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Abstract. The aim of the paper is to present a theory agenda for
component-based design based on results that motivated the develop-
ment of the BIP component framework, to identify open problems and
discuss further research directions. The focus is on proposing a semanti-
cally sound theoretical and general framework for modelling component-
based systems and their properties both behavioural and architectural
as well for achieving correctness by using scalable specific techniques.

We discuss the problem of composing components by proposing the
concept of glue as a set of stateless composition operators defined by a
certain type of operational semantics rules. We provide an overview of
results about glue expressiveness and minimality. We show how inter-
actions and associated transfer of data can be described by using con-
nectors and in particular, how dynamic connectors can be defined as an
extension of static connectors. We present two approaches for achieving
correctness for component-based systems. One is by compositional infer-
ence of global properties of a composite component from properties of
its constituents and interaction constraints implied by composition op-
erators. The other is by using and composing architectures that enforce
specific coordination properties. Finally, we discuss recent results on ar-
chitecture specification by studying two types of logics: 1) interaction
logics for the specification of sets of allowed interactions; 2) configura-
tion logics for the characterisation of architecture styles.

1 Introduction

Component-based design is the process leading from given requirements and a
set of predefined components to a system meeting the requirements.

Building systems from components is essential in any engineering discipline.
Components are abstract building blocks encapsulating behaviour. They can be
composed in order to build composite components. Their composition should
be rigorously defined so that it is possible to infer the behaviour of composite
components from the behaviour of their constituents as well as global properties
from the properties of individual components.

The problem of building systems from components can be defined as follows.
Given a set of components {C1, . . . , Cn} and a property of their product state

R. De Nicola and R. Hennicker (Eds.): Wirsing Festschrift, LNCS 8950, pp. 409–439, 2015.
c© Springer International Publishing Switzerland 2015



410 J. Sifakis et al.

space Φ find a coordinator Co such that the coordinated behaviour Co(C1, . . . ,
Cn) meets the property Φ.

This problem can be studied as a synthesis problem [31]. The coordinator
can be considered as a component that adequately restricts the behaviour of
the components so that the resulting behaviour meets Φ. Synthesis techniques
suffer from well-known complexity limitations. The coordinator is computed by
(semi)-algorithms on the product space of the coordinated components.

System design pursues similar and even broader objectives than synthesis: in-
cremental construction of systems meeting given requirements from a set of com-
ponents. In contrast to synthesis, design lacks rigorous theoretical foundations.
Existing frameworks are mostly informal. Designers use “ready-made” solutions
to coordination problems, e.g. architectures, protocols, that have been proven
correct practically or theoretically. In contrast to synthesis, design requires a
variety of composition operators. It is based on the concept of architecture as
a means to enforce specific characteristic properties by application of generic
coordination principles. A key idea is to ensure correctness by construction by
avoiding computationally expensive techniques implying state explosion.

Endowing component-based design with scientific foundations is a major sci-
entific challenge. This requires:

1. A general concept of component. Currently there is no agreement on a single
component model. System designers deal with heterogeneous components
with different characteristics. One source of heterogeneity is the distinction
between synchronous and asynchronous components. Hardware components
as well as components in some data flow applications are synchronous. An-
other source of heterogeneity reflects the difference in programming styles.
Thread-based programming allows for components to be accessed by an arbi-
trary number of threads sharing common data. It does not allow a strict sep-
aration between behaviour and coordination mechanisms as the programmer
explicitly handles synchronisation primitives to ensure coherency of shared
data, e.g. to avoid races. This style is hardly amenable to formalisation and
analysis. On the contrary, actor-based programming assumes that each com-
ponent has its own data transformed by a single local thread. Coordination
is external to the atomic components of the application and can be ensured
using general mechanisms such as protocols.

2. Theory for composing components. We need theory for describing and
analysing the coordination between components in terms of tangible, well-
founded and organised concepts. The theory should propose a set of compo-
sition operators meeting the following requirements:

– Orthogonality, meaning that composition operators are stateless to re-
spect a clear separation between behaviour and coordination. Many
component-based frameworks do not meet this requirement. Some allow
arbitrary behaviour in coordination mechanisms. This which precludes
rigorous mathematical treatment focusing on coordination. Others allow
a limited number of types of behaviour such as buffers or queues to the
detriment of mathematical elegance.
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– Minimality, meaning that none of the coordination primitives can be
expressed as the combination of others without using behaviour.

– Expressiveness, meaning that the considered set of composition operators
can be used to express any coordination problem. This requirement is
further explained and formalised in the paper.

Notice that most of the existing component composition frameworks fail
to satisfy these requirements. Some are formal such as process algebras,
e.g. CCS, CSP, π-calculus, and use single composition operators that are
not expressive enough. Others are ad hoc such as most frameworks used in
software engineering, e.g. architecture description languages [28] which are
not rooted in rigorous semantics and are hardly amenable to formalisation.

3. Theory for ensuring correctness of components. Being able to check or assert
correctness of the built components using scalable techniques is an essential
requirement. The idea is to avoid a posteriori verification and establish cor-
rectness incrementally by applying easy-to-check rules that follow the system
construction.
A key concept in this approach is that of architectures as well-established
coordination schemes enforcing given properties. The problem is then to
decompose any component coordination property as the conjunction of pre-
defined characteristic properties enforced by predefined architectures.

The aim of the paper is to propose a theory agenda for rigorous component-
based design. The agenda is built on existing results developed for the BIP
framework [6]. It identifies work directions addressing open problems and cover-
ing a good deal of the needs. The exposition of the results is mainly informal. We
provide references to technical papers for the interested reader. One of the objec-
tives is to show mathematical relations between three hierarchically structured
domains encompassing the basic concepts:

– The domain of components offering the possibility of interaction through
their ports p and associated variables Xp through which they make available
the data transferred when interactions occur.

– The domain of connectors, used to model coordination between components.
Each connector is characterised by an interaction between ports and asso-
ciated computation on the exported data. Interactions are arbitrary sets of
ports. Their execution implies the atomic synchronisation of the involved
components. Clearly if P is the set of the ports then the set of interactions
I is a subset of 2P .

– The domain of configurations which are sets of connectors characterising
architectures. Clearly if I is the set of interactions of an architecture then
the set of configurations Γ is a subset of 2I .

The paper is structured as follows. In Section 2, we discuss the problem of
composing components by proposing the concept of glue. Glue is a set of stateless
composition operators defined by a certain type of operational semantics rules.
We provide an overview of results about expressiveness and minimality that led
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to the definition of the BIP component framework. In Section 3, we show how
interactions and associated data transfer can be described by using connectors.
We show in particular, how dynamic connectors can be defined as an extension
of static connectors. Two approaches for achieving correctness for component-
based systems are presented in Section 4. One is by compositional inference of
global properties of a composite component from properties of its constituents
and synchronisation constraints implied by composition operators. The other is
by using and composing architectures that enforce specific coordination proper-
ties. Section 5 discusses recent results on architecture specification by studying
two types of logics: 1) interaction logics for the specification of sets of allowed in-
teractions; 2) configuration logics for the characterisation of architectural styles.
The last section concludes and discusses further research directions.

2 Composing Components

2.1 The Concept of Component

A component is a tuple C = (Σ,P,X,→), where

– Σ is a set of control locations;
– P is a set of ports;
– X is a set of variables partitioned in two disjoint sets XL and XP of, re-

spectively, local and port variables; the variables in XP are indexed by ports,
that is XP = {Xp}p∈P ;

– → ⊆ Σ×P ×G(X)×F (X)×Σ is a transition relation; transitions between
control locations are labeled by triplets (p, g, f) where p is a port, g and f
are, respectively, a guard Boolean expression and an update function on the
variables in X .

A shorthand notation σ
p,g,f−−−→ σ′ is commonly used to denote (σ, p, g, f, σ′) ∈ →.

Intuitively, a component can be considered as an open transition system, that
is a system that performs coordination-driven computation. Coordination is de-
fined by the environment of the component and involves two aspects: interaction
(synchronisation) and data transfer. Denoting by X the set of all valuations of
the variables in X , a state of the transition system is a pair s = (σ, v) where
σ ∈ Σ is a control location and v ∈ X is a valuation of the component variables.
Thus the state space of the transition system is S = Σ ×X.

If σ
p,g,f−−−→ σ′ then the transition system has a transition from state s = (σ, v)

to state s′ = (σ′, v′) if g(v) = true and the external environment offers an
interaction involving p. The execution of a transition consists in exporting the
value v(Xp) of the variable Xp

1 associated with port p and receiving back a
new value up. The resulting valuation is v′ = f

(
v[up/Xp]

)
where v[up/Xp] is the

valuation obtained by replacing, in v, the value of Xp by up.

