
The Algebra of Connectors—
Structuring Interaction in BIP

Simon Bliudze and Joseph Sifakis

Abstract—We provide an algebraic formalization of connectors in the BIP component framework. A connector relates a set of typed

ports. Types are used to describe different modes of synchronization, in particular, rendezvous and broadcast. Connectors on a set of

ports P are modeled as terms of the algebra ACðP Þ, generated from P by using a binary fusion operator and a unary typing operator.

Typing associates with terms (ports or connectors) synchronization types—trigger or synchron—that determine modes of

synchronization. Broadcast interactions are initiated by triggers. Rendezvous is a maximal interaction of a connector that includes only

synchrons. The semantics of ACðP Þ associates with a connector the set of its interactions. It induces on connectors an equivalence

relation which is not a congruence as it is not stable for fusion. We provide a number of properties of ACðP Þ used to symbolically

simplify and handle connectors. We provide examples illustrating applications of ACðP Þ, including a general component model

encompassing methods for incremental model decomposition and efficient implementation by using symbolic techniques.

Index Terms—Real-time and embedded systems, system architectures, integration, and modeling, systems specification

methodology, interconnections, architecture.

Ç

1 INTRODUCTION

A key idea in systems engineering is that complex
systems are built by assembling components. Compo-

nents are systems characterized by an abstraction, which is
adequate for composition and reuse. Large components are
obtained by composing simpler ones. Component-based
design confers many advantages, such as reuse of solutions,
modular analysis and validation, reconfigurability, con-
trollability, etc.

Component-based design relies on the separation be-
tween coordination and computation. Systems are built
from units processing sequential code insulated from
concurrent execution issues. The isolation of coordination
mechanisms allows a global treatment and analysis.

One of the main limitations of the current state of the art
is the lack of a unified paradigm for describing and
analyzing coordination between components. Such a
paradigm would allow system designers and implementers
to formulate their solutions in terms of tangible, well-
founded, and organized concepts instead of using dis-
persed low-level coordination mechanisms, including
semaphores, monitors, message passing, remote call,
protocols, etc. A unified paradigm should allow a compar-
ison and evaluation of otherwise unrelated architectural
solutions, as well as derivation of implementations in terms
of specific coordination mechanisms.

We propose the Algebra of Connectors for modeling
interactions in component-based systems.

The term “connector” is widely used in the compo-
nent frameworks literature, with a number of different

interpretations. These interpretations can be loosely
separated in two main categories: In the data flow setting,
connectors define the way data is transferred between
components; alternatively, in what we call control flow
setting, connectors instead define synchronization con-
straints, while pushing to the second plan or completely
abstracting the data flow.

Control flow connectors are often specified in an
operational setting, usually a process algebra. In [1], a
process algebra is used to define an architectural type as a set
of component/connector instances related by a set of
attachments among their interactions. In [2], a connector
is defined as a set of processes, with one process for each
role of the connector, plus one process for the “glue” that
describes how all the roles are bound together. A similar
approach is developed by Fiadeiro in a categorical frame-
work for CommUnity [3].

All of the above models define connectors that can
exhibit complex behavior. That is, computation is not
limited to the components, but it can be partly performed in
the connectors. In [4], an algebra of connectors is developed
that allows, in particular, an algebraic translation of the
categorical approach used in CommUnity. This algebra
allows the construction of stateless connectors from a
number of basic ones.

In the data flow setting, Reo [5] is a channel-based
exogenous coordination model for multiagent systems. It
uses connectors compositionally built out of different types
of channels formalized in data-stream semantics and
interconnected by using nodes. The connectors in Reo
allow computation, but their computational aspects are
limited to the underlying channels.

Our approach is closest to that of [4] as it focuses on
stateless connectors in a control flow setting. We consider
connectors as relations between ports with synchronization
types, which allows one to describe complex coordination
patterns with a small set of basic primitives.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008 1

. The authors are with VERIMAG, Centre �Equation, 2 av de Vignate, 38610
Gières, France. E-mail: {Simon.Bliudze, Joseph.Sifakis}@imag.fr.

Manuscript received 7 June 2007; revised 5 Nov. 2007; accepted 3 Dec. 2007;
published online 25 Jan. 2008.
Recommended for acceptance by S.K. Shukla and J.-P. Talpin.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2007-06-0211.
Digital Object Identifier no. 10.1109/TC.2008.26.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

The Algebra of Connectors allows the description of
coordination between components in terms of structured
connectors involving communication ports. It formalizes
mechanisms and concepts that have been implemented in the
Behavior-Interaction-Priority (BIP) component framework
developed at VERIMAG [6], [7]. BIP distinguishes between
three basic entities: 1) behavior, described as extended
automata, including a set of transitions labeled with com-
munication ports; 2) interaction, described by structured
connectors relating communication ports; and 3) dynamic
Priorities, used to model simple control policies, allowing
selection among possible interactions. BIP uses a powerful
composition operator parametrized by a set of interactions.

We present an algebraic formalization of the concept of
connectors, introduced in [8], [9] as a set of communication
ports belonging to different components that may be
involved in some interaction. To express different types
of synchronization, the ports of a connector have a type
(attribute) trigger or synchron. Given a connector involving a
set of ports fp1; . . . ; png, the set of its interactions is defined
by the following rule: An interaction is any nonempty subset of
fp1; . . . ; png which contains some port that is a trigger; otherwise
(if all of the ports are synchrons), the only possible interaction is
the maximal one, that is, fp1; . . . ; png.

In Fig. 1, we show two connectors modeling, respec-
tively, rendezvous and broadcast between ports p1, p2, and
p3. For rendezvous, all of the involved ports are synchrons
(represented by bullets) and the only possible interaction is
p1p2p3. As usual, we simplify the notation by writing p1p2p3

instead of the set fp1; p2; p3g. For broadcast, p1 is a trigger
(represented by a triangle). The possible interactions are p1,
p1p2, p1p3, and p1p2p3. A connector may have several
triggers. For instance, if both p1 and p2 are triggers in this
connector, then p2 and p2p3 should be added to the list of
possible interactions.

The main contributions of this paper are the following:

. The Algebra of Connectors extends the notion of
connectors to terms built from a set of ports by using a
binary fusion operator and a unary typing operator
(trigger or synchron). Given two connectors involving
sets of ports s1 and s2, it is possible to obtain by fusion a
new connector involving the set of ports s1 [s2 (cf.
Fig. 2a). Ports preserve their types, except for the case
where some port occurs in both connectors with
different types. In this case, the port in the new
connector is a trigger. It is also possible to structure
connectors hierarchically, as shown in Fig. 2b, where
the connectors involving p1p2 and p3p4 are typed and
then fused to obtain a new connector.

. The semantics of the Algebra of Connectors associ-
ates with a connector (a term) the set of its
interactions. This induces an equivalence on terms.
We show that this equivalence is not a congruence
as it is not preserved by fusion. This fact has deep
consequences on the composability of interaction
models investigated in this paper. We show that, for

the subset of the terms where all of the connectors
have the same type (synchron or trigger), the
semantic equivalence is a congruence.

. The algebra and its laws can be used to represent
and handle symbolically complex interaction pat-
terns. The number of interactions of a connector can
grow exponentially with its size. We provide
applications of the algebra in modeling languages
such as BIP and show that the use of symbolic
instead of enumerative techniques can drastically
enhance efficiency in execution and transformation.

This paper is structured as follows: Section 2 provides a
succinct presentation of the basic semantic model for BIP and,
in particular, its composition parameterized by sets of
interactions. In Section 3, we present the Algebra of
Interactions. It is a simple algebra used to introduce the
Algebra of Connectors presented in Section 4. The last section
discusses possible applications of the Algebra of Connectors
to efficient design, analysis, and execution of languages with
a complex interaction structure, such as BIP.

2 BIP COMPONENT FRAMEWORK

2.1 Basic Semantic Model

BIP is a component framework for constructing systems by
superposing three layers of modeling: Behavior, Interaction,
and Priority. The lower layer consists of a set of atomic
components representing transition systems. The second
layer models interactions between components, specified by
connectors. These are relations between ports equipped with
synchronization types. Priorities are used to enforce schedul-
ing policies applied to interactions of the second layer.

The BIP component framework has been implemented
in a language and a toolset. The BIP language offers
primitives and constructs for modeling and composing
layered components. Atomic components are communicat-
ing automata extended with C functions and data. Their
transitions are labeled with sets of communication ports.
The BIP language also allows composition of components
parameterized by sets of interactions as well as application
of priorities.

The BIP toolset includes an editor and a compiler for
generating, from BIP programs, C+ code executable on a
dedicated platform [6], [10].

We provide a succinct formalization of the BIP compo-
nent model focusing on the operational semantics of
component interaction and priorities.

Definition 2.1. For a set of ports P , an interaction is a
nonempty subset a � P of ports.

1. The Behavior layer in BIP is modeled by labeled
transition systems.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

Fig. 1. Connectors for (a) rendezvous and (b) broadcast.

Fig. 2. (a) Fusion and (b) structuring of connectors.

Definition 2.2. A labeled transition system is a triple

B ¼ ðQ;P;!Þ, where Q is a set of states, P is a set of

communication ports, and ! � Q� 2P �Q is a set of

transitions, each labeled by an interaction.

For any pair of states q, q0 2 Q, and an interaction a 2 2P ,

we write q !a q0 iff ðq; a; q0Þ 2! .

An interaction a is enabled in state q, denoted q !a , iff

there exists q0 2 Q such that q!a q0. A port p is active iff it

belongs to an enabled interaction.

In BIP, a system can be obtained as the composition of

n components, each modeled by transition systems

Bi ¼ ðQi; Pi;!iÞ, for i 2 ½1; n�, such that their sets of ports

are pairwise disjoint: For i; j 2 ½1; n� ði 6¼ jÞ, we have

Pi \ Pj ¼ ;. We take P ¼
Sn
i¼1 Pi, the set of all ports in

the system.

2. The second layer, Interaction, is modeled by the
composition operator parameterized by the set of
allowed interactions.

