4 Case Study: Control of an Elevator Cabin

We illustrate our approach with the Elevator case study adapted from the literature [11, 20].
Control of the elevator cabin is modelled as a set of coordinated atomic components shown in
Fig. 5. Each floor of the building has a separate caller system, which allows floor selection inside
the elevator and calling from the floor. Ports ic and fc respectively represent calls made within
the elevator and calls from a floor. Ports is and fs represents cabin stops in response to these
calls. Furthermore, in port names, m, c, o, s, dn, up and nf stand respectively for “move”, “call”,
“open”, “stop”, “move down”, “move up” and “not full”.

Caller system components and their ports are indexed by floor numbers. In this case study,
we consider a building with three floors. We denote B = {E,D,CS0, CS1, CS2} the set of base
behaviours.

Possible behaviours of a system are constrained by architectures. Each architecture ensures
some properties of the system. Composing these architectures together we obtain the system,
which satisfies all properties.

In order to provide the basic functionality of the elevator we apply to B the architecture
A1 = ({C1}, P1, γ1). C1 is shown in Fig. 6(a), P1 contains all ports of C1,and all ports of base
behaviours. γ1 compraises the empty interaction ∅ and the following interactions (for i ∈ [0, 2])

� Door control: oCo1 , c C
c
1

� Floor selection control: fci , ici

� Moving control: sCs1 fsi , s C
s
1 isi , up Cm1 , dn Cm1

The system A1(B) provides the basic elevator functionality, such as moving up and down, stopping
only at the requested floors and door control, and ensures the safety property: the elevator does
not move with open doors.

Nonetheless, this system allows the elevator to stop at a floor and then continue moving without
having opened the doors. To disable this behaviour, we apply the architecture A2 = ({C2}, P2, γ2)
with C2 shown in Fig. 6(b), P2 = {Ce2 , Cd2 , Cm2 , Cc1, Cs1 , Cm1 }, and γ2 = {∅, Cs1 Cd2 , Cc1 Ce2 , Cm1 Cm2 },
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which grants priority to the door controller after a Cs1 action. The A2(A1(B)) provides the same
basic functionality, as A1 does, but enforces the additional constraint. By Prop. 2.13, we have
A2(A1(B)) = (A2 ⊕A1)(B).

The feature “if the elevator is full, it must stop only at floors selected from the cabin and ig-
nore outside calls” [11, 20], is provided by applying the architecture A3 = ({C3}, P3, γ3) with

C3 shown in Fig. 6(c), P3 = {Cadd
3 , Csub

3 , Cnf
3 , s, fsi | i ∈ [0, 2]} and γ3 = {∅, Cadd

3 , Csub
3 } ∪

{sCnf
3 fsi | i ∈ [0, 2]}.

In a composition of A3 and A1 ⊕ A2, A1 ⊕ A2 does not enforce any constraints on ports
Cadd

3 , Csub
3 6∈ P1∪P2, thus there are singleton interactions Cadd

3 , Csub
3 in the composed architecture.

Similarly A3 does not affect interactions oCo1 , c C
c
1 C

e
2 etc. On the other hand, the ports s and fsi

are forced to synchronise with Cs1 by A1 ⊕ A2 and with Cnf
3 by A3. In the combined subsystem

(A1⊕A2⊕A3)(B), these two interactions get “fused” into Cs1 C
d
2 C

nf
3 s fsi, which forces the elevator

to ignore the calls from floors when it is full.
To specify liveness properties, we set the idle states of C1 to the empty set, since we expect

the elevator to move infinitely often, under the assumption that users keep arriving. We set the
idle states of C2 to the initial state, since the door must close, once opened. We set the idle states
of C3 to be all of its states, since C3 enforces a pure safety property. We have implemented our
algorithm for checking non-interferience, and have used the implementation to prove that each of
C1, C2, C3 is non-interfering w.r.t. the other, and the behaviors {E,D,CS}. Hence by Th. 3.13,
(A1 ⊕A2 ⊕A3) is live w.r.t. (E,D,CS).