1 For the sake of simplicity of notations, we consider that ports p have associated
exactly one variable Xp. This restriction is, however, irrelevant and we’ll consider
later examples where any number of variables are associated to ports.
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Sometimes, for the sake of simplicity and when data treatment is irrelevant,
we will use components without data, i.e. C = (Σ,P,→) with → ⊆ Σ × P ×Σ.
Notice that, since there are no data variables, X = X = ∅ and S = Σ, i.e.
the notions of state and control location coincide. Therefore, in the rest of this
section, we will use ‘s’ to denote both.

The proposed concept of component does not distinguish between input and
output ports. We consider that such a distinction is not specific to ports. It can
be inferred from the data-flow relation between ports specified in the coordina-
tion mechanisms. Similarly, we do not distinguish between synchronous and asyn-
chronous components. This distinction is also inferred from the context of use.

2.2 Glue Operators

The problem of component-based design can be understood as follows. Given
a component framework and a property Φ, build a composite component C
which satisfies Φ. A component framework comprises a set of components C, an
equivalence relation ∼= and a set G of glue operators on these components. The
glue G includes general composition operators, i.e. behaviour transformers, such
as parallel composition.

A general formalisation of the notions of component framework and glue is
provided in [13]. Below, for the sake of simplicity, we assume that components
are characterised by their behaviours specified directly as Labeled Transition
Systems (LTS). In this context, a component framework can be considered as a
term algebra equipped with an equivalence relation ∼= compatible with strong
bisimulation on transition systems. A composite component is any (well-formed)
expression built from atomic components.

The meaning of a glue operator gl : Cn → C can be specified by using a
set of Structural Operational Semantics (SOS) rules [38], defining the transition
relation of the composite component gl(C1, . . . , Cn) as a partial function of tran-
sition relations of the composed components C1, . . . , Cn. A formal and general
definition of glue operators on LTS components is provided in [15]. Equation (1)
shows a typical—although not general—form taken by SOS rules defining glue
operators.

{si pi−→ s′i}i∈I {sj � pj−→}j∈J {si = s′i}i�∈I

s1 . . . sn
a−→ s′1 . . . s

′
n

. (1)

Note 1. In the general case, as opposed to (1), several negative premises can
apply to a single component. In any case, at most one positive premise can
apply to a component.

The rule (1) has two parts: premises (above the line) and conclusion (below
the line). Sets I, J ⊆ [1, n] (with I �= ∅) index two subsets of components, which

need not be disjoint: components {Ci}i∈I contribute positive premises si
pi−→ s′i,

whereas components {Cj}j∈J contribute negative premises sj � pj−→.
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The rule (1) is interpreted as follows. The state space Σ of the composite
component is the Cartesian product of the state spaces of composed components:
Σ =

∏n
i=1 Σi. If 1) for each i ∈ I, componentCi can execute a transition from the

state si to s′i (with si, s
′
i ∈ Σi) labeled by the port pi ∈ Pi and 2) for each j ∈ J ,

component Cj cannot execute any transition from the state sj ∈ Σj labeled by
the port pj ∈ Pj , then the composite component gl(C1, . . . , Cn) can execute a
transition from the state s = s1 . . . sn to s′ = s′1 . . . s

′
n (with s, s′ ∈ Σ) labeled

by an interaction a, where s′i = si, for all components that do not participate,
i.e. Ci with i �∈ I.

Notice that the negative premises play the role of priorities. A transition of
the composite component can be executed only if a set of transitions of the
constituent components are disabled.

An interaction a, in the conclusion of (1), corresponds to the atomic syn-
chronous execution of transitions in the composed components. Depending on
the component framework, the interaction label a is obtained by combining the
ports {pi}i∈I in different manners.

Example 1. In CCS [34], ports are actions belonging to a given set L = A ∪
A∪ {τ}, where actions in A = {a | a ∈ A} are complementary to those in A and
τ �∈ A ∪A is a special “silent” action. The binary parallel composition operator
is defined by the following three rules:

s1
p−→ s′1

s1s2
p−→ s′1s2

,
s2

p−→ s′2

s1s2
p−→ s1s

′
2

, for all p ∈ L , (2)

s1
p−→ s′1 s2

p−→ s′2

s1s2
τ−→ s′1s′2

, for all p ∈ A ∪ A (with p
def
= p). (3)

In the conclusion of the rule (3), the resulting interaction is the silent action τ ,
replacing the combination of two complementary actions p and p. 	


In [25], the authors propose a notion of label structures, providing a generic
mechanism for defining interaction labels of the composite components. Below,
for the sake of simplicity, we consider a in the conclusion of (1) to be the set of
ports {pi}i∈I in the positive premises of the rule.

As shown above, positive premises in a rule of form (1) define interactions syn-
chronising transitions of the constituent components. In a given global state of the
system, several such interactions could be possible introducing non-determinism
in the composed behaviour. Negative premises define priority rules, which allow
reducing this non-determinism.

Example 2. Consider the two components C1 and C2 shown in Figures 1a and
1b. Let gl be a glue operator defined by the following three rules:

s1
p−→ s′1

s1s2
p−→ s′1s2

,
s1

q−→ s′1 s2
r−→ s′2

s1s2
qr−→ s′1s

′
2

,
s1

q−→ s′1 s2 � r−→
s1s2

q−→ s′1s2
. (4)
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Fig. 1. Component behaviours for Example 2

The composed component gl(C1, C2) is shown in Figure 1c. The dashed arrows
show the transitions of the component obtained by composing C1 and C2 with
the most liberal parallel composition operator, allowing any combination of tran-
sitions of the two components. Solid arrows show the transitions of gl(C1, C2).

Among the transitions labeled by q, only the transition 22
q−→ 32 is enabled

and not 21
q−→ 31 (Figure 1c). Indeed, the negative premise in the third rule

of (4) suppresses the interaction when a transition labeled r is possible in the

second component. Here, this results in giving 21
qr−→ 32 “higher priority” over

21
q−→ 31. Notice that, in the state 22 of gl(C1, C2), r is no longer possible, i.e.

2 � r−→ in C2. Hence, the third rule of (4) applies and we have 22
q−→ 32. 	


Priorities are presented in more detail in Section 2.5, below.

2.3 Properties of Glue

Glue operators must meet the following requirements.

Incrementality. If a composite component is of the form gl(C1, C2, . . . , Cn) for
n ≥ 2, then there exist glue operators gl1 and gl2 such that

gl(C1, C2, . . . , Cn) ∼= gl1
(
C1, gl2(C2, . . . , Cn)

)
.

Incrementality is a kind of generalised associativity2. It requires that coordination
between n components can be expressed by first coordinating n − 1 components
and then by coordinating the resulting component with the remaining argument.

2 Notice that, for any permutation σ : [1, n] → [1, n], one can define a glue

operator glσ(C1, . . . , C2)
def
= gl

(
Cσ(1), . . . , Cσ(n)

)
. Applying incrementality to

glσ with the permutation σ = (2, 3, . . . , i, 1, i + 1, . . . , n), we conclude that
there must exist glue operators gl1 and gl2 such that gl(C1, . . . , Ci, . . . Cn) =
glσ(Ci, C1, . . . , Ci−1, Ci+1, . . . , Cn) = gl1

(
Ci, gl2(C1, . . . , Ci−1, Ci+1, . . . , Cn)

)
, for

any i ∈ [1, n].
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Flattening. Conversely, G must be closed under composition, i.e. if a composite
component is of the form gl1(C1, gl2(C2, . . . , Cn)) then there exists an operator
gl such that

gl1
(
C1, gl2(C2, . . . , Cn)

) ∼= gl(C1, C2, . . . , Cn) .

This property is essential for separating behaviour from glue and treating glue as
an independent entity that can be studied and analysed separately. Flattening
enables model transformations, e.g. for optimising code generation or component
placement on multicore platforms [18,20].

Compositionality. The equivalence relation ∼= must be a congruence with respect
to the glue operators. For all gl ∈ G, all C,C1, . . . , Cn ∈ C and i ∈ [1, n],

Ci
∼= C must imply gl(C1, . . . , Ci, . . . , Cn) ∼= gl(C1, . . . C, . . . , Cn) .