Definition 2.3. The composition of components fBigni¼1,

parameterized by a set of interactions � � 2P , is the transition

system B ¼ ðQ;P;!�Þ, where Q ¼
Nn

i¼1 Qi and !� is the

least set of transitions satisfying the rule

a 2 � ^ 8i 2 ½1; n�; ða \ Pi 6¼ ;) qi !i
a\Pi

q0iÞ
ðq1; . . . ; qnÞ !�

a ðq01; . . . ; q0nÞ
; ð1Þ

where qi ¼ q0i for all i 2 ½1; n� such that a \ Pi ¼ ;. We write

B ¼ �ðB1; . . . ; BnÞ.

Notice that an interaction a 2 � is enabled in

�ðB1; . . . ; BnÞ only if, for each i 2 ½1; n�, the interaction a \
Pi is enabled in Bi; the states of components that do not

participate in the interaction remain unchanged. Observe

also that � defines the set of allowed interactions: It is

possible that an interaction a 2 � is never enabled in

�ðB1; . . . ; BnÞ.

3. The third layer, Priorities, allows one to restrict
nondeterminism in the product behavior due to the
fact that several distinct interactions can be enabled
at the same time.

Definition 2.4. Given a system B ¼ �ðB1; . . . ; BnÞ, a priority
model � is a strict partial order on �. For a, a0 2 �, we write
a � a0 iff ða; a0Þ 2 �, which means that interaction a has a
lower priority than interaction a0.

For B ¼ ðQ;P;!Þ and a priority model �, the transition
system �ðBÞ ¼ ðQ;P;!�Þ is defined by the rule

q!a q0 ^ 6 9 a0 : ða � a0 ^ q!a
0
Þ

q!�
a
q0:

ð2Þ

An interaction is enabled in �ðBÞ only if it is enabled in B
and maximal according to �.

Example 2.5 (Sender/Receivers). Fig. 3a shows a compo-
nent ��ðS;R1; R2; R3Þ obtained by composition of four
atomic components: a sender S and three receivers R1,
R2, and R3. The sender has a port s for sending messages
and each receiver has a port ri ði ¼ 1; 2; 3Þ for receiving
them. Table 1 specifies � for four different coordination
schemes.

Rendezvous. This means strong synchronization
between S and all Ri, specified by a single interaction
involving all the ports. This interaction can occur only if
all of the components are in states enabling transitions
labeled, respectively, by s, r1, r2, and r3.

Broadcast. This allows all interactions involving S
and any (possibly empty) subset of Ri. This is specified
by the set of all interactions containing s. These
interactions can occur only if S is in a state enabling s.
Each Ri participates in the interaction only if it is in a
state enabling ri.

Atomic broadcast. A message is either received by all
Ri or by none. Two interactions are possible: s, when at
least one of the receiving ports is not enabled, and the
interaction sr1r2r3, corresponding to a rendezvous.

BLIUDZE AND SIFAKIS: THE ALGEBRA OF CONNECTORS— STRUCTURING INTERACTION IN BIP 3

Fig. 3. A system with (a) four atomic components and (b) a modulo-8 counter.

TABLE 1
Interaction Sets for Basic Coordination Schemes

Causality chain. For a message to be received by Ri, it
has to be received at the same time by all Rj, for j < i.
This coordination scheme is common in reactive
systems.

For rendezvous, the priority model is empty. For all
other coordination schemes, whenever several interac-
tions are possible, the interaction involving the maximal
number of ports has a higher priority, that is, we take
� ¼ fða; a0Þja � a0g.
Throughout this paper, the above maximal progress rule is

applied. In other words, among the enabled interactions,
the ones involving the maximal number of ports are
preferred. Notice that, by enforcing maximal progress,
priorities allow one to express broadcast.

Example 2.6 (Modulo-8 counter). Fig. 3b shows a model for
the modulo-8 counter presented in [11], obtained by
composition of three Modulo-2 counter components.
Ports p, r, and t correspond to inputs, whereas q, s, and u
correspond to outputs. It can be easily verified that the
interactions pqr, pqrst, and pqrstu happen, respectively,
on every second, fourth, and eighth occurrence of an
input interaction through the port p.

2.2 Modeling Parallel Composition Operators in BIP

The composition operator, introduced in Section 2.1, can
express the usual parallel composition operators, such as
the ones used in CSPs [12] and CCS [13]. Indeed, both CCS
and CSPs can be given SOS-style operational semantics:
Individual processes are represented by labeled transition
systems, whereas parallel composition operators restrict the
transitions of product transition systems. In BIP, parallel
composition operators of these process algebras are
expressed as presented below.

2.2.1 Communicating Sequential Processes

In CSPs [12], components can communicate over a set of
channels, common to the system. Full semantics of CSPs can
be found in [14, chapter 7]. We will limit ourselves to the
most essential case.

Atomic components (processes) in CSPs can be con-
sidered as labeled transition systems defined as triples
ðQ;C;!Þ, where Q is the set of states, C is the set of
communication channels, and !� Q� C �Q is the set of
state transitions labeled by channels from C.

Thus, for two components Bi ¼ ðQi; C;!iÞ with i ¼ 1; 2

and a subset C0 � C, parallel composition B1kC0B2 can be
defined by the following rules, where we assume qi; q

0
i 2 Qi

for i ¼ 1; 2. For any c 2 C0,

q1 !1
c
q01 ^ q2 !2

c
q02

q1k
C0
q2 !

c
q01kC0 q

0
2

;

whereas, for any c 2 C n C0,

q1 !1
c
q01

q1k
C0
q2 !

c
q01kC0 q2

and
q2 !2

c
q02

q1k
C0
q2 !

c
q1k

C0
q02
:

To construct an equivalent system in BIP, we consider

two components fBi ¼ ðQi;Bi � C;!iÞ, with Bi � C ¼
def fBi �

c j c 2 Cg for i ¼ 1; 2. The corresponding interaction model

is then

�
CSP
¼
n
fB1 � c; B2 � cg

��� c 2 C0o [nfB1 � cg
���c 62 C0o

[
n
fB2 � cg

��� c 62 C0o:
2.2.2 Calculus of Communicating Systems

In CCS [13], all communications are performed by binary

interactions between complementary actions a and a. Let A

be the set of actions and L ¼ A [A [f�g be the set of labels,

where � represents an internal (nonobservable transition).
For two components Bi ¼ ðQi; L;!iÞ, with i ¼ 1; 2, the

parallel composition B1kB2 is defined by the following

rules, where we assume qi, q
0
i 2 Qi for i ¼ 1; 2 and a 2 A:

q2 !2
l
q02; l 2 fa; ag

q1k q2 !
l
q1k q02

;
q1 !1

l
q01; l 2 fa; ag

q1k q2 !
l
q01k q2

;

and

q1 !1
a
q01 ^ q2 !2

a
q02

q1k q2 !
�
q01k q02

:

Another important operator in CCS is the restriction

B n a, which excludes a given action from communication.

In ðB1kB2Þ n a, restriction enforces synchronization on a

between B1 and B2.
As in Section 2.2.1, we model this by considering two

components fBi ¼ ðQi;Bi � L;!iÞ, with Bi � L ¼
def fBi � l j l 2

Lg for i ¼ 1; 2. A set of interactions corresponding to B1kB2

is then

�
CCS;1
¼
n
fBi � a;B3�i � ag

��� i ¼ 1; 2
o
[
n
fB1 � lg

��� l 2 Lo
[
n
fB2 � lg

��� l 2 Lo:
The only modification to do in order to account for the

restriction in ðB1kB2Þ n a is to then exclude a and a from

possible singleton interactions. Thus, we set

�
CCS;2
¼
n
fBi � a;B3�i � ag

��� i ¼ 1; 2
o

[
n
fB1 � lg

��� l 2 L n fa; ago [nfB2 � lg
��� l 2 L n fa; ago:

3 THE ALGEBRA OF INTERACTIONS

3.1 Syntax, Axiomatization, and Semantics

Consider a family of components, indexed by I and equipped

with sets of ports Pi, for i 2 I, through which they can

interact. The communication model considered implies

atomic synchronization of all ports participating in a given

interaction. Therefore, each interaction is represented by the

set of ports that it involves. Accordingly, each element in the

Algebra of Interactions, which we define below, should be

considered as a set of possible interactions.
Syntax. Let P ¼ [i2IPi be a set of all ports of the system,

and assume that 0; 1 62 P . The syntax of the Algebra of

Interactions, AIðP Þ, is defined by

x ::¼ 0 j 1 j p j x � x j xþ x j ðxÞ; ð3Þ

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

with p 2 P as an arbitrary port and where “þ” and “�” are

binary operators, respectively, called union and synchroniza-

tion. Synchronization binds stronger than union.
Axioms. The operations satisfy the following axioms:

1. Union “þ” is idempotent, associative, and com-
mutative and has an identity element 0, i.e.,
ðAIðP Þ;þ; 0Þ is a commutative monoid.

2. Synchronization “�” is idempotent, associative, and
commutative and has an identity element 1 and an
absorbing element 0; synchronization distributes
over union, i.e., ðAIðP Þ;þ; �; 0; 1Þ is a commutative
semiring.

Semantics. The semantics of AIðP Þ is given by the

function k � k : AIðP Þ ! 22P , defined by

k0k ¼ ;; k1k ¼ f;g; kpk ¼
n
fpg
o
; for any p 2 P;

kx1 þ x2k ¼ kx1k [kx2k;

kx1 � x2k ¼
n
a1 [a2

��� a1 2 kx1k; a2 2 kx2k
o
;

kðxÞk ¼ kxk

ð4Þ

for x; x1; x2 2 AIðP Þ. Terms of AIðP Þ represent sets of

interactions between the ports of P .