Finally, we consider another feature: “requests from the second floor have priority over all
other requests” [11, 20]. We compose A1 ⊕ A2 with the architecture A4 = ({C4}, P4, γ4) with C4

shown in Fig. 7; P4 consisting of ports of C4, CS2 and o, s and dn;

γ4 = {∅, fc2 C
req
4 , ic2 C

req
4 , o Cfree

4 , dn Cfree
4 , fs2 C

finish
4 , is2 C

finish
4 } .

A system (A1 ⊕ A2 ⊕ A3 ⊕ A4)(B), with contradictory constraints enforced by A3 and A4,
contains a reachable local deadlock state. In a situation, when the full elevator is called from the
second floor, A4 enforces a constraint of not going down and A3 forbids to stop on the floor, not
requested from the inside. In this case, when the elevator reaches the second floor, the system is in
a local deadlock state involving the elevator engine. This was detected using our implementation
of the deadlock prevention approach presented in [3].

5 Related Work

There exists an abundant literature on architectures. Most papers propose and study Architecture
Description Languages (ADLs) [18]. They focus on technological and syntactic aspects, and mostly
disregard semantics and foundational aspects. Furthermore, they do not deal with correctness by
construction which is the main reason for using architectures. Our concept of architecture is
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rooted in clean semantics, is equipped with a mathematically elegant definition and an intuitively
appealing notion of composition that preserves state invariants.

A number of paradigms for unifying component composition have been studied in [4, 5, 12].
These achieve unification by reduction to a common low-level semantic model. Coordination
mechanisms and their properties are not studied independently of behavior. This is also true for
the numerous compositional and algebraic frameworks [2, 14, 21, 23, 7, 9, 16, 19, 17]. Most of
these frameworks are based on a single operator. This entails poor expressiveness which results
in utterly complex architectural designs. Our component framework is inspired from BIP which
allows expression of general multiparty interaction and strictly respects separation of concerns.
Glue can be studied as a separate entity that admits a simple Boolean characterization that is
instrumental for expressing composability.

Existing research on architecture composability deals mainly with resource composability for
particular types of architectures, e.g. [17]. The feature interaction problem is how to rapidly
develop and deploy new features without disrupting the functionality of existing features. It can
be considered as an architecture composability problem to the extent that features can be modeled
as architectural constraints. A survey on feature interaction research is provided in [10]. Existing
results focus mainly on modeling aspects and checking feature interaction by using algorithmic
verification techniques with well-known complexity limitations. Our work takes a constructive
approach. It has some similarities to [15] which presents a formal framework for detecting and
avoiding feature interactions by using priorities. Nonetheless, these results do not deal with
property preservation through composition.

6 Conclusion

The presented work is a first step toward the study of a rigorous concept of architecture and its
effective use for achieving correctness by construction in a system design flow. A key idea is that
an architecture solves a coordination problem by enforcing a characteristic property which is the
conjunction of a safety and a liveness property. It considers preservation of safety properties as an
essential condition for architecture composability. Liveness is a generic property. Its preservation
seems to be much harder to be guaranteed by simple constructive criteria.

Our work pursues similar objectives as the research on feature interaction, insofar as features
can be modeled as architectural constraints. Nonetheless, it adopts a radically different approach.
It privileges constructive techniques to avoid costly and intractable verification. It proposes a
concept of composability focusing on property preservation.

Our work is part of a broader research program investigating correct-by-construction ap-
proaches. These are at the root of any mature engineering discipline. They are scalable and
do not suffer limitations of correctness-by-checking. Our vision is that systems can be built
incrementally by composing architectural solutions ensuring elementary properties, e.g. mutual
exclusion, schedulability, fault-tolerance and timeliness. The desired global properties can be es-
tablished as the conjunction of elementary properties. To put this vision into practice, we need to
develop a repository of reference architectures with their characteristic properties. There exists a
plethora of results on solving coordination problems including distributed algorithms, protocols,
and scheduling algorithms, hardware architectures. Most of these results focus on principles of
solutions and discard essential operational details. Their formalization as architectures will make
explicit the underlying concrete coordination mechanisms based on operational semantics. Is it
possible to find a taxonomy induced by a hierarchy of characteristic properties? Moreover, is it
possible to determine a minimal set of basic properties and corresponding architectural solutions
from which more general properties and their corresponding architectures can be obtained? Bring-
ing answers to these questions would greatly enhance our capability to design systems that are
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correct-by-construction and minimal.
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