Compositionality is fundamental for reasoning about systems. It allows consid-
ering properties of components in isolation and separately from the properties of
glue operators to infer global properties of the system by construction. Further-
more, compositionality allows component providers to protect their intellectual
assets by providing only an abstract specification of a component—any obser-
vationally equivalent implementation can then be substituted without affecting
the semantics of the system.

It can be shown that glue operators defined by SOS rules, as in (1), are
always compositional if the equivalence relation ∼= is compatible with strong
bisimulation (recall the assumption of Section 2.2).

It should be noted that almost all existing frameworks fail to meet all three
requirements. Process algebras are based on two composition operators (some
form of parallel composition and hiding) which are orthogonal to behaviour, but
fail to meet the flattening requirement as formulated above: in order to flatten
a composite component, the operand components might have to be modified
or additional components (e.g. context) might need to be introduced. General
component frameworks, such as [2,24], adopt more expressive notions of com-
position by allowing the use of behaviour for coordination between components
and thus do not separate behaviour from interaction. Furthermore, most of these
frameworks are hardly amenable to formalisation through operational semantics.

2.4 Expressiveness of Glue

Comparison between different formalisms and models is often made disregard-
ing their structure and reducing them to behaviourally equivalent formalisms,
such as Turing machine. This leads to a notion of expressiveness which is not
adequate for the comparison of high-level languages. All programming languages
are deemed equivalent (Turing-complete) disregarding their adequacy for solving
problems. For component frameworks separation between behaviour and coor-
dination mechanisms is essential.
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A notion of expressiveness for component frameworks characterising their abil-
ity to coordinate components is proposed in [15]. It allows the comparison of two
component frameworks with glues G and G′ respectively, the same set of com-
ponents and equipped with the same congruence relation ∼=.

We say that G′ is more expressive than G—denoted G � G′—if, for any com-
posite component gl(C1, . . . , Cn) obtained by using gl ∈ G, there exists gl′ ∈ G′,
such that gl(C1, . . . , Cn) ∼= gl′(C1, . . . , Cn). That is, any coordination expressed
by using G can be expressed by using G′.

Example 3. Let P be a set of ports and consider two gluesBin and Ter generated

respectively by families of binary and ternary rendezvous operators: rdv
(2)
a,b and

rdv
(3)
a,b,c, defined by the following rules (for all interactions a, b, c ∈ 2P ):

rdv
(2)
a,b :

s1
a−→ s′1 s2

b−→ s′2

s1s2
ab−→ s′1s

′
2

, rdv
(3)
a,b,c :

s1
a−→ s′1 s2

b−→ s′2 s3
c−→ s′3

s1s2s3
abc−−→ s′1s

′
2s

′
3

.

(5)
Clearly, Ter � Bin. Indeed, for any a, b, c ∈ 2P , and any C1, C2, C3 ∈ C, we

have rdv
(3)
a,b,c(C1, C2, C3) ∼= rdv

(2)
a,bc

(
C1, rdv

(2)
b,c (C2, C3)

)
. On the contrary, Bin ��

Ter, since any two components at any given state can only perform two actions
(one action each), whereas three are needed for a ternary synchronisation. 	


We call universal glue the set Guniv , which contains all glue operators that
can be defined by the rules similar to (1) in the general form defined in [15]
(see also Note 1). An interesting question is whether the expressiveness of Guniv

can be achieved with a minimal set of operators. Results in [15] bring a positive
answer to this question. It is shown that the glue of the BIP framework [6]
combining two classes of operators, interactions and priorities, is as expressive
as Guniv . Furthermore, this glue is minimal in the sense that it loses universal
expressiveness if either interactions or priorities are removed.

A consequence of these results is that most existing formal frameworks using
only interaction such as process algebras are less expressive. This comparison
can be strengthened by using the following weaker notion of expressiveness.

Often component frameworks consider certain behaviours, such as, for in-
stance, FIFO buffers, to be part of the coordination primitives. To address such
cases, we introduce a weaker form of expressiveness comparison. We say that
G′ is weakly more expressive than G—denoted G �W G′—if there exists a finite
set of coordinating components D ⊆ C, such that, for any component gl(C1, . . . ,
Cn) with gl ∈ G there exist gl′ ∈ G′ and D1, . . . , Dk ∈ D, such that gl(C1,
. . . , Cn) ∼= gl′(C1, . . . , Cn, D1, . . . , Dk). That is, to realise the same coordination
as gl, additional behaviour is needed. The term “weakly more expressive” is
justified by the observation that, taking D = ∅, G � G′ clearly implies G �W G′.

Example 4. Taking on Example 3, it is clear that Bin �W Ter. Indeed, let
D =

({∗}, {τ}, {∗ τ−→ ∗}) (with τ �∈ P ) be the only coordinating component.
Considering τ as the “silent” action, it is easy to see that, for all a, b ∈ 2P and
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Fig. 2. Summary of relations between glues

C1, C2 ∈ C, we have rdv
(2)
a,b(C1, C2) ∼= rdv

(3)
τ,a,b(D,C1, C2). Therefore, we say that

Bin and Ter are weakly equivalent. 	

It can be shown that glues including only interactions fail to match universal

expressiveness even under this definition. Adding new atomic components does
not suffice if the behaviour of the composed components is not modified.

Relations between the glues of BIP (see Section 2.5 below) and classical pro-
cess algebras, namely CCS [34], SCCS [33] and CSP [26], which were obtained
in [15], are summarised in Figure 2. BI denotes the BIP glue without priorities.

2.5 The BIP Component Model

In the light of the above results the BIP component model has been defined in
[6,14]. BIP uses two types of glue. Given a set of atomic components C1, . . . , Cn

a composite component is modelled by an expression of the form πγ(C1, . . . , Cn)
where γ is a set of interactions and π a priority relation.

Let Ci = (Σi, Pi,−→), for i ∈ [1, n], with disjoint sets of ports, i.e. Pi ∩Pj = ∅,
for i �= j and denote P =

⋃n
i=1 Pi. The glue operator corresponding to a set

of interactions γ ⊆ 2P is defined by the following set of rules in the format
generalising (1) (see Note 1):

{
si

a∩Pi−−−→ s′i
}
i∈I

{
si = s′i

}
i�∈I

s1 . . . sn
a−→ s′1 . . . s

′
n

, for all a ∈ γ , (6)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅} is the set indexing the components that par-
ticipate in the interaction. Notice that (6) has only positive premises.

Priority is a strict partial order relation π ⊆ 2P × 2P . For two interactions
a, b ∈ 2P , we write a ≺ b as a shorthand for (a, b) ∈ π. As described in Section 2.2,
priority introduces negative premises in the derivation rules. Intuitively, for an
interaction a to be executed, it has to be enabled (cf. (6)) and all interactions
with higher priority than a must be disabled.

For an interaction a ∈ 2P , denote by π(a) =
{
b ∈ 2P

∣
∣ a ≺ b

}
the set of

interactions having higher priority than a. For an interaction b ∈ π(a) to be
disabled, a corresponding transition must be disabled in at least one of the
contributing components. To assign such a component to each b ∈ π(a) we use,
in the derivation rules (7) below, indexing functions j : π(a) → [1, n], such that,
for all b ∈ π(a), we have b ∩ Pj(b) �= ∅. Thus the glue operator πγ is defined by
the following set of rules:
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{
si

a∩Pi−−−→ s′i
}

i∈I

{
sj(b) �

b∩Pj(b)−−−−−→
}

b∈π(a)

{
si = s′i

}
i�∈I

s1 . . . sn
a−→ s′1 . . . s′n

,

for all a ∈ γ and j : π(a) → [1, n] such that ∀b ∈ π(a),
(
b ∩ Pj(b) �= ∅) , (7)

where I = {i ∈ [1, n] | a ∩ Pi �= ∅} is the set indexing the components that par-
ticipate in the interaction a. In [15], we have shown that any operator of the
universal glue Guniv can be obtained in such manner by combining a priority π
and a set of interactions γ.

Besides meeting the universal expressiveness property, BIP meets the incre-
mentality, flattening and compositionality requirements discussed in Section 2.3
(see the detailed discussion in [5]). Glue is a first class entity that can be analysed
and composed.

The BIP model is implemented by the BIP language and an extensible tool-
box. The BIP language can be considered as a general component coordination
language. It leverages on C++ style variables and data type declarations, expres-
sions and statements, and provides additional structural syntactic constructs for
defining component behaviour, describing connectors and priorities. Moreover,
it provides constructs for dealing with parametric and hierarchical descriptions
as well as for expressing timing constraints associated with behaviour. The BIP
toolbox includes tools for checking correctness, for source-to-source transforma-
tions and for code generation. Correctness can be either formally proven using
invariants and abstractions, or tested by using simulation. For the latter case,
simulation is driven by a specific middleware, the BIP engine, which allows ex-
ploration and inspection of traces corresponding to BIP models. Source-to-source
transformations allow static optimizations as well as specific transformations to-
wards implementation, i.e. distribution. Finally, code generation targets different
platforms and operating systems support (e.g. distributed, multi-threaded, real-
time, for single/multi-core platforms).