Proposition 3.1. The axiomatization of AIðP Þ is sound and

complete. For any x; y 2 AIðP Þ,

x ¼ y() kxk ¼ kyk:

Proof. Both the soundness and completeness proofs are

straightforward. The latter is obtained by flattening the

elements, applying the distributivity, and verifying that

the normal forms obtained in this way for elements

having the same sets of interactions coincide. tu

Example 3.2 (Sender/Receiver continued). In AIðP Þ, the
interaction sets for the four coordination schemes of
Example 2.5 are represented by the elements in the first
column of Table 2. Clearly, this representation is more
compact and exhibits more information: e.g., the
expression ð1þ riÞ suggests that the port ri is optional.

3.2 Correspondence with Boolean Functions

AIðP Þ can be bijectively mapped to the free Boolean
algebra IB½P � generated by P . We define a mapping � :
AIðP Þ ! IB½P � by setting

�ð0Þ ¼ false; �ðxþ yÞ ¼ �ðxÞ _ �ðyÞ;

�ð1Þ ¼
^
p2P

p; �ðpi1 . . . pikÞ ¼
k̂

j¼1

pij ^
^
i6¼ij

pi;

for pi1 ; . . . pik 2 P and x; y 2 AIðP Þ, where, in the right-
hand side, the elements of P are considered to be Boolean
variables. For example, consider the correspondence table
for P ¼ fp; qg shown in Table 3.

The mapping � is an order isomorphism and each
expression x 2 AIðP Þ represents exactly the set of
interactions corresponding to Boolean valuations of P
satisfying �ðxÞ.

Although techniques specific to Boolean algebras can be
applied to the Boolean representation of AIðP Þ (e.g.,
BDDs), AIðP Þ provides a more natural representation of
interactions:

1. Representation in AIðP Þ is more intuitive as it
directly give all of the interactions. For example, the
term pþ pq of AIðP Þ represents the set of interac-
tions fp; pqg for any set of ports P containing p and
q. The Boolean representation of pþ pq depends on
P : If P ¼ fp; qg, then �ðpþ pqÞ ¼ p, whereas if
P ¼ fp; q; r; sg, then �ðpþ pqÞ ¼ p�r�s.

2. Synchronization of two interactions in AIðP Þ is by
simple concatenation, whereas, for their Boolean
representation, there is no simple context-indepen-
dent composition rule, e.g., to obtain the representa-
tion of pq from �ðpÞ ¼ p�q�r�s and �ðqÞ ¼ �pq�r�s.

4 THE ALGEBRA OF CONNECTORS

We provide an algebraic formalization of the concept of
connector, supported by the BIP language [6]. Connectors
can express complex coordination schemes combining
synchronization by rendezvous and broadcast.

BLIUDZE AND SIFAKIS: THE ALGEBRA OF CONNECTORS— STRUCTURING INTERACTION IN BIP 5

TABLE 2
AIðP Þ and ACðP Þ Representation

of Basic Coordination Schemes

TABLE 3
Correspondence between AIðfp; qgÞ and Boolean Functions with Two Variables

4.1 Syntax, Axioms, and Semantics

Syntax. Let P be a set of ports, such that 0; 1 62 P . The syntax
of the Algebra of Connectors, ACðP Þ, is defined by

s ::¼ ½0� j ½1� j ½p� j ½x� ðsynchronsÞ
t ::¼ ½0�0 j ½1�0 j ½p�0 j ½x�0 ðtriggersÞ
x ::¼ s j t j x � x j xþ x j ðxÞ;

ð5Þ

for p 2 P , and where “þ” and “�” are binary operators,

respectively, called union and fusion, and brackets “½��” and

“½��0” are unary typing operators. Fusion binds stronger than

union.
Union has the same meaning as union in AIðP Þ. Fusion

is a generalization of the synchronization in AIðP Þ. Typing
is used to form typed connectors: “½��0” defines triggers
(which can initiate an interaction) and “½��” defines
synchrons (which need synchronization with other ports in
order to interact).

Definition 4.1. A term x 2 ACðP Þ is a monomial iff it does not

involve a union operator.

Notation 4.2. We write ½x��, for � 2 f0; 1g, to denote a typed

connector. When � ¼ 0, the connector is a synchron;

otherwise, it is a trigger. When the type is irrelevant, we

write ½��	.
In order to simplify the notation, we will omit brackets on

0, 1, and ports p 2 P , as well as “�” for the fusion operator.

Definition 4.3. For any term x of the form
Q

i2I ½xi�
	, we denote

by #x the number of its trigger elements, which we call the

degree of x.

In general, for an expression x ¼
Pn

i¼1 xi, where all xi
have the form above, we define #x ¼def maxf#xi j i 2 ½1; n�g.
We say that x has a strictly positive degree iff

minf#xi j i 2 ½1; n�g > 0.

The algebraic structure on ACðP Þ inherits most of the

axioms from AIðP Þ. However, it should be noted that

associativity of fusion does not hold when typing is

applied instead of simple grouping, e.g., equality does

not hold for any pair of ½x�½y�½z�, ½x� ½y�½z�½ �, and ½x�½y�½ �½z�,
for x; y; z 2 ACðP Þ.

Axioms (AC1). The operators satisfy the following

axioms:

1. Union “þ” is associative, commutative, and idem-
potent and has an identity element [0].

2. Fusion “�” is associative, commutative, and distri-
butive and has an identity element [1]. It is
idempotent on monomial connectors, i.e., for any
monomial x 2 ACðP Þ, we have x � x ¼ x.

3. Typing “½��	” satisfies the following axioms, for
x; y; z 2 ACðP Þ and �; � 2 f0; 1g:

a. ½0�0 ¼ ½0�,
b. ½x��½ ��¼ ½x�� ,
c. ½xþ y�� ¼ ½y�� þ ½x��, and
d. ½x�0½y�0 ¼ ½x�0½y� þ ½x�½y�0.

Lemma 4.4. For an arbitrary family fxigni¼1 � ACðP Þ, the

following equality holds:

Yn
i¼1

½xi�0 ¼
Xn
i¼1

½xi�0 �
Yn
i6¼j
½xj�

 !
:

Proof. This is a direct consequence of axiom 3d. tu

Notice that, by application of the above lemma, it is

possible to reduce the degree of the terms to one. For

example, consider a connector between two independent

senders and three receivers s01s
0
2½r1 þ r2r3�. This connector is

equal to s01s2½r1 þ r2r3� þ s1s
0
2½r1 þ r2r3�.

Semantics. Clearly, any element of ACðP Þ can be

uniquely rewritten, by associativity and distributivity, in

a form without parentheses. The semantics of ACðP Þ is then

given in terms of the Algebra of Interactions AIðP Þ by the

function j � j : ACðP Þ ! AIðP Þ, defined by the rules

j½p�j ¼ p; for p 2 P [f0; 1g; ð6Þ

jx1 þ x2j ¼ jx1j þ jx2j; ð7Þ

Yn
i¼1

½xi�
�����

����� ¼Yn
i¼1

jxkj; ð8Þ

Yn
i¼1

½xi�0 �
Ym
j¼1

½yj�
�����

����� ¼Xn
i¼1

jxij �
 Y

k 6¼i

�
1þ jxkj

�
; ð9Þ

�
Ym
j¼1

�
1þ jyjj

�!
; ð10Þ

for x; x1; . . . ; xn; y1; . . . ; ym 2 ACðP Þ. Rules (8) and (9) are

applied to the maximal fusion terms.

Notice that, through the semantics of AIðP Þ, connectors

represent sets of interactions. The interaction semantics k � k :

ACðP Þ ! 22P is defined by composing j � j : ACðP Þ !
AIðP Þ and k � k : AIðP Þ ! 22P .

Rule (9) can be decomposed in two steps: 1) the

application of Lemma 4.4, for reducing the degree of all

terms to one, and 2) the application of rule (9) for n ¼ 1,

expressing the fact that the single trigger in each term must

participate in all interactions, while synchrons are optional.

Compare Example 4.8 in the following section with

Example 2.5 and Example 3.2.

Example 4.5. Consider a system consisting of two Senders

with ports s1, s2 and three Receivers with ports r1, r2, r3.

The meaning of the connector s01s
0
2½r1 þ r2r3� is computed

as follows:

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

js01 s02 ½r1 þ r2 r3�j ¼

¼ð9Þ js1j ð1þ js2jÞ ð1þ jr1 þ r2 r3jÞ
þ js2j ð1þ js1jÞ ð1þ jr1 þ r2 r3jÞ

¼ð7Þ js1j ð1þ js2jÞ ð1þ jr1j þ jr2 r3jÞ
þ js2j ð1þ js1jÞ ð1þ jr1j þ jr2 r3jÞ

¼ð8Þ js1j ð1þ js2jÞ ð1þ jr1j þ jr2j jr3jÞ
þ js2j ð1þ js1jÞ ð1þ jr1j þ jr2j jr3jÞ

¼ð6Þ s1 ð1þ s2Þ ð1þ r1 þ r2 r3Þ
þ s2 ð1þ s1Þ ð1þ r1 þ r2 r3Þ;

which corresponds to exactly the set of all possible
interactions containing at least one of s1 and s2 and
possibly either r1 or both r2 and r3.

Proposition 4.6. The axiomatization of ACðP Þ is sound, that is,
for x; y 2 ACðP Þ,

x ¼ y ¼) jxj ¼ jyj: ð11Þ

Proof. As rules (8) and (9) are applied to maximal fusion
terms, to prove this proposition, we have to verify that
all of the axioms preserve the semantics in any fusion
context, i.e., for an axiom x ¼ y and arbitrary z 2 ACðP Þ,
we have to verify that jxzj ¼ jyzj. However, it is clear
that it is sufficient to verify this property only for
monomial z, which is straightforward. tu

Definition 4.7. Two connectors x; y 2 ACðP Þ are equivalent

(denoted x ’ y) iff they have the same sets of interactions, i.e.,

x ’ y()
def
jxj ¼ jyj.

In Section 5, we show that this equivalence relation is not
a congruence, which implies that there is no complete
axiomatization for the semantics j � j.

4.2 Examples

The typing operator induces a hierarchical structure. Con-
nectors can be represented as sets of trees, having ports at
their leaves. Indeed, by distributivity of fusion and typing
over union, each connector can be represented as a union of
monomial connectors. The latter can be in turn represented
by their parse trees. We use triangles and circles to represent
types: triggers and synchrons, respectively.

