
Position Statement for Panel on
Grand Challenges in Embedded Software

Joseph Sifakis
Verimag

2 Avenue de Vignate, centre Equation
GIERES, France

Joseph.Sifakis@imag.fr

Embedded software design is part of embedded system
design, which by its very nature, requires a deep and co-
herent integration of competencies in software, hardware,
and controller design. The scientific challenge is in setting
up embedded systems as a new discipline, which systemati-
cally and even-handedly marries computation and physical-
ity, performance and robustness. Our aim is not to discuss
this grand challenge presented in detail in [1], but rather
to identify missing pieces for applying the formal methods
paradigm to embedded systems design. Formal methods, in
particular formal verification, have been successfully applied
to hardware design, and more recently, to software design.
To what extent is it possible to adapt existing methods and
tools to embedded systems?

Design is the process of deriving a system that meets given
requirements. Correctness can be demonstrated using for-
mal models meeting the requirements and representing a
design at some level of abstraction. For some classes of sys-
tems, it is possible to derive a design from a model which
by-construction meets the requirements (e.g. hardware syn-
thesis). For others, a design is obtained as the result of a a
creative process using existing algorithms and principles for
organizing computation, pre-defined functions, data, com-
ponents, etc. In this case, correctness may be established
by a posteriori verification, to show that a model, which
is an adequate abstraction of the design, meets the given
requirements.

There are two non-trivial obstacles to transposing the for-
mal methods paradigm to embedded systems.

Faithful modeling: Contrary to pure software or hard-
ware, for a given embedded system, we do not know how to
derive a model that faithfully represents its behavior at the
proper level of abstraction. Embedded systems are heteroge-
neous. They are composed of a large variety of components,
each having different characteristics, from a large variety of
viewpoints, each highlighting different dimensions of a sys-
tem.

We need models representing systems at varying degrees
of detail and interrelated in an abstraction hierarchy. A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

key abstraction would relate application software to its im-
plementation on a given platform. Another cause of hetero-
geneity in abstractions, is the use of different viewpoints e.g.
combining computational and analytical models or different
extra-functional dimensions such as timing and power con-
sumption. At each level of abstraction, two main sources
of heterogeneity may exist. a) Components may be fully
synchronized, or asynchronous. Currently, we do not know
how to consistently integrate synchronous and asynchronous
models. b) There is a large variety of dispersed mechanisms
used for coordinating interaction between components, in-
cluding semaphores, monitors, message passing, remote call,
protocols etc.

We need a unified composition framework for heteroge-
neous components. Such a framework should allow system
designers to formulate their solutions in terms of tangible,
well-founded and organized concepts. It should consider ar-
chitectures as first-class entities, having their own proper-
ties, that can be studied independently of their components’
behavior.

Achieving correctness: Current verification techniques
focus mainly on invariance properties by analysis of abstrac-
tions. Embedded systems are concurrent, and their correct-
ness is characterized by other classes of properties not pre-
served by abstractions. This is typically the case for progress
properties or time-dependent properties. For instance, we
do not have abstractions preserving even simple progress
properties such as deadlock-freedom.

Furthermore, existing verification techniques work on flat-
tened global models, whereas for embedded systems, extra-
functional properties depend on architectural features. For
all these reasons, we believe that a posteriori verification
by itself is not sufficient for achieving correctness. As dis-
cussed in [1], emphasis should be put on results allowing
correctness-by-construction in two complementary directions:
a) Develop reference architectures guaranteeing generic prop-
erties by-construction such as security, robustness, diagnos-
ability, adaptivity. b) Develop results allowing interference-
free composition of different architectural solutions. Such
results are essential for guaranteeing the stability of proper-
ties of integrated components, and are necessary for building
reconfigurable systems.

1. REFERENCES
[1] T. A. Henzinger and J. Sifakis. The Embedded Systems

Design Challenge. In Formal Methods 06, LNCS 4085,
pages 1–15, 2006.