In the rest of the paper, we focus on modelling interactions by using con-
nectors as well as the formalisation of architectures and their use for achieving
correctness by construction.

3 Connectors and Their Properties

In this section we study connectors as a means for expressing coordination con-
straints between components. Connector descriptions involve a control part de-
scribing interactions and a data transfer part describing data transformations
of the interacting components. We provide a principle for the hierarchical struc-
turing of connectors and show how hierarchical connectors can be flattened into
equivalent simple connectors. Finally, we propose a formalism for describing dy-
namic connectors that is currently under study.
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3.1 Simple Connectors

We consider a set of components {Ci}i∈I with disjoint sets of ports {Pi}i∈I . We
denote for a set of ports P by XP the associated set of variables. A connector γ
is an expression of the form

γ = (a).
[
g(Xa) : Xa := f(Xa)

]
,

where a is an interaction, that is a set of ports such that |a∩Pi| ≤ 1 for all i ∈ I.
The interaction describes the control part of the connector. It is an n-ary

atomic strong synchronisation between ports specified by the set of the synchro-
nised ports. The term in brackets consists of a guard on the exported variables
followed by an assignment. It describes the data transfer part of the connector.
The execution of a connector is possible only if ports involved in the interac-
tion a are enabled in the components and the guard g evaluates to true for the
exported values. It consists in modifying the exported variables as specified by
the assignment and letting the involved components complete the synchronised
transitions.

The figure below depicts a connector between ports p, q and r with associated
exported variables Xp, Xq and Xr. An interaction can occur only when at least
two of the exported values differ (the guard is true). It is completed by assigning
the maximum of their values to the port variables.

p Xp q Xq r Xr

(pqr).
[
(Xp �= Xq) ∨ (Xp �= Xr) : Xp, Xq, Xr := max(Xp, Xq, Xr)

]

Fig. 3. Simple connector

The effect of the application of connectors on a set of components is formally
defined in [17].

3.2 Hierarchical Connectors

Hierarchical connectors are useful when we want to build systems incrementally.
The idea is to equip each connector with a port and an associated variable.
The port can be then used further in other connectors, and hence lead to a
hierarchical structuring of connectors. Syntactically, a hierarchical connector γ
is an expression of the form

γ = (w ← a).
[
g(Xa) : (Xw, XL) := fup(Xa) //Xa := fdown(Xw, XL)

]
.

As for simple connectors, the coordination in hierarchical connectors involves
two parts. The control part w ← a defines a dependency relation between the
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connector port w and its interaction a. That is, w is enabled if and only if the
interaction a is enabled. The data part

[
g(Xa) : (Xw, XL) := fup(Xa) //Xa :=

fdown(Xw, XL)
]
defines the computation realised on local variables XL and data

associated to ports. The interaction is enabled and the computation is performed
only if the guard g(Xa) evaluates to true. In this case, computation involves two
steps. First, an up function fup is used to compute Xw and XL depending on in-
teraction variables Xa. Second, if an (upper) interaction involving w takes place,
the down function fdown is used to update Xa based on Xw and XL. Moreover,
in an hierarchical connector, execution of up and down steps is coordinated: first,
all up steps are performed bottom-up (as long as guards are satisfied), then, if
a top-level interaction is executed, all down steps are performed top-down.

As an example, the coordination enforced by the simple connector presented
in Figure 3 can be equally obtained by using the hierarchical connector depicted
in Figure 4. The ternary connector and its associated data transfer is split in
two binary connectors, glued together by the port w.

p Xp q Xq r Xr

u Xu

w Xw, Yw

(w ← pq).[true : Xw := max(Xp, Xq), Yw := (Xp �= Xq) //Xp, Xq := Xw]

(u ← wr).[Yw ∨ (Xw �= Xr) : Xu := max(Xw, Xr) //Xw, Xr := Xu]

Fig. 4. Hierarchical connector

Hierarchical connectors can be statically flattened, that is, transformed into
functionally equivalent simple connectors. For the control part, flattening amounts
to substituting the inner connector ports by the associated interactions. For the
data part, it reduces to static composition of up and down functions together with
propagation of the guards. Flattening has been formally defined as a rewriting sys-
tem on hierarchical connectors and proven confluent and terminating [17]. As an
example, flattening of the connector from Figure 4 transforms it back into the sim-
ple connector from Figure 3.

3.3 Dynamic Connectors

How can we reason about architectures whose structure changes dynamically?
There exists a variety of paradigms dealing with dynamic change in coordina-
tion. One is based on the use of process algebras such as the π-calculus [35].
Nonetheless, there is no clear distinction between behaviour and coordination
and thus it is hard to come up with a concept of architecture in this context.
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Another considers architectures as graphs and studies their possible config-
urations by using graph grammars. Technically architecture styles and possible
configurations are described by context-free graph grammars [32,36]. This ap-
proach implicitly assumes the existence of a global coordinator. Furthermore,
the focus is on changing structure and it is not easy to account for data trans-
fer. Other more ad hoc techniques consider that dynamic architectures are just
coordinators between components that can modify the architecture connectivity
[1]. The approach closest to the one presented below is explored in [21], where
dynamic BI(P) (BIP without priorities) allows spawning new components and
interactions during execution.

We show below how dynamic connectors can be defined as a direct extension
of connectors in BIP. We assume that system models are built using arbitrary
numbers of typed components. The type T of a component defines its set of
ports and associated exported variables. Two kinds of variables can be used in
descriptions: 1) component variables ci with an associated component type T ,
denoted ci :T ; 2) variables Ui representing sets of components of the same type
T , denoted Ui :T . We denote by c.p the port p of component c.

A connector description consists of a set of initialisation statements followed
by a set of rules. The initialisation statements define initial values of the variables
U representing sets of components. The rules define sets of dynamic connectors.
The format for the description is the same as for static connectors. The main
difference is that the rules may involve guards and computation that modifies
the sets of components.

The following example models a ring architecture composed of n elements

U := {ci : T, for 0 ≤ i < n} , (8)

ri := (ci.out, c(i+1)%n.in).[true : Xc(i+1)%n.in := Xci.out], for 0 ≤ i < n . (9)

Line (8) initialises a variable U with an array of component instances by using
the iterator primitive for 0 ≤ i < n. Line (9) gives a set of n rules for specifying
connectors transferring data from outputs to inputs.

The following example models a set of n components that must strongly syn-
chronise through their port p, with the possibility of disconnecting a component
when it detects a failure and the possibility to rejoin the group in case of recov-
ery. The first line creates an array of n instances of components c of type T . The
description uses two variables U and Uact representing sets of components. The
former is used to record the universe of the created components and the latter
to record the set of the active components.

The configurations are described by three rules. Rule (10) involves an inter-
action requiring the synchronisation of all the active components. The corre-
sponding computation consists in assigning to the synchronised port variables
the maximum of the exported values. Rule (11) describes disconnection of the
i-th component ci when it detects a failure. Rule (12) describes insertion of a
component after recovery.
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U := {ci : T, for 0 ≤ i < n} , Uact := U ,

r := (c.p, for c ∈ Uact).
[
true : xc.p := max{xc.p | c ∈ Uact}, for c ∈ Uact

]
,

(10)

rfailc := (c.fail).[true : Uact := Uact − c], for c ∈ Uact , (11)

rjoinc := (c.join).[true : Uact := Uact + c], for c ∈ U \ Uact . (12)

As a final illustration, consider the Master-Slave example presented in [19].
Systems are constructed from two types of components, respectively masters
(M) and slaves (S). Every master mi requests sequentially two distinct slaves
sj , sk (rules 13, 14) and then interacts with both of them (rule 15 above). The
rules are graphically depicted in Figure 5.