Example 4.8 (Sender/Receiver continued). In ACðP Þ, the
interaction sets for the four coordination schemes of
Example 2.5 are represented by the elements in the
second column of Table 2.

Notice that ACðP Þ allows compact representation of
interactions and, moreover, explicitly captures the
difference between broadcast and rendezvous. The
graphical representations of the four connectors are
shown in Fig. 4.

The distinction between parentheses “ð�Þ” and the typing

operator “½��	” is important, as shown by the following

example.

Example 4.9. Consider two terms p0ða0cþ bÞ and p0½a0cþ b�
of ACðP Þ. For the first term, we have

jp0 ða0 cþ bÞj ¼ jp0 a0 cþ p0 bj
¼ p ð1þ aÞ ð1þ cÞ þ a ð1þ pÞ ð1þ cÞ þ p ð1þ bÞ
¼ pþ p aþ p cþ p a cþ aþ a cþ p b;

whereas, for p0½a0cþ b�, we have

jp0 ½a0 cþ b�j ¼ jpj ð1þ ja0 cþ bjÞ ¼ p ð1þ aþ a cþ bÞ
¼ pþ p aþ p a cþ p b:

Example 4.10 (Broadcast). For the broadcast connector

s0r1r2r3 (Fig. 4b, reproduced in Fig. 5a), we have

js0 r1 r2 r3j ¼ sð1þ r1Þð1þ r2Þ ð1þ r3Þ:

This connector can be constructed incrementally. For
example, one can start from the connector s0r1, having
js0r1j ¼ sð1þ r1Þ. By typing this connector as a trigger
and adding the synchron r2, we obtain

j½s0 r1�0 r2j ¼ js0 r1j ð1þ jr2jÞ ¼ s ð1þ r1Þ ð1þ r2Þ:

Connecting r3 in a similar manner gives ½½s0r1�0r2�0r3

(Fig. 5b). The two connectors are equivalent:

j½½s0 r1�0 r2�0 r3j ¼ s ð1þ r1Þ ð1þ r2Þ ð1þ r3Þ:

It is easy to verify that another incremental construc-
tion results in the equivalent connector ½s0r1�0½r02r03�
(Fig. 5c).

Example 4.11 (Modulo-8 counter). In the model shown in

Fig. 6, the causality chain pattern (cf. Fig. 4d) is applied

to connectors p, qr, st, and u. Thus, the interactions of the

modulo-8 counter in Fig. 3b are also modeled by a single

structured connector p0 ½qr�0½½st�0u�
� �

:

p0 ½q r�0
h
½s t�0 u

ih i��� ��� ¼ pþ p q rþ p q r s tþ p q r s t u:
4.3 Subalgebras

The subsets of the terms of ACðP Þ, involving only triggers

or synchrons, define two subalgebras: the Algebra of Triggers

AT ðP Þ and the Algebra of Synchrons ASðP Þ. The terms of

BLIUDZE AND SIFAKIS: THE ALGEBRA OF CONNECTORS— STRUCTURING INTERACTION IN BIP 7

Fig. 4. Graphical representation of connectors.

Fig. 5. Three connectors realizing a broadcast.

these algebras model, respectively, coordination by ren-
dezvous and by broadcast.

4.3.1 The Algebra of Synchrons

First, we consider the subalgebra ACSðP Þ � ACðP Þ gener-
ated by the restriction to synchrons of the syntax (5):

s ::¼ ½0� j ½1� j ½p� j ½x�
x ::¼ s j x � x j xþ x j ðxÞ:

ð12Þ

ACSðP Þ inherits the axioms of ACðP Þ and, consequently,
fusion of typed connectors is also nonassociative. The
Algebra of Synchrons ASðP Þ is obtained by adding to the
axioms of ACSðP Þ the following axiom:h

½x� ½y�
i
½z� ¼ ½x� ½y� ½z� ¼ ½x�

h
½y� ½z�

i
ðASSOCÞ: ð13Þ

Thus, in ASðP Þ ¼def ACSðP Þ=ASSOC, fusion is also associa-
tive on typed connectors (i.e., when brackets are used for
grouping instead of parentheses) and satisfies the same
axioms as synchronization in AIðP Þ. Consequently, drop-
ping the brackets in the elements of ASðP Þ immediately
provides an isomorphism with AIðP Þ.
Proposition 4.12. The axiomatization of ASðP Þ is sound and

complete.

Proof. This proposition follows from the associativity of
synchronization in AIðP Þ and the rule (8) in the
definition of the semantics of ACðP Þ. tu

4.3.2 The Algebra of Triggers

Similarly to Section 4.3.1, we consider the subalgebra
ACT ðP Þ � ACðP Þ generated by the restriction of syntax (5)
to triggers:

t ::¼ ½0�0 j ½1�0 j ½p�0 j ½x�0

x ::¼ t j x � x j xþ x j ðxÞ:
ð14Þ

Although the algebraic structure on ACT ðP Þ is inherited
from ACðP Þ in very much the same way as that of ACSðP Þ,
there is a slight but important difference that has to be
observed here. Indeed, as ½1� 62 ACT ðP Þ, the identity
element for fusion is ½0�0 (cf. Corollary 5.5 in Section 5.1).

As in the case of ACSðP Þ, fusion of typed connectors is

nonassociative in ACT ðP Þ. Again, we consider a quotient

algebra AT ðP Þ ¼def ACT ðP Þ=ASSOC0 obtained by adding to

the axioms of ACT ðP Þ the axiomh
½x�0 ½y�0

i0
½z�0 ¼ ½x�0 ½y�0 ½z�0 ¼ ½x�0

h
½y�0 ½z�0

i0
ðASSOC0Þ;

where x; y; z 2 ACT ðP Þ.

Proposition 4.13. The axiomatization of AT ðP Þ is sound. It

becomes complete with the additional axiom

½x�0 y ¼ ½x�0 yþ ½x�0: ð15Þ

Proof. The soundness of this axiomatization follows from
Corollaries 5.5 and 5.7.2, which are obtained in Sec-
tion 5.1, the idempotence of union and synchronization
in AIðP Þ, and rule (9). The completeness is proven by
showing that the associativity of fusion and the absorp-
tion axiom (15) allow one to define a normal form,
coinciding for equivalent terms. tu
We have so far defined six algebras on a given set of ports

P : AIðP Þ, ASðP Þ, AT ðP Þ, ACSðP Þ, ACT ðP Þ, and ACðP Þ,
which are related as shown in Fig. 7. In this diagram, “� ” is
the set inclusion and “< � > ” represents the projections of
ACSðP Þ (respectively, ACT ðP Þ) on ASðP Þ (respectively,
AT ðP Þ) induced by associativity. The arrows from ACðP Þ
to AIðP Þ define the semantics of ACðP Þ in terms of
interactions. The remaining arrows (AT ðP Þ ! AIðP Þ and
the dashed ones) are obtained by commutative closure of
the existing ones.

5 CONGRUENCE RELATION ON ACðP Þ
Observe that, in general, two equivalent terms are not
congruent in the sense that one cannot be substituted for
another in certain contexts. For example, p0 ’ p, but
p0 q 6’ p q, for p; q 2 P .

Definition 5.1. We denote by “ffi ” the largest congruence

relation contained in ’ , that is, the largest relation satisfying

the following, for x; y 2 ACðP Þ and z 62 P :

x ffi y ¼) 8E 2 ACðP [fzgÞ; Eðx=zÞ ’ Eðy=zÞ; ð16Þ

where Eðx=zÞ denotes the expression obtained from E by

replacing all occurrences of z by x.

In the following sections, we provide a characterization
of the congruence relation in terms of semantic equivalence,
as well as its complete axiomatization.

5.1 Characterization of the Congruence Relation

Proposition 5.2. Similarly typed semantically equivalent

elements are congruent, i.e., for any two connectors x; y 2
ACðP Þ and any � 2 f0; 1g, we have

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

Fig. 6. Modulo-8 counter.

Fig. 7. Hierarchy of algebras.

x ’ y()½x�� ffi ½y��: ð17Þ

Proof. The right-to-left implication is trivial. To prove the

left-to-right implication, by definition of the congruence

“ffi ,” we have to show that, for any expression

E 2 ACðP [fzgÞ, we have Eðx=zÞ ’ Eðy=zÞ. Without

loss of generality, we can assume that z only occurs

once in E. Due to the distributivity of fusion and typing

over union, it is sufficient to prove the implication

x ’ y ¼) ½x�� � w ’ ½y�� � w ð18Þ

for any monomial w 2 ACðP Þ and any typing � 2 f0; 1g.
Applying this argument iteratively, we will obtain the

required equivalence Eðx=zÞ ’ Eðy=zÞ.
Let us now prove (18) under the assumptions

above. By symmetry, it is sufficient to prove that
k ½x�� � w k � k ½y�� � w k, i.e., for any interaction
a 2 k ½x�� � w k, we also have a 2 k ½y�� � w k.

We have to consider four different cases according to
the value of � and the degree #w:

1. � ¼ 0, #w ¼ 0,
2. � ¼ 1, #w ¼ 0,
3. � ¼ 0, #w > 0, and
4. � ¼ 1, #w > 0.

Notice that case 4 follows from cases 2 and 3 by
application of the reduction axiom (3d) (or, equivalently,
Lemma 4.4). The proofs of the other three cases are
similar. Here, we prove case 3. The other two cases can
be treated in the same way. Taking � ¼ 0 and #w > 0,
we have to show that, for any a 2 k ½x� � w k, we also
have a 2 k ½y� � w k.

