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Abstract—Autonomous robots are complex systems that re-
quire the interaction/cooperation of numerous heterogeneous
software components. Nowadays, robots are getting closer to
humans and as such are becoming critical systems which must
meet safety properties including in particular logical, temporal
and real-time constraints.

We present an evolution of the LAAS Architecture for Au-
tonomous System and its tool GenoM. This evolution is based
on the BIP component based design framework which has been
successfully used in other domains (e.g. embedded systems). In
this study, we show how we seamlessly integrate BIP in the
preexisting methodology. We present the componentization of
the functional level of a robot, the synthesis of an execution
controller as well as validation techniques for checking essential
safety properties. This approach has been integrated in the LAAS
architecture and we have performed a number of experiment in
simulation but also on a real robot (DALA).

I. INTRODUCTION

A. Toward More Dependable Robots

Autonomous robots are designed to perform high level tasks
on their own , or with very limited external control. They are
needed in situations where human control is either infeasible
or not cost-effective. In most cases:

1) they operate in highly variable, uncertain, and time-
changing environments;

2) they must meet real-time constraints to work properly;
and

3) they are often interacting with other agents, both humans
and other machines.

For example, service home robots will need to contend with
all the complexities of sensing, planning, acting in real time
in an uncertain, dynamic environment; to interact intelligently
with humans and other robotic systems; and to guarantee
their safety and the one of the people they encounter. Some
examples, such as tour robots, or nurse robots, have demon-
strated their reliability through extensive experimentations and
testing, but in limited environments [1], [2]. We are far from
giving formal assurances of safety that would be needed before
deploying more widely such robots. In such applications, the
need for guarantees of safety, reliability, and overall system
correctness is acute.

The degree of assurance we can provide today is based on
extensive simulation and testing. The goal of simulation is to
catch errors as early as possible in the design phase to reduce
the need for more costly testing of the implemented system.
Both simulation