U := {mi : M, sj : S, for 0 ≤ i < n, 0 ≤ j < m} ,
req1ij := (mi.req sj .get)[xmi.req = ∅ : xmi.req := xmi.req ∪ sj ], (13)

for 0 ≤ i < n, 0 ≤ j < m

req2ik := (mi.req sk.get)[sk �∈ xmi.req : xmi.req := xmi.req ∪ sk], (14)

for 0 ≤ i < n, 0 ≤ k < m

compijk := (mi.comp sj .work sk.work)[sj , sk ∈ xmi.req : xmi.req := ∅], (15)

for 0 ≤ i < n, 0 ≤ j, k < m

sj : S sk : S

comp work work

req get get

mi : M

comp

req req

work

get get

work

(mi.req sj .get)[xmi.req = ∅ : xmi.req := xmi.req ∪ sj ]

(mi.comp sj .work sk.work) [sj, sk ∈ xmi.req : xmi.req := ∅]

(mi.req sk.get)[sk �∈ xmi.req : xmi.req := xmi.req ∪ sk]

Fig. 5. Dynamic Connectors for the Master-Slave example

4 Achieving Correctness

We present two approaches for achieving correctness for component-based sys-
tems. The first is by compositional inference of global properties of a composite
component from properties of its constituents and synchronisation constraints
implied by composition operators. The second is by using and composing archi-
tectures that enforce specific coordination properties.
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4.1 Compositional Verification

Compositional verification techniques are used to cope with state explosion in
concurrent systems. The idea is to apply divide-and-conquer approaches to in-
fer global properties of complex systems from properties of their components.
Separate verification of components limits state explosion. Nonetheless, com-
ponents mutually interact in a system and their behaviour and properties are
inter-related. This is a major difficulty in designing compositional techniques.
We developed for BIP a compositional verification method [11,10,9] for safety
properties (invariants) based on the following rule:

{
Ci |= �Φi

}
i

Ψ ∈ II
(
γ, (Ci)i

) (∧
i Φi

) ∧ Ψ ⇒ Φ

γ((Ci)i) |= �Φ
. (16)

ψ

φ2

φ1

Fig. 6. Rule illustrated

This rule allows one to prove invariance of
Φ for systems γ((Ci)i) constructed by using a
parallel composition operation parameterised
by a set of connectors γ on a set of com-
ponents (Ci)i. It relies on computing auxil-
iary invariants as the conjunction of compo-
nent invariants Φi and an interaction invariant
Ψ . Component invariants Φi are computed lo-
cally for components Ci, hence, they satisfy
Ci |= �Φi, for all is. Interaction invariants Ψ
expresses constraints on the global state space
induced by interactions between components.
They are obtained automatically from finite-
state abstractions of the system to be veri-
fied and without explicitely constructing the
product space, that is, denoted by Ψ ∈ II

(
γ, (Ci)i

)
. Finally, if the implication(∧

i Φi

)∧Ψ ⇒ Φ holds, i.e. can be effectively proven by using a SAT/SMT solver,
then Φ is an invariant of the composed system.

The principle of the rule is graphically illustrated in Figure 6 for two com-
ponents C1, C2 assuming that each dimension corresponds to the state space
of each component. Component invariants define restrictions represented as a
vertical and a horizontal strip. The intersection of component invariants is a
rectangular area including all the states of the Cartesian product of the sets of
states meeting each invariant. The restriction induced by interaction invariants
is an oblique strip that removes states of the rectangular area that are forbidden
by the interactions.

As a concrete illustration, let us consider a simple benchmark example from
[11]. The Temperature Control System models the control of the coolant tem-
perature in a reactor tank by moving two independent refrigerating rods. The
goal is to maintain the coolant between the temperatures θm = 100◦C and
θM = 1000◦C. When the temperature reaches its maximum value θM , the tank
must be refrigerated with one of the rods. The temperature rises at a rate
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tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1
t1 := 0

rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2
t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1 Controller Rod2

Fig. 7. Temperature Control System in BIP

vr = 1◦C/s and decreases at rate vd = 2◦C/s. A rod can be moved again only if
T = 3600s has elapsed since the end of its previous movement. If the temperature
of the coolant cannot decrease because there is no available rod, a complete shut-
down is required. A discretised time model of the Temperature Control System
in BIP is provided in Figure 7. The model consists of three atomic components, a
Controller handling the temperature and two components Rod1, Rod2 modelling
the rods. The variable θ within the Controller stores the temperature of the re-
actor. Its evolution depends on the state respectively, at l5 (heating) it increases
by one every time unit and at l6 (cooling) it decreases by 2 every time unit. The
transitions between states depend on the value of θ, as explained earlier. The
Rod1,2 components are identical. The t1,2 variables are discrete clocks measuring
the resting time. They increase by one every time unit. A rod can be used for
cooling only when the resting time is greater than 3600. The Controller and
the Rods are interconnected by five connectors (tick tick1 tick2), (cool cool1),
(cool cool2), (heat rest1), (heat rest2) modelling respectively, the discrete time
progress and the usage/releasing of the rods. In the BIP model, complete shut-
down corresponds to a deadlock situation, henceforth, checking for functional
correctness amounts to checking deadlock-freedom. The invariants computed on
the BIP model are as follows:

ΦController = (at l5 ∧ 100 ≤ θ ≤ 1000) ∨ (at l6 ∧ 100 ≤ θ ≤ 1000)

ΦRod1 = (at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600)

ΦRod2 = (at l3 ∧ t2 ≥ 0) ∨ (at l4 ∧ t2 ≥ 3600)

Ψ = (at l2 ∨ at l4 ∨ at l5) ∧ (at l1 ∨ at l3 ∨ at l6)

As explained in [11], deadlock-freedom of BIP models can be characterised as an
invariant state property. For our example, potential deadlocks states include, e.g.
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D1 = (at l1 ∧ t1 < 3600) ∧ (at l3 ∧ t2 < 3600) ∧ (at l6 ∧ θ = 100)

D2 = (at l1 ∧ t1 < 3600) ∧ (at l3 ∧ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

Proving deadlock-freedom amounts to checking that no states within D1 or D2

are reachable, or equivalently, that both Φ1 = ¬D1 and Φ2 = ¬D2 are invariants.
Using a SAT solver it can be checked that the following assertion holds

(ΦController ∧ ΦRod1 ∧ ΦRod2 ∧ Ψ) ⇒ Φ1

therefore Φ1 is a system invariant and all deadlock states within D1 are unreach-
able. But, the implication above does not hold when Φ2 is considered instead of
Φ1. This means that Φ2 cannot be proven invariant and hence deadlock states
in D2 are potentially reachable. In this case, complementary verification tech-
niques, e.g. backward reachability analysis, can be used to confirm/infirm their
reachability in the model.

Table 1 taken from [10] provides an overview of experimental results obtained
for several benchmarks. For the columns: n is the number of BIP components in
the example, q is the total number of control locations, x is the total number of
boolean and integer variables, D provides, when possible, the estimated number
of deadlock configurations, Dc (resp. Dci) is the number of deadlock configura-
tions remaining once component respectively interaction invariants are used and
t is the total time for computing invariants and checking for satisfiability.

Table 1. Checking deadlock-freedom on classical benchmarks

example n q x D Dc Dci t

Temperature Control System (2 rods) 3 6 3 8 5 3 3s
Temperature Control System (4 rods) 5 10 5 32 17 15 6s
Readers-Writer (7000 readers) 7002 14006 1 - - 0 17m27s
Readers-Writer (10000 readers) 10002 20006 1 - - 0 36m10s
Gas station (100 pumps - 1000 customers) 1101 4302 0 - - 0 9m14s
Philosophers (2000 Philos) 4000 10000 0 - - 3 32m14s
Philosophers (3001 Philos) 6001 15005 0 - - 1 54m34s

The original method from [11] has been extended in several directions. In-
cremental extensions, where invariants and properties are established along the
model construction, have been studied in [8,7]. Moreover, it has been combined
with backward reachability analysis and automatic strengthening of invariants
for elimination of false positives [12]. More recently, the method has been ex-
tended to timed models and timed properties [3].

4.2 Property Enforcement—Architectures

Property enforcement consists in applying architectures to restrict the behaviour
of a set of components so that the resulting behaviour meets a given property.
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Depending on the expressiveness of the glue operators, it may be necessary to
use additional components to achieve a coordination to satisfy the property.

Architectures depict design principles, paradigms that can be understood by
all, allow thinking on a higher plane and avoiding low-level mistakes. They are
a means for ensuring global properties characterising the coordination between
components—correctness for free. Using architectures is key to ensuring trust-
worthiness and optimisation in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of reference architectures ensuring
both functional and non-functional properties, for example fault-tolerant archi-
tectures, architectures for resource management and QoS control, time-triggered
architectures, security architectures and adaptive architectures. The proposed
definition is general and can be applied not only to hardware or software archi-
tectures but also to protocols, distributed algorithms, schedulers, etc.