From the definition of the interaction semantics “k � k”
of ACðP Þ, we deduce that a can be decomposed as a ¼
a1 [a2 for some a1 2 kxk or a1 ¼ ; and a2 2 kwk. If
a1 6¼ ;, we deduce from x ’ y that a1 2 kyk and, conse-
quently, a ¼ a1 [a2 2 k ½y� � wk, which ends the proof. tu

Lemma 5.3. For x; y 2 ACðP Þ, x ffi y iff xz ’ yz, for all

monomials z 2 ACðP Þ.
Proof. Follows directly from Definition 5.1 and Proposi-

tion 5.2. tu
Theorem 5.4. Letting x; y 2 ACðP Þ be two nonzero monomial

connectors, we then have

x ffi y()
x ’ y
x � 10 ’ y � 10
#x > 0, #y > 0:

8<: ð19Þ

Proof. The left side obviously implies the right side: The

third condition is obtained by comparing x � p � q and

y � p � q, where p; q 2 P are two ports participating neither

in x nor in y. Therefore, we only have to show that the

three conditions on the right-hand side imply x ffi y.

By Lemma 5.3, it is sufficient to show that, for any

monomial term z 2 ACðP Þ, we have x � z ’ y � z. As both

x and y are also monomials, we have, for some fxigni¼1,

fyigmi¼1, and fzigli¼1 in ACðP Þ and some typing f�igni¼1,

f�igmi¼1, and f�igli¼1 in f0; 1g,

x � ½x1��1 � . . . � ½xn��n ; y � ½y1��1 � . . . � ½ym��m ;
z � ½z1��1 � . . . � ½zl��l :

ð20Þ

As in Proposition 5.2, we have to consider four cases

according to the degrees of x, y, and z. However, the

case, where all three degrees are positive, can be derived

from the other three.
In each case, we have to show that kxzk ¼ kyzk.

However, by symmetry, it is sufficient to show that
kxzk � kyzk, i.e., for an arbitrary interaction a 2 kx zk,
we also have a 2 ky zk.

Case 1 ð#x ¼ #y ¼ #z ¼ 0Þ. By the definition of
interaction semantics “k � k” of ACðP Þ, there exist a0 2
kxk and a1 2 kzk such that a ¼ a0 [a1. Recall now that
x ’ y and, consequently, we also have a0 2 kyk, which
immediately implies a 2 ky zk.

Case 2 ð#x;#y > 0;#z ¼ 0Þ. There exist a0 2 kxk and
a family fai 2 kzikgi2I indexed by some I � ½1; l� such
that a ¼ a0 [

S
i2I ai. As above, we deduce that a0 2 kyk

and, consequently, a 2 kyzk, as we also have #y > 0.
Case 3 ð#x ¼ #y ¼ 0;#z > 0Þ. Similarly to the pre-

vious case, there exist a0 2 kzk and a family fai 2 kxikgi2I
indexed by some I � ½1; n� such that a ¼ a0 [

S
i2I ai.

Rewriting x � 10 as a sum of terms of degree one (cf.
Lemma 4.4), we have

x � 10 ¼
X
k2T ðxÞ

½xk�0
Yn
j¼1
j6¼k

½xj� þ 10
Yn
j¼1

½xj� ’
X
J�½1;n�

Y
j2J
½xj�

and similarly for y � 10.
By the choice of ai, we have

[
i2I
ai 2

Y
i2I
½xi�

�����
����� � kx � 10k ¼ ky � 10k;

and there exists J � ½1;m� such that
S
i2I ai 2 k

Q
j2J ½yj�k.

Hence, a ¼ a0 [
S
i2I ai 2 kz �

Q
j2J ½yj�k � ky � zk. tu

The following two corollaries are used for the axioma-

tization of the Algebra of Triggers, defined in Section 4.3.2.

Corollary 5.5. For x 2 ACðP Þ such that #x > 0, we have

x � 00 ffi x.

Proof. For monomials, the proof is straightforward and

consists of applying the procedure described in the

previous sections to verify that both x � 00 ’ x and

x � 00 � 10 ’ x � 10. The condition that the degrees of both

sides are simultaneously nonzero is guaranteed by the

assumption of the lemma. In the general case, we apply

distributivity, observing that all monomials also have

nonzero degrees. tu
Note 5.6. Notice that the proof above does not make use of the fact

that x and y are monomials. Indeed, it is sufficient to require

that they have the form (20). Theorem 5.4 can also be easily

generalized to arbitrary x and y having strictly positive degree

(recall Definition 4.3).

Corollary 5.7. For any x; y; z 2 ACðP Þ, we have

1. ½x�0 ½y� ½z� ffi ½x�0 ½½y�0 ½z�0� and
2. ½x�0 ½y�0 ffi ½½x�0 ½y�0�0.

BLIUDZE AND SIFAKIS: THE ALGEBRA OF CONNECTORS— STRUCTURING INTERACTION IN BIP 9

5.2 Complete Axiomatization of the Congruence
Relation

Congruence relation ffi is the largest congruence relation
respecting the semantics of AIðP Þ. Therefore, it is clear that
the axiomatization given in Section 4.1 is sound with
respect to this relation (i.e., we have x ¼ y) x ffi y, for any
x, y 2 ACðP Þ). However, it is easy to verify that it is not
complete, e.g., by considering Proposition 5.2. We now
extend this axiomatic system to provide a complete
axiomatization of ffi .

Axioms (AC2). The operators satisfy the following
axioms:

1. Union “þ” is associative, commutative and idem-
potent and has the identity element [0].

2. Fusion “�” is associative, commutative, and distri-
butive and has an identity element [1]. It is
idempotent on monomial connectors, i.e., for any
monomial x 2 ACðP Þ, we have x � x ¼ x.

3. Typing “½��	” satisfies the following axioms, for
x; y; z 2 ACðP Þ and �; � 2 f0; 1g:

a. ½0�0 ¼ ½0�,
b. ½½x���� ¼ ½x��, and
c. ½xþ y�� ¼ ½x�� þ ½y��.

4. For x; y; z 2 ACðP Þ and � 2 f0; 1g, we have

a. ½x�0½0� ¼ ½x�0,
b. ½½x�½0��� ¼ ½0�,
c. ½x�0 þ ½x� ¼ ½x�0,
d. ½x�0½y�0 ¼ ½x�0½y� þ ½y�0,
e. ½x�0½y�½z� ¼ ½x�0½½y�0½z�0�,
f. ½x�0½y� ¼ ½½x�0½y��0 þ ½0�0½y�,
g. ½x�½y� ¼ ½½x�½y�� þ ½0�0½x�½y�,
h. ½½x�0½y��� ¼ ½x�� þ ½½x�½y���, and
i. ½½½x�½y��½z��� ¼ ½½x�½y�½z���.

Lemma 5.8. For x; y 2 ACðP Þ and � 2 f0; 1g, ½x�0½y�� þ ½x�0 ¼
½x�0½y�� holds.

Proof. For � ¼ 0, we have

½x�0 ½y� þ ½x�0 ¼ð4fÞ
h
½x�0 ½y�

i0
þ ½0�0 ½y� þ ½x�0

¼ð4hÞ ½x�0 þ
h
½x� ½y�

i0
þ ½0�0 ½y� þ ½x�0

¼ ½x�0 þ
h
½x�0 ½y�

i0
þ ½0�0 ½y�

¼ð4hÞ
h
½x�0 ½y�

i0
þ ½0�0 ½y� ¼ð4fÞ ½x�0 ½y�:

For � ¼ 1, we have ½x�0½y�0 þ ½x�0 ¼ð4dÞ ½x�½y�0 þ ½x�0 þ ½x�0 ¼
½x�½y�0 þ ½x�0 ¼ð4dÞ ½x�0½y�0. tu
Axioms 4a and 4e correspond to Corollaries 5.5 and

5.7.1, respectively. Axiom 4f generalizes Corollary 5.7.2:

½x�0 ½y�0 ¼ð4fÞ
h
½x�0 ½y�0

i0
þ ½0� ½y�0 ¼ð4aÞ

h
½x�0 ½y�0

i0
þ ½y�0 ¼ð3bÞ

¼ð3bÞ
h
½x�0 ½y�0

i0
þ
h
½y�0
i0
¼ð3cÞ
h
½x�0 ½y�0 þ ½y�0

i0
¼
h
½x�0 ½y�0

i0
;

where the last equality follows from Lemma 5.8. Similarly,

axiom 4d replaces 3d from AC1:

½x�0 ½y�0 ¼ ½x�0 ½y�0 þ ½x�0 ½y�0 ¼ð4dÞ

¼ð4dÞ ½x�0 ½y� þ ½y�0 þ ½x� ½y�0 þ ½x�0 ¼ ½x�0 ½y� þ ½x� ½y�0:
ð21Þ

Axioms 4i and 4h correspond to Proposition 5.2 (cf. (8)

and (9)).

Proposition 5.9. The following properties hold in ACðP Þ for the

equality defined by AC2. For x 2 ACðP Þ and � 2 f0; 1g, we

have

1. ½x�� þ ½x�½0�	 ¼ ½x�� and
2. ½w�0½w� ¼ ½w�0, if w is monomial.

Proof.

1. For � ¼ 0, we have ½x� þ ½x�½0� ¼ ½x�ð½1� þ ½0�Þ ¼
½x�½1� ¼ ½x�. For � ¼ 1, the equality is obtained by
substituting 0 in axiom 4d:

½x�0 þ ½x�½0�0 ¼ð4dÞ ½x�0½0�0 ¼ð4aÞ ½x�0:

2. For monomial w, f rom (21) , we have
½w�0 ¼ ½w�0½w�0 ¼ ½w�0½w� þ ½w�½w�0 ¼ ½w�0½w�. tu

Theorem 5.10. The system AC2 is a sound and complete

axiomatization for the congruence ffi in ACðP Þ: for

x; y 2 ACðP Þ, x ¼ y() x ffi y.

Proof. For axioms 4a, 4b, 4e, 4i, and 4h, the soundness is a

direct consequence of Corollaries 5.5 and 5.7 and

Proposition 5.2, whereas, for axiom 4d, it follows

directly from Theorem 5.4 (cf. Note 5.6). Finally, the

soundness of axioms 4c, 4f, and 4g follows immediately

from Lemma 5.3.
To prove the completeness of AC2, we consider

the transformation rules shown in Table 4, where
x; y; z 2 ACðP Þ, �; � 2 f0; 1g, a n d w 2 ACðP Þ a r e

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

TABLE 4
Rewriting System for the Proof of Completeness of AC2

monomials. These rules assign direction to some
axioms of AC2 and equalities of Proposition 5.9. By
limiting the application of the first two external typing
rules to the maximal fusion (top level) terms and
nonzero x and y, we obtain a terminating and confluent
rewriting system.

To verify that this system is terminating, notice that
the only transformations which decrease neither the
depth of the hierarchy nor the number of triggers in a
given term are the first two external typing transforma-
tions and the grouping of synchrons. However, it is clear
that, with the limitations imposed above on the external
typing, these three transformations can only be applied a
finite number of times.

To verify that this system is confluent, it is sufficient
to observe that, in the final configuration, we obtain the
following form for x 2 ACðP Þ:

x ¼
Xn
i¼1

½xi�0 þ
Xm
i¼1

½yi� þ ½0�0 �
Xl
i¼1

½zi�; ð22Þ

where all xi, yi, and zi are synchronizations of individual

ports from P . The terms of the first summand

correspond to interactions that can be triggered, i.e.,

those that are obtained by synchronization of interac-

tions from subterms of x, at least one of which is a

trigger. The terms of the second summand correspond to

interactions that can only be obtained by a maximal

synchronization of interactions from synchron subterms

of x. Finally, the terms of the third summand represent

interactions that are not possible in x, but are contained

in some of its subterms and which become possible in

the context of a larger connector (e.g., x½1�0).
The same observations imply that, if two connectors

are congruent, after rewriting, their forms (22) coincide.tu

The following example illustrates the application of the

rewriting rules used in the proof above.

Example 5.11. Consider the connector ½pq�0rþ pr 2
ACðfp; q; rgÞ. We then have

½p q�0 rþ p r �!
h
½p q�0 r

i0
þ 00 rþ ½p r� þ 00 p r

�!½p q�0 þ
h
½p q� r

i0
þ 00 rþ ½p r� þ 00 ½p0 r0�

�! ½p q�0 þ ½p q r�0 þ 00 rþ ½p r� þ 00 ½p0 r� þ 00 r

�!½p q�0 þ ½p q r�0 þ ½p r� þ 00 pþ 00 ½p r� þ 00 r

�!½p q�0 þ ½p q r�0 þ ½p r� þ 00 pþ 00 r:

6 APPLICATIONS

The Algebra of Connectors formalizes the concept of

structured connector that is already used in the BIP

language. It finds multiple applications in improving both

the language and its execution engine. The three applica-

tions presented in this section show its expressive power

and analysis capabilities.

6.1 Efficient Execution of BIP

The proposed algebraic framework can be used to enhance
the performance of the BIP execution Engine. The Engine
drives the execution of (the C+ code generated from) a BIP
program. A key performance issue is the computation of
the set of possible interactions of the BIP program from a
given state. The Engine has access to the set of connectors
and the priority model of the program. From a given global
state, each atomic component of the BIP program waits for
an interaction through a set of active ports (ports labeling
enabled transitions) communicated to the Engine. The
Engine computes from the set of all active ports and
connectors the set of maximal interactions involving active
ports. It chooses one of them, computes associated data
transformations, and notifies the components involved in
the chosen interaction.

Currently, the computation of the maximal set of
interactions involves a costly exploration of enumerative
representations for connectors. This leads to a considerable
overhead in execution times. For instance, for an MPEG4
encoder in BIP obtained by componentization of a mono-
lithic C program of 11,000 lines of code, we measured
almost 100 percent of overhead in execution time. We
provide below the principle of a not-yet-implemented
symbolic method which could be used to drastically reduce
this overhead.

Given a set a of active ports, we use the following
algorithm to find the maximal interactions contained in a
connector K (cf. Example 6.1 below):

Step 1. Let fp1; . . . ; pkg be the set of ports that do not
belong to a. Compute Kð0=p1; . . . ; 0=pkÞ (substitute 0 for all
pi, with i ¼ 1; . . . ; k).

Step 2. In the resulting connector, erase all primes to
obtain a term eK 2 AIðP Þ.

Step 3. Consider eK as a star-free regular expression and
build the associated (acyclic) automaton with states labeled
by subinteractions of a. As the synchronization operator in
AIðP Þ is commutative, in the resulting automaton, there is
only one state for all subinteractions that coincide with the
reordering of ports.

Step 4. The final states of the obtained automaton
correspond to maximal enabled interactions within K.

Example 6.1. Suppose that only ports q, r, s, and t are
enabled, compute the maximal interactions of the
connector p0½q½sþ r� þ rq0�0½tþ u�.

Substitute 0 for p and u to obtain

00
h
q ½sþ r� þ r q0

i0
½tþ 0� ¼

h
q ½sþ r� þ r q0

i0
t;

which becomes
h
q½sþ r� þ rq

i
t by erasing the primes.

The associated automaton is

The final states of this automaton correspond to two
interactions, qrt and qst, and it can be easily verified that
those are, indeed, the two maximal interactions in the
given connector, when ports p and u are disabled.

BLIUDZE AND SIFAKIS: THE ALGEBRA OF CONNECTORS— STRUCTURING INTERACTION IN BIP 11

Proposition 6.2. For any term K 2 ACðP Þ and a set a � P of
active ports, the algorithm above computes exactly the set of

maximal enabled interactions in K.

Proof. Clearly, substituting 0 for a given port eliminates
exactly the interactions where this port participates.
Thus, the first step of the algorithm computes the term
representing exactly all of the enabled interactions in K.

In a monomial (sub)term, any active port can
participate in the interaction. As we are interested in
maximal interactions and as the inactive ports have been
eliminated in the previous step, the trigger/synchron
typing becomes irrelevant.

The union operator in AIðP Þ represents a choice
between its two alternatives, which corresponds to
branching in the constructed automaton. Similarly,
synchronization implies that both subinteractions in-
volved must participate, which corresponds to a transition
between two states of this automaton. Consequently, it is
also clear that the final states are exactly those labeled
by the maximal interactions in their respective
branches and, therefore, together form the set of
maximal enabled interactions in K. tu

6.2 The Multishot Semantics

The evaluation of the BIP language on complex case studies
has shown that some coordination schemes need a number
of connectors increasing exponentially with the number of
ports. Nonetheless, these connectors can be obtained by
combination of a reasonably small number of basic
connectors.

To avoid tedious and error prone enumerative specifica-
tion, we propose an extension of the current component
model where a transition of the product component may
involve synchronous execution of interactions from several
connectors. This leads to the notion of d-shot semantics
discussed below.

To motivate the proposed extension, we model the joint
function call inspired by constructs found in languages such
as nesC and Polyphonic C# [15], [16]. A function call for a
function Fi involves two strong synchronizations between
the Caller and the Calleei: 1) through the connector Ki ¼
ci bi to begin the execution of Fi and 2) through the
connector Li ¼ ri fi for finish and return (see Fig. 8 for an
example with two Callees).

Joint function calls involve the computation in parallel of
several functions. The Caller waits for all the invoked
functions to complete their execution. For instance, model-
ing a joint function call for functions F1 and F2 entails a
modification of existing connectors by adding the links in
dashed lines as shown in Fig. 8 to obtain

½b1 c1�0 ½b2 c2�0 ’ b1 c1 þ b2 c2 þ b1 c1 b2 c2:

Depending on the number of ports involved in the call, an

exponential number of connectors can be required. To

avoid connector explosion, we extend the composition

operator of BIP in the following manner.

Definition 6.3. An interconnected system is given by a

pair ðfBigni¼1; fKjgmj¼1Þ, where Bi ¼ ðQi; Pi;!iÞ with

!i� Qi � 2Pi �Qi are components and Kj 2 ACðP Þ with

P ¼
Sn
i¼1 Pi.

For an integer parameter 0 < d � m, the d-shot seman-

tics of ðfBigni¼1; fKjgmj¼1Þ is the system �dðB1; . . . ; BnÞ
defined by applying rule (1) with � ¼ �d, where

�d ¼
PQ

i2I ½Ki�0, with the summation performed over all

subsets I � ½1;m� of cardinality d.

The multishot semantics corresponds to the case where d

is maximal (i.e., d ¼ m).

Notice that �d contains all the interactions obtained by

synchronization of at most d connectors. Thus, in particular,

we have �1 � �2 � � � � � �m.

Note 6.4. In the rest of this section, we implicitly associate the

ACðP Þ-connectors with the corresponding sets of interac-

tions, obtained by applying the semantic function k � k :

ACðP Þ ! 22P (cf. Section 4.1).

The application of rule (1) for the d-shot semantics with

d > 1 requires the nontrivial computation of all of the

possible interactions. For this, the following proposition can

be used.

Proposition 6.5. Let S ¼ ðfBigni¼1; fKjgmj¼1Þ be an intercon-

nected system. For i 2 ½1; n�, we denote Gi ¼
P

qi2Qi
Gqi with

Gqi ¼
P

qi!
a a as the set of all interactions offered by the

component i alone. The set of possible interactions for d-shot

semantics of S is
Qn

i¼1½Gi�0 \ �d.

Notice that
Qn

i¼1½Gi�0 is the set of all of the interactions

offered by the components, whereas �d is the set of

interactions allowed by the d-synchronized connectors.

Therefore, the intersection of the two sets characterizes all

the possible interactions in the system.

Example 6.6 (Causality loop). Consider the interconnected

system shown in Fig. 9, where the transition labeled pþ pq
(respectively, rþ rs) is an abbreviation for two transitions

labeled p and pq (respectively, r and rs). For d ¼ 2

(multishot semantics), the only possible interaction is

½pþ pq�0 ½rþ rs�0 \ ½q r�0 ½p s�0 ¼ p q r s;

which corresponds to a causality loop in the synchro-

nous language terminology [17], [18].

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

Fig. 8. Modeling a joint call of two functions.

Fig. 9. Causality loop.