An architecture is a partial operator A : Cn → C, imposing a characteristic
property Φ and defined by a glue operator gl and a set of coordinating compo-
nents D, such that:

– A transforms a set of components C1, . . . , Cn into a composite component
A[C1, . . . , Cn] = gl(C1, . . . , Cn,D);

– A[C1, . . . , Cn] meets the characteristic property Φ.

An architecture is a solution to a coordination problem specified by Φ, using
a particular set of interactions specified by gl. It is a partial operator, since the
interactions of gl should match actions of the composed components.

Application and platform restrictions entail reduced expressiveness of the glue
operator gl that must be compensated by using the additional set of components
D for coordination. For instance, glue operators defined by connectors (cf. Sec-
tions 3.1–3.3) are memoryless. Hence, they can only be used to impose state
properties. Imposing more complex safety properties requires additional coordi-
nation behaviour. Similarly, for distributed architectures, interactions are point-
to-point by asynchronous message passing. Synchronisation among the compo-
nents is achieved by stateful protocols.

The characteristic property assigns a meaning to the architecture that can be
informally understood without the need for explicit formalisation (e.g. mutual
exclusion, scheduling policy, clock synchronisation).

In addition to imposing the characteristic property, an architecture must pre-
serve essential properties of the composed components. In particular, any invari-
ant of a component Ci must be an invariant of A[C1, . . . , Cn]. In Section 4.3, we
provide results about preservation of safety and liveness properties by architec-
ture composition. Since there exists a unary identity architecture, which does not
modify the behaviour of its operand, preservation of properties by architectures
follows from that by architecture composition.

Architectures should, in principle, preserve deadlock-freedom: if components
Ci are deadlock-free then A[C1, . . . , Cn] should be deadlock-free too. However, in
general, preservation of deadlock-freedom cannot be guaranteed by construction,
since architectures restrict the behaviour of components they are applied to.
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Instead, deadlock-freedom has to be verified a posteriori using techniques such
as the one presented in Section 4.1.

4.3 Property Composability

In a design process it is often necessary to combine more than one architectural
solution on a set of components to achieve a global property. System engineers
use libraries of solutions to specific problems and they need methods for com-
bining them without jeopardising their characteristic properties.

For example, a fault-tolerant architecture combines a set of features building
protections against trustworthiness violations. These include 1) triple modular
redundancy mechanisms ensuring continuous operation in case of single com-
ponent failure; 2) hardware checks to be sure that programs use data only in
their defined regions of memory, so that there is no possibility of interference;
3) default to least privilege (least sharing) to enforce file protection. Is it pos-
sible to obtain a single fault-tolerant architecture consistently combining these
features? The key issue here is feature interaction in the integrated solution. Non-
interaction of features is characterised below as property composability based on
our concept of architecture.

Consider two architectures A1, A2, enforcing respectively properties Φ1, Φ2

on components C1, . . . , Cn. That is, A1[C1, . . . , Cn] and A2[C1, . . . , Cn] satisfy
respectively the properties Φ1, Φ2. Is it possible to find an architecture A[C1, . . . ,
Cn] that meets both properties? For instance, if A1 ensures mutual exclusion and
A2 enforces a scheduling policy is it possible to find architectures on the same
set of components that satisfies both properties?

A full, rigorous definition of the notions of architecture and property en-
forcement is provided in [4] alongside a constructive definition of an associative,
commutative and idempotent architecture composition operator ⊕. An architec-
ture is defined as a triple A = (D, PA, γ), where D is a finite set of coordinating
components, PA is a set of ports and γ ⊆ 2PA is an interaction model over
PA. Noticing that the interaction model γ can be represented by the corre-
sponding characteristic predicate ϕγ on variables in PA, the composition of two
architectures A1 = (D1, PA1 , γ1) and A2 = (D2, PA2 , γ2) is defined by putting

A1 ⊕ A2
def
= (D1 ∪ D2, PA1 ∪ PA2 , γ) where γ is such that ϕγ = ϕγ1 ∧ ϕγ2 .

The properties of ⊕ are studied and applied for building correct-by-construction
components incrementally. In particular ⊕ has a neutral element Aid, which is
the most liberal architecture enforcing no coordination constraints.

When applying an architecture A to enforce a property Φ on components
C1, . . . , Cn, the property Φ is expressed in terms of the states of C1, . . . , Cn.
The states of the coordinating components D (see Section 4.2) are irrelevant.
Therefore, we say that an architecture A enforces a property Φ on components
C1, . . . , Cn if the projection of every trace of A[C1, . . . , Cn] onto the state space
of Aid[C1, . . . , Cn] satisfies Φ. In [4], we show that if two architectures A1 and
A2 enforce the respective safety properties Φ1 and Φ2 on components C1, . . . ,
Cn, then A1 ⊕A2 enforces on these components the conjunction Φ1 ∧ Φ2 of the
two properties.
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Fig. 8. Components (a) and coordinator (b) for Example 5

Example 5 (Mutual exclusion). Consider the components C1 and C2 in Fig-
ure 8a. In order to ensure mutual exclusion of their work states—Φ12 = (s1 �=
work ∨ s2 �= work), where s1 and s2 are, respectively, state variables of C1 and
C2—we apply the architecture A12 consisting of a coordinating component D12,
shown in Figure 8b, and the glue operator defined by the set of interactions and
γ12 = {b1b12, b2b12, f1f12, f2f12} (see Section 2.5).

Assuming that the initial states of C1 and C2 are sleep, and that of D12

is free, neither of the two states (free, work, work) and (taken, work, work) is
reachable, i.e. the mutual exclusion property Φ12 holds in A12[C1, C2].

Let C3 be a third component, similar to C1 and C2, with the set of ports
{b3, f3}. We define two additional architectures A13 and A23 similar to A12: they
consist, respectively, of coordinating components D13 and D23, which, up to the
renaming of ports, are the same as D12 in Figure 8b, γ13 = {b1b13, b3b13, f1f13,
f3f13} and γ23 = {b2b23, b3b23, f2f23, f3f23}. As above, A13 and A23 enforce
on A13[C1, C3] and A23[C2, C3], respectively, the mutual exclusion properties
Φ13 = (s1 �= work ∨ s3 �= work) and Φ23 = (s2 �= work ∨ s3 �= work). The
composition of the three architectures A12 ⊕ A13 ⊕ A23, imposing the mutual
exclusion property Φ12∧Φ13∧Φ23 = (s1 �= work∧s2 �= work)∨(s2 �= work∧s3 �=
work) ∨ (s1 �= work ∧ s3 �= work) on the three components C1, C2 and C3, is
given by the set of coordinating components {D12, D13, D23} and the set of
interactions γ = {b1b12b13, f1f12f13, b2b12b23, f2f12f23, b3b13b23, f3f13f23} (see
[4] for details). 	


One can define a canonical lattice on the set of architectures. The lattice is
induced by the partial order relation <, defined by putting A1 < A2 if and only
if A1 ⊕A2

∼= A1. The neutral architecture Aid is the top element of the lattice;
the bottom element is the “blocking” architecture, inhibiting all actions of the
components, thus leading to a global deadlock.3 The composition A1 ⊕ A2 is
then the greatest lower bound of A1 and A2 with respect to <. It represents the
most liberal architecture enforcing both Φ1 and Φ2.

In the above setting, interfering features of a system are translated as contra-
dictory properties. For example, the following two features can be required from
an elevator cabin [23,37]:

3 A deadlocked system trivially satisfies all safety properties.
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1. If the elevator is full, it must stop only at floors selected from the cabin and
ignore outside calls.

2. Requests from the second floor have priority over all other requests.

Clearly these two requirements are contradictory, since they cannot be jointly
satisfied when the elevator is called from the second floor while it is full. Applying
the composition of two architectures enforcing respectively these two properties
on the components forming the elevator cabin would generate deadlocks.

Thus, although architecture composition ⊕ preserves safety properties, it does
not preserve deadlock-freedom. Deadlock-freedom can be compositionally veri-
fied by techniques such as the one presented in Section 4.1.