Notice that, for d ¼ 1, the set of possible interactions is
empty:

½pþ pq�0 ½rþ rs�0 \
�
q rþ p s

�
¼ 0:

Example 6.7 (Modulo-8 counter). For multishot semantics,

the system in Fig. 10 is equivalent to the modulo-8

counter given in Example 4.11 in Section 4.2. The

multishot model is a more natural representation of this

system. Its interactions can be computed by application

of Proposition 6.5:

½pþ p q�0 ½rþ r s�0 ½tþ t u�0 \ p0 ½q r�0 ½s t�0 u0

¼ pþ p q rþ p q r s tþ p q r s t u:

As shown in the above examples, it is important to

compute efficiently the interactions of a system for d-shot

semantics with d > 1. To avoid costly enumerative techni-

ques, we have developed an alternative technique, based

on dependency graph analysis. We illustrate this technique

below by applying it to the modulo-8 counter.
The dependency graph analysis consists of building a

directed acyclic graph, based on relations induced by

connectors between the components of an interconnected

system and labels of the transitions of these components.

The resulting graph allows one to determine the set of

possible interactions in the multishot semantics, without

having to enumerate them explicitly.
For the modulo-8 counter, the interconnected system in

Fig. 10 provides the following relations: p! q (p can trigger

q, i.e., p is a necessary condition for q), r! s, and t! u; on

the other hand, q and r must synchronize, as well as s and t.

All of these relations together are represented by the graph

p! q r! s t! u: ð23Þ

Observe that each path in such a dependency graph

represents a causality chain. The graph in (23) represents

the connector p0½½qr�0½½st�0u��, as shown in Fig. 11 (cf. also

Fig. 6). In general, this technique allows the synthesis of the

connectors of a one-shot model, which is equivalent to a

given multishot model.

6.3 Incremental Decomposition of Connectors

In [7], [9], it has been argued that incrementality, which

means that models can be constructed by adding and

removing components in such a way that the resulting

system is not affected by the order of operations, is an

important property of the system composition.
In Example 4.10, for instance, we have presented the

following incremental construction for the broadcast con-

nector: s0r1r2r3 ’ ½s0r1r2�0r3 ’ ½½s0r1�0r2�0r3.

We studied techniques for computing incremental

decompositions for connectors. These techniques are based

on the iterative application of decompositions as defined by

the following problem.

Problem 6.8 (Decomposition of connectors). Given a

connector K 2 ACðP Þ and a subset of ports P0 � P ,

construct a connector eK �Pn
i¼1 Ki �Ki, with Ki 2 ACðP0Þ

and Ki 2 ACðP n P0Þ, for i ¼ 1; . . . ; n, such that K ’ eK.

Note 6.9. We require that K ’ eK. Indeed, the congruence “ffi ”

is too strong to allow interesting transformations. However,

semantic equivalence “’ ” is sufficient in a large number of

applications as it is transformed into congruence by typing (cf.

Proposition 5.2).

Clearly, it is possible to solve this problem by explicitly

computing all of the interactions of K and, for each

interaction, separating the ports of P0. This involves

exhaustive enumeration of possible interactions and, thus,

leads to a combinatorial explosion of terms. We have

developed two techniques for decomposing connectors,

avoiding this explosion.
Both techniques involve an iterative application of

decompositions. The first technique is based on term

rewriting rules, whereas the second uses the notion of

derivation.

6.3.1 Decomposition by Rewriting Rules

In the context presented above, the connector eK can be

constructed by pushing the group of portsfpigki¼1 through the

hierarchical levels iteratively. This procedure can be sepa-

rated into the following three steps, illustrated in Fig. 12.
Step 1. Grouping the ports fpigki¼1 into a single typed

connector (transition from Fig. 12a to Fig. 12b). More

precisely, we transform a connector of the form

½p1 . . . pkpkþ1 . . . pn�½y�½z� ð24Þ

into another one of the formh
½p1 . . . pk�½pkþ1 . . . pn�

i
½y�½z�; ð25Þ

where, in both cases (as well as in Fig. 12), we simplify the

notation by omitting synchron/trigger typing. Observe that

this transformation is a congruence, as all of the changes are

made inside a typed connector (cf. Proposition 5.2).
Step 2. Grouping the sibling connectors into a single

typed one (transition from Fig. 12b to Fig. 12c). Here, we

continue the transformation by replacing the connector of

the form (25) by an equivalent one of the formh
½p1 . . . pk�½pkþ1 . . . pn�

i h
½y�½z�

i
: ð26Þ

BLIUDZE AND SIFAKIS: THE ALGEBRA OF CONNECTORS— STRUCTURING INTERACTION IN BIP 13

Fig. 10. Multishot modulo-8 counter.
Fig. 11. Synthesized connector for the multishot modulo-8 counter.

Step 3. A rotation pushing the subconnector containing

ports fpigki¼1 one level up (transition from Fig. 12c to Fig. 12d).

This is obtained by substituting the connector constructed in

the previous step by an equivalent one of the form

½p1 . . . pk� ½pkþ1 . . . pn�
h
½y�½z�

ih i
: ð27Þ

In the case where the initial connector considered in Step 1

above is itself a typed subconnector of a more complex

one, we consider the next hierarchical level of the

connector obtained by these transformations. This level

then automatically has the form (25) and, therefore, we

can continue by iteratively applying Steps 2 and 3 until

we reach the top level of the hierarchy, at which moment

we obtain the required connector eK.
To finalize this procedure, we state the three following

lemmas that describe the transformations of the steps

enumerated above in a formal way. The proofs of these

lemmas consist of a straightforward verification that the

corresponding sets of interactions coincide. Therefore, we

skip them here.

Lemma 6.10 (Step 1: Grouping of ports). The following

decomposition rule holds for any ports pi; qj 2 P , where i 2
½1; n� and j 2 ½1;m�, and, for any 1 � l < n and 0 � k � m,

p01 . . . p0n q1 . . . qm ’
’ ½p01 . . . p0l q1 . . . qk�0 � ½p0lþ1 . . . p0n qkþ1 . . . qm�0

þ ½p01 . . . p0l q1 . . . qk�0 � ½q0kþ1 . . . q0m�
þ ½q01 . . . q0k� � ½p0lþ1 . . . p0n qkþ1 . . . qm�0:

ð28Þ

For the two cases where l ¼ n or n ¼ 0, we have,
respectively, the following two equivalences:

p01 . . . p0n q1 . . . qm ’ ½p01 . . . p0n q1 . . . qk�0½q0kþ1 . . . q0m�;
q1 . . . qm ’ ½q1 . . . qk�½qkþ1 . . . qm�:

Lemma 6.11 (Step 2: Grouping of siblings). Let fxigni¼0 be a

family of arbitrary elements of ACðP Þ and f�igni¼1 be a

corresponding f0; 1g-typing such that �k ¼ 1 for at least one

k 2 ½1; n�. Then, the following four properties hold:

½x0�
Yn
i¼1

½xi� ’ ½x0�
Yn
i¼1

½xi�
" #

; ð29Þ

½x0�0
Yn
i¼1

½xi� ’ ½x0�0
Yn
i¼1

½xi�0
" #

; ð30Þ

½x0�
Yn
i¼1

½xi��i ’ ½x0�
Yn
i¼1

½xi��i
" #0

; ð31Þ

½x0�0
Yn
i¼1

½xi��i ’ ½x0�0
Yn
i¼1

½xi��i
" #0

þ
Y
i2S
½xi�0

" # !
; ð32Þ

where, in the last one, we put S ¼ fi 2 ½1; n� j �i ¼ 0g.
Lemma 6.12 (Step 3: Rotation). For arbitrary connectors
x; y; z 2 ACðP Þ and types �; �; �; � 2 f0; 1g, the following
equivalence holds:h

½x��½y��
i�
½z�� ’ ½x���

h
½y��½z��

i
þ w;

with

w ¼
0; if � ¼ 0 and � ¼ 0;
z; if � ¼ 0 and � ¼ 1;
½y��½z��; if � ¼ 1:

8<:
6.3.2 Decomposition by Derivation

Theorem 6.13. Let p 2 P be an arbitrary port and K 2 ACðP Þ
be a connector. Then, there exists a unique dK=dp 2
AIðP n fpgÞ such that

K ’ p � dK
dp

� 	
þ Kð0=pÞ; ð33Þ

where Kð0=pÞ denotes the connector obtained by substituting
all occurrences of p in K by 0 (to simplify the notation, below
we write Kð0Þ instead of Kð0=pÞ).

Proof. It is, indeed, sufficient to consider the flattened term
jKj 2 AIðP Þ of the connector K. This term jKj is a union
of interactions that can be regrouped in two parts
according to whether they contain p or not, thus proving
the theorem. tu

Definition 6.14. We call the connector dK=dp in (33) the
derivative of K with respect to p.

Observe that Theorem 6.13 ensures the uniqueness of
such decomposition in AIðP Þ.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

Fig. 12. Hierarchical connector transformation.