The treatment of liveness properties is based on the idea that each coordina-
tor must be “invoked sufficiently often” for the corresponding liveness properties
to be imposed on the system as a whole. For each coordinator, one designates
the set of its “idle states”. It is then required that each coordinator be executed
infinitely often, unless, from some point on, it remains forever in an idle state [4].
In [4], it is shown that this notion of liveness is preserved by the composition
of architectures, provided that the composed system is deadlock-free and the
composed architectures are pairwise non-interfering in the following sense. Ar-
chitecture A1 is non-interfering w.r.t. architecture A2 and a set of components
C1, . . . , Cn, if each path in (A1 ⊕A2)[C1, . . . , Cn], which executes transitions of
the coordinators of A1 infinitely often, either executes transitions of the coordi-
nators of A2 or visits their idle states infinitely often.4

Example 6. Consider the system (A12⊕A23⊕A13)[C1, C2, C3], as in Example 5.
Let each coordinator have a single idle state free. Consider the applications of
each pair of coordinators, i.e. (A12⊕A23)[C1, C2, C3], (A23⊕A13)[C1, C2, C3] and
(A12 ⊕A13)[C1, C2, C3]. For (A12 ⊕A23)[C1, C2, C3], we observe that along any
infinite path, either D12 executes infinitely often, or remains forever in its idle
state after some point. Hence, A23 is non-interfering w.r.t. A12 and C1, C2, C3.
Likewise for the five other ordered pairs of coordinators. It can be verified that
(A12 ⊕A23 ⊕ A13)[C1, C2, C3] is deadlock-free. Hence, we conclude that (A12 ⊕
A23 ⊕A13) is live. 	


Thus, verifying liveness in a composed system is reduced to checking the
deadlock-freedom and pairwise non-interference of architectures, both of which
can be performed compositionally.

To put the above vision for correctness into practice, we need to develop a
repository of reference architectures. The repository should classify existing ar-
chitectures according to their characteristic properties. There exists a plethora
of results on distributed algorithms, protocols, and scheduling algorithms. Most
of these results focus on principles of solutions and discard essential operational
details. Their correctness is usually established by assume/guarantee reasoning:
a characteristic global property is implied from properties of the integrated com-
ponents. This is enough to validate the principle but does not entail correctness

4 Notice that the “non-interference w.r.t.” relation is not commutative.
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of particular implementations. Often, these principles of solutions do not spec-
ify concrete coordination mechanisms (e.g. in terms of operational semantics),
and ignore physical resources such as time, memory and energy. The reference
architectures included in the repository, should be

– described as executable models in the chosen component framework;
– proven correct with respect to their characteristic properties;
– characterised in terms of performance, efficiency and other essential non-

functional properties.

For enhanced reuse, reference architectures should be classified according to
their characteristic properties. A list of these properties can be established;
for instance, architectures for mutual exclusion, time-triggered, security, fault-
tolerance, clock synchronisation, adaptive, scheduling, etc. Is it possible to find
a taxonomy induced by a hierarchy of characteristic properties? Moreover, is it
possible to determine a minimal set of basic properties and corresponding archi-
tectural solutions from which more general properties and their corresponding
architectures can be obtained?

The example of the decomposition of fault-tolerant architectures into basic
features can be applied to other architectures. Time-triggered architectures usu-
ally combine a clock synchronisation algorithm and a leader election algorithm.
Security architectures integrate a variety of mitigation mechanisms for intru-
sion detection, intrusion protection, sampling, embedded cryptography, integrity
checking, etc. Communication protocols combine sets of algorithms for signalling,
authentication and error detection/correction. Is it possible to obtain by incre-
mental composition of features and their characteristic properties, architectural
solutions that meet given global properties? This is an open problem whose so-
lution would greatly enhance our capability to develop systems that are correct-
by-construction and integrate only the features needed for a target characteristic
property.

5 Architecture Specification

So far we have focused on modelling component-based systems and on methods
for proving their behavioural correctness. In this section, we study logics for the
specification of properties of architectures. Notice that the presented architec-
ture modelling adopts an imperative description style: the coordination between
components is given by a set of connectors. No interaction is allowed except
the ones specified by connectors. In contrast, logics adopt a declarative style. A
logical specification is the conjunction of formulas; its meaning is the set of the
models belonging to the intersection of the meanings of the formulas. Conse-
quently, logical specifications characterise not a single model but a set of models
that may be empty. In the latter case, the specification is inconsistent.

Typically, an architecture defines a set of interactions between types of com-
ponents. On the contrary, a class of architectures, what is usually called an
architecture style, is represented by a set of congurations. We propose two types
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of logics for architectures: 1) Interaction logics to specify a particular architec-
ture as the set of the allowed interactions; 2) Configuration logics to specify
families of architectures as the set of the allowed configurations of interactions.

Configurations are defined as follows. Given a set of ports P an interaction a
is a subset of P ; there exist 2|P | interactions on P . A configuration is a set of
interactions a1, . . . , an represented by a term of the form a1 + · · ·+ an where +
is an associative commutative and idempotent operator. Notice that there exist

22
|P |

configurations on the alphabet P . For instance, if P = {p, q} then the set
of non-empty interactions is {p, q, pq} and the set of non-empty configurations
is {p, q, pq, p+ q, pq + p, pq + q, pq + p+ q}.

For example, it is shown in the next subsection that the dynamic Master/Slave
architecture presented in Section 3.3 can be specified in Interaction Logic. The
class of Master/Slave architectures can be characterized by a formula of the
configuration logic that specifies all the allowed configurations of interactions
involving some master and slaves.

5.1 Interaction Logics

Let P be an alphabet of ports. The set of the formulas of the propositional
interaction logic PIL(P ) is defined by the syntax:

f ::= true | p ∈ P | f ∧ f | f . (17)

The models of the logic are interactions a on P . The semantics defined by the

following satisfaction relation
i|=.

a
i|= true, for any a,

a
i|= p, if p ∈ a,

a
i|= f1 ∧ f2, if (a

i|= f1) ∧ (a
i|= f2),

a
i|= f, if (a

i|= f) does not hold.

We use the logical connectives ∨ and ⇒ with the usual meaning. Notice that
the formulas of the logic can be put in the form of the disjunction of monomials∧

p∈I p ∧
∧

p∈J p, such that I ∩ J = ∅. An interaction a is characterised by the
monomial

∧
p∈a p ∧

∧
p�∈a p. Propositional interaction logic has been extensively

studied in [16] where it is shown that it can provide a basis for the efficient
representation of connectors. For example, the interaction between p1, p2 and p3
is defined by the formula f1 = (p1 ⇒ p2)∧(p2 ⇒ p3)∧(p3 ⇒ p1). Broadcast from
a sending port s towards receiving ports r1 and r2 is defined by the formula f2 =
(p1 ⇒ s)∧ (p2 ⇒ s). Notice that the non-empty solutions are the interactions s,
sp1, sp2, sp1p2.

In [19], we have shown that PIL(P ) can be extended into a first order logic
to represent architectures built from arbitrary numbers of components, instanti-
ating a finite number of component types. We present a slightly different version
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of this logic. As in [19], we assume that system specifications are built using
arbitrary numbers of typed components. The type T of a component defines its
set of ports and associated exported variables. Furthermore, we consider a set
of component variables ci with associated component types T . The fact that
the component variable ci is of type T is denoted by ci : T . The syntax of the
formulas of the first order interaction logic is defined by:

f ::= true | c.p | c = c′ | f ∧ f | f | ∀c :T.f , (18)

where c and c′ are component variables.
In this definition, T denotes a component type. Each component type repre-

sents a set of component instances with identical interface and behaviour. The
variables c and c′ range over component instances. They are strongly typed and,
moreover, they can be tested for equality. The semantics of the logic can be
derived from the semantics of the propositional logic as follows.

A formula of the logic defines the set of the interactions of a system built from
known instances of typed components. Quantifiers can be eliminated by using
the identity: ∀c :T.F (c) ≡ F (t1)∧· · ·∧F (tk), where t1, . . . , tk are the instances of
components of type T in the model. After quantifier elimination, we get a formula
of the propositional logic. This logic can be used to specify dynamic architectures.
For instance the formula ∀c :Sender.∃c′ :Receiver.(c.send ∧ c′.receive), means
that for any Sender there exists a Receiver such that their ports send and
receive, respectively, interact. Relevant specification examples using this logic
are provided in [19]. Furthermore, it is shown that for a given model the specified
interactions can be computed efficiently by using a symbolic representation.

We provide logical specifications for the architecture of the Master-Slave ex-
ample already seen in Section 3.3. Following the approach in [19], we introduce
some additional notations that prove to be very useful for writing specifications:

Y.p requires R.q ≡ ∀c : Y. ∃c′ : R. (c.p ⇒ c′.q)
(every p port requires a q port for interaction)

Y.p accepts R.q ≡ ∀c : Y.
∧

(T,r) �=(R,q)

∀c′ : T.((c.p �= c′.r) ⇒ c′.r)

(every p port can only interact with q ports)

unique Y.p ≡ ∀c : Y. ∀c′ : Y.(c.p ∧ c′.p ⇒ c = c′)
(no interaction between ports p)

Using the above abbreviations the architecture of the Master-Slave example is
described by the following interaction logic formula:

(M.req requires S.get) ∧ (M.req accepts S.get) ∧ (unique S.get)

(S.get requires M.req) ∧ (S.get accepts M.req) ∧ (unique M.req)

(M.comp requires S.work) ∧ (M.comp accepts S.work)

(S.work requires M.comp) ∧ (S.work accepts M.comp) ∧ (unique M.comp)
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Notice the difference in the description styles for the same example. When con-
nectors are used, the style is imperative. The set of the interactions is constructed
by enumerating connectors. When formulas are used, the style is declarative. The
set of the interactions is in the intersection of the meanings of formulas which
express constraints on the interactions required and accepted by each compo-
nent. It has been shown that the two approaches are equivalent as long as we
deal with interactions without data transfer. The association of computation
and data transfer with formulas is not as natural as for connectors and raises
methodological and technical issues.

The two styles correspond to two different approaches for eliciting architec-
tural knowledge [22]. One is bottom-up and is adopted for building architectural
models in various architecture description languages [28]. The other is top-down
and is used to capture essential dependencies between features.

5.2 Configuration Logics

Let P be an alphabet on ports. The set of the formulas of the propositional
configuration logic PCL(P ) is defined by the syntax:

f ::= true |m ∈ PIL(P ) | f ∧ f | ¬f | f + f , (19)

where m is a monomial of the interaction logic.
The models of the logic are configurations γ on P , of the form γ = a1+· · ·+an

where the ai’s are interactions on P . The semantics is defined by the satisfaction
relation |=.

γ = a1 + · · ·+ an |= m, if, for each ai, ai
i|= m,

γ = a1 + · · ·+ an |= f1 + f2, if, for each ai, (ai |= f1) or (ai |= f2) ,

where m is a monomial of the interaction logic. For logical constants and con-
nectives we take the standard meaning.

Notice the overloading of the + operator. The meaning of the formula f1+f2 is
the set of the configurations obtained by combining some configuration satisfying
f1 with some configuration satisfying f2. In particular, we have the property:
f1 + (f2 ∨ f3) = (f1 + f2) ∨ (f1 + f3).

A simple example illustrates the expressive power of this logic. Let P =
{p, q, r, s} be an alphabet of ports. The monomial p ∧ q ∧ r specifies, in the
interaction logic, the set of interactions pq and pqs. In the configuration logic, it
specifies the set of configurations pq, pqs and pq+pqs. The formula p∧q∧r+true

characterises all the configurations of the form γ = γ1 + γ2, where γ1 satisfies
p∧ q ∧ r and γ2 is an arbitrary configuration. Notice, in particular, that true is
not an absorbing element for +. Hence, γ1 cannot be empty.

In general, a formula of the form f + true characterises all the configurations
comprising the configurations satisfying f . This type of formulas is particularly
useful for writing specifications. We write ∼f = f + true for any formula f
of the logic. The operator ∼ is idempotent and satisfies the following property:
∼f∧ ∼g = ∼(f + g) for any formulas f and g.
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We extend PCL(P ) into a second order logic. We assume that system models
are built using arbitrary numbers of typed components. The type T of a com-
ponent defines its set of ports and associated exported variables. We consider a
set of component variables ci with an associated component type T . The fact
that the component variable ci is of type T is denoted by ci :T . Furthermore, we
consider a set of variables Ui ranging over sets of components. This set includes
a particular variable U representing the set of all the components of a model.
We also adopt the notation Ui : T to signify that all components in the set Ui

are of type T .
The syntax of the second order configuration logic formulas is defined by:

f ::= true |m ∈ PIL(P ) | c = c′ | c ∈ U |U ⊆ U ′ |
f ∧ f | ¬f | f + f | ∀U :T.f | ∀c :T.f , (20)

where m is a monomial, c, c′ are component variables and U , U ′ are variables
over sets of components.

The semantics can be derived from the semantics of the propositional logic.
For a given model γ(C1, . . . , Cn), quantifiers can be eliminated in a formula to
obtain a formula of the propositional logic.

The specification of a ring architecture composed of components c :T having
ports c.in and c.out is the conjunction of the following formulas:

∀c :T.∃c′ :T ∼(c.out = c′.in) ∧ ∀c′′ :T (c′ �= c′′).¬ ∼(c.out = c′′.in) , (21)

∀c :T.∃c′ :T ∼(c.in = c′.out) ∧ ∀c′′ :T (c′ �= c′′).¬ ∼(c.in = c′′.out) , (22)

∀U ′ :T (U ′ �= U).∃c ∈ U ′, c′ ∈ U \ U ′. ∼(c.out = c′.in) . (23)

Formula (21) characterises all the configurations such that each output port
c.out of a component c is connected to some input port c.in of some other
component c′ and explicitly excludes connections of c.out with input ports of
components other than c′. Formula (22) requires symmetrically connectivity of
each input port to a single output port. The two formulas guarantee cyclical
connectivity. Formula (23) requires that there exists a single (maximal) cycle. It
says that any subset U ′ of components of the universal set U has a component
that is connected to some component of its complement.

A comparison between the ring architecture model given in Section 3.3 and
the above logical specification shows significant differences in both the style of
expression (imperative vs. declarative) and the basic connectivity concepts. The
model does not allow other configurations than the ones explicitly specified.
Logical specifications characterise configurations that include token ring archi-
tectures without excluding other compatible connectivity properties.

6 Conclusion

The paper discusses research issues related to the design of component-based
systems by distinguishing three main problems. The first problem is modelling
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composite components as the composition of atomic components characterised
by their interface and behaviour. We propose a general framework for component
composition and study expressiveness of families of operators. For universal ex-
pressiveness, it is necessary to combine multiparty interaction and priorities. We
propose the concept of connector as a means for structuring interaction between
components. So far, static connectors and their properties have been thoroughly
studied. We present an extension for the description of dynamic connectors that
needs to be further studied and validated through application.

The second problem is achieving correctness of component-based systems by
application of scalable techniques. We identify two possible avenues. One re-
lies on compositionality principles and proceeds by analysis of the composed
components and their coordination. The other relies on enforcement of specific
properties. A key problem in the application of this approach is composability:
how to obtain a system meeting a given global property by composing archi-
tectures meeting specific properties? Existing results limit both approaches to
particular classes of properties, e.g. deadlock-freedom and state invariants. We
believe that a significant research effort is needed to overcome these limitations.

The third problem is using logics to characterise architectures and their prop-
erties. We show that two types of logics are needed for this purpose. Interaction
logics characterise the possible interactions of a system, that is of a particular
architecture. These logics have been studied to a large extent and applied in
the BIP framework. In contrast, configuration logics can be used to characterise
families of architectures, e.g. architecture styles. They are languages used for a
feature-oriented analysis of architectures, such as OCL [27]. The relationships
between configuration logic and other approaches for the description of architec-
tures styles [1,29,30,32] need to be investigated.

The paper clearly distinguishes between architecture models and two types
of logic-based specification formalisms. It also establishes links between the two
types of description through satisfaction relations. Table 2 depicts the main
characteristics of each formalism and significant differences.

Table 2. Architectures and Architectural Properties

Formalism
features

Architecture
Modeling
Connectors
(Imperative)

Architecture
Modeling
Interaction Logics
(Declarative)

Architecture Styles
Specification -
Configuration Logics

Fixed set of
components and
connectors

Static connectors
I(P )
[g(XP ):XP :=f(XP )]

Propositional
interaction logic,
e.g. causality rules

Propositional
configuration logic,
e.g. connectivity
primitives ≈a and ∼a

Typed components;
variables over
components

Generic connectors First-order
interaction logic,
e.g. Dy-BIP

First-order
configuration logic

Variables over
sets of components

Dynamic connectors Second-order
interaction logic

Second-order
configuration logic
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Interestingly, static models correspond to propositional logics, while dynamic
models to higher order logics. Both dynamic models and higher order logics
share the same basic concepts, e.g. they are defined on a set of typed compo-
nents by using variables ranging over components and sets of components. Notice
that component variables are needed to describe generic models and proper-
ties, while variables over sets of components are needed to describe dynamic
creation/deletion and dynamic configurations. These similarities should allow
a tight comparison of the three proposed formalisms, that needs to be further
investigated.
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