Proposition 6.15. For K;K1; K2 2 AIðP Þ, �; � 2 f0; 1g, and
p 2 P , the derivative has the following properties:

1. Kð1Þ ’ dK
dp þKð0Þ,

2. K 2 ACðP n fpgÞ) dð½p��KÞ
dp ’ ½1��K,

3. d
dp ðK1 þK2Þ ’ dK1

dp þ
dK2

dp , and

4. d
dp ð½K1��½K2��Þ ’ ½dK1

dp �
�½K2ð1Þ� þ ½K1ð1Þ�½dK2

dp �
�,

where Kð1Þ ¼def Kð1=pÞ.
Proof. Only property 4 is nontrivial. First, let us prove it for

the case � ¼ 0 and � ¼ 0. We have, by definition of
derivative and by Proposition 5.2, the following:

½K1�½K2� ’ p
h dK1

dp

i
þK1ð0Þ

� 	
p
h dK2

dp

i
þK2ð0Þ

� 	
’ p
h dK1

dp

ih dK2

dp

i
þ p
h dK1

dp

i
½K2ð0Þ�

þ p
h dK2

dp

i
½K1ð0Þ� þ ½K1ð0Þ�½K2ð0Þ�:

Adding, by idempotence of the union, a second copy of
the first summand in the right-hand side and regrouping
again, we obtain

½K1�½K2� ’ p
h dK1

dp

i h dK2

dp

i
þ ½K2ð0Þ�

� 	
þ p
h dK2

dp

i h dK1

dp

i
þ ½K1ð0Þ�

� 	
þ ½K1ð0Þ�½K2ð0Þ�;

which, by the first property above, results in the
equivalence

½K1�½K2� ’ p
h dK1

dp

i
½K2ð1Þ� þ

h dK2

dp

i
½K1ð1Þ�

� 	
þ ½K1ð0Þ�½K2ð0Þ�;

thus proving the required property for � ¼ � ¼ 0.
For the case � ¼ 1 and � ¼ 0, the proposition follows
from the equivalence ½K1�0½K2� ’ ½K1� þ ½K1�½K2� and,
similarly, for � ¼ � ¼ 1, from the equivalence
½K1�0½K2�0 ’ ½K1� þ ½K2� þ ½K1�½K2�. tu
The last property above can be generalized to a fusion of

any number of typed connectors.

Proposition 6.16. Let fKigni¼1 and fLjgmj¼1 be two families of
connectors from ACðP Þ. Then,

d

dp

Yn
i¼1

½Ki�0
Ym
j¼1

½Lj�
 !

’
Xn
i¼1

h dKi

dp

i0Y
k6¼i
½Kkð1Þ�

Ym
j¼1

½Ljð1Þ�

þ
Xm
j¼1

h dLj
dp

i0Y
k 6¼j
½Lkð1Þ�

" # Yn
i¼1

½Kið1Þ�0
" # :

Proof. The proof is by induction on nþm, with property 4
in Proposition 6.15 constituting its base. The complete
proof of the induction step is straightforward and can be
found in [19]. tu

Example 6.17. Consider the connector K ¼ p0½qr�0½rs�. This
connector models coordination between two compo-
nents with ports q and s, which require a certain
resource to operate. This resource is accessed by

interacting with another component with a port r. Once
this resource is available, both of these components are
connected to a third one, which communicates through
port p.

Suppose now that we want to restructure K in order
to separate the component providing the considered
resource from the ones that utilize it. To do so, we
differentiate K by r, applying Proposition 6.16,

dK

dr
’ dp

dr

� 	0
½q�½s� þ dðqrÞ

dr

� 	0
½p�½s� þ dðsrÞ

dr

� 	0� 	
½p0q0�

’ q0psþ s½p0q0�:
ð34Þ

We also calculate Kð0Þ by substituting 0 instead of r in K
as follows:

Kð0Þ � p0 � ½q � 0�0 � ½0 � s� ffi p0 � ½0�0 � ½0� ffi p0 ’ p: ð35Þ

Substituting (34) and (35) into (33), we obtain the
following decomposition K ’ r � ½q0psþ s½p0q0�� þ p,
which can now be easily verified.

7 CONCLUSION

ACðP Þ provides an abstract and powerful framework for
modeling control flow between components. It allows the
structured combination of two basic synchronization
protocols: rendezvous and broadcast. It is powerful enough
to represent any kind of coordination by interaction,
avoiding combinatorial explosion inherent to broadcast.

Connectors are constructed by using two operators
having a very intuitive interpretation. Triggers initiate
asymmetric interactions; they are sources of causal interac-
tion chains. Synchrons are passive ports, which either can
be activated by triggers or can be involved in some
maximal symmetric interaction. Fusion allows the con-
struction of new connectors by assembling typed connec-
tors. Typing induces a hierarchical structuring, naturally
represented by trees.

The concept of structured connectors is directly sup-
ported by the BIP language, where connectors describe a set
of interactions as well as associated data transformations.
Its interest has been demonstrated in many case studies,
including an autonomous planetary robot, wireless sensor
networks [20], and adaptive data-flow multimedia systems.
The BIP language is used in the framework of industrial
projects, as a semantic model for the HRC component
model (IST/SPEEDS integrated project) and for AADL
(ITEA/SPICES project).

We believe that ACðP Þ provides an elegant mathematical
framework to deal with interactions. The comparison with
Boolean algebra shows its interest: Fusion becomes a
context-sensitive and rather complicated operation on
Boolean functions. Boolean algebra representation allows
the use of existing powerful decision techniques, e.g., to
decide whether an interaction belongs to a connector or
equivalence between connectors. The relations between
ACðP Þ and Boolean algebra should be further investigated.

The notation has been instrumental for formalizing the
multishot semantics for component models. Axiomatization
and properties of derivatives in ACðP Þ allow an efficient
incremental decomposition of connectors, avoiding

BLIUDZE AND SIFAKIS: THE ALGEBRA OF CONNECTORS— STRUCTURING INTERACTION IN BIP 15

enumeration of interactions. Finally, algebraic representa-
tion is a basis for symbolic manipulation and transforma-
tion of connectors, which is essential for efficient
implementation of the BIP framework.
ACðP Þ is a simple and powerful algebraic framework for

modeling interaction. It can be a semantic model for
formalisms used for architecture description languages and
provides a basis for comparing coordination mechanisms.

REFERENCES

[1] M. Bernardo, P. Ciancarini, and L. Donatiello, “On the Formaliza-
tion of Architectural Types with Process Algebras,” Proc. ACM
SIGSOFT Symp. Foundations of Software Eng. (SIGSOFT FSE ’00),
pp. 140-148, 2000.

[2] B. Spitznagel and D. Garlan, “A Compositional Formalization of
Connector Wrappers,” Proc. Int’l Conf. Software Eng. (ICSE ’03),
pp. 374-384, 2003.

[3] J.L. Fiadeiro, Categories for Software Eng. Springer-Verlag, Apr.
2004.

[4] R. Bruni, I. Lanese, and U. Montanari, “A Basic Algebra of
Stateless Connectors,” Theoretical Computer Science, vol. 366, no. 1,
pp. 98-120, 2006.

[5] F. Arbab, “Reo: A Channel-Based Coordination Model for
Component Composition,” Math. Structures in Computer Science,
vol. 14, no. 3, pp. 329-366, 2004.

[6] A. Basu, M. Bozga, and J. Sifakis, “Modeling Heterogeneous Real-
Time Components in BIP,” Proc. Fourth IEEE Int’l Conf. Software
Eng. and Formal Methods (SEFM ’06), pp. 3-12, Sept. 2006.

[7] J. Sifakis, “A Framework for Component-Based Construction,”
Proc. Third IEEE Int’l Conf. Software Eng. and Formal Methods
(SEFM ’05), keynote talk, pp. 293-300, Sept. 2005.

[8] G. Gößler and J. Sifakis, “Component-Based Construction of
Deadlock-Free Systems: Extended Abstract,” Proc. 23rd Int’l Conf.
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS ’03), P.K. Pandya and J. Radhakrishnan, eds., pp. 420-
433, Dec. 2003.

[9] G. Gößler and J. Sifakis, “Composition for Component-Based
Modeling,” Science of Computer Programming, vol. 55, nos. 1-3,
pp. 161-183, 2005.

[10] “BIP,” http://www-verimag.imag.fr/~async/index.php?view=
components. 2008.

[11] F. Maraninchi and Y. Rémond, “Argos: An Automaton-Based
Synchronous Language,” Computer Languages, vol. 27, pp. 61-92,
2001.

[12] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall,
Apr. 1985.

[13] R. Milner, Communication and Concurrency, Prentice Hall, 1989.
[14] A.W. Roscoe, Theory and Practice of Concurrency. Prentice Hall,

1997.
[15] “C!,” http://research.microsoft.com/comega/, 2008.
[16] “nesC: A Programming Language for Deeply Networked Sys-

tems,” http://nescc.sourceforge.net/, 2008.
[17] G. Berry and G. Gonthier, “The ESTEREL Synchronous Program-

ming Language: Design, Semantics Implementation,” Science of
Computer Programming, vol. 19, no. 2, pp. 87-152, Nov. 1992.

[18] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The
Synchronous Dataflow Programming Language LUSTRE,” Proc.
IEEE, vol. 79, pp. 1305-1320, Sept. 1991.

[19] S. Bliudze and J. Sifakis, “The Algebra of Connectors—Structuring
Interaction in BIP,” Technical Report TR-2007-3, VERIMAG,
http://www-verimag.imag.fr/index.php?page=techrep-list,
2007.

[20] A. Basu, L. Mounier, M. Poulhiès, J. Pulou, and J. Sifakis, “Using
BIP for Modeling and Verification of Networked Systems—A
Case Study on TinyOS-Based Networks,” Technical Report TR-
2007-5, VERIMAG, http://www-verimag.imag.fr/index.php?
page=techrep-list, 2007.

Simon Bliudze received the MSc degree in
mathematics from St. Petersburg State Uni-
versity, St. Petersburg, Russia, in 1998, the
MSc degree in computer science from the
Université Paris 6 in 2001, and the PhD degree
in computer science from the �Ecole Polytech-
nique, Paris, in 2006. He currently holds a
postdoctoral position at VERIMAG, Grenoble,
France, where he is working in the domain of
formal methods for component-based construc-

tion of real-time systems.

Joseph Sifakis received the degree in electrical
engineering from the Technical University of
Athens, Greece, and the degree in computer
science from the University of Grenoble, France.
He is a CNRS researcher and the founder of
VERIMAG, Grenoble. He is recognized for his
pioneering work on both theoretical and practical
aspects of concurrent systems specification and
verification. He contributed to the emergence of
the area of model checking. His current

research activities include component-based construction of real-time
systems with focus on correct-by-construction techniques. He is the
scientific coordinator of the European Network of Excellence ARTIST2
on Embedded Systems Design. He is a member of the editorial board of
several journals, a cofounder of the International Conference on
Computer Aided Verification (CAV), and a member of the Steering
Committee Board of EMSOFT.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 10, OCTOBER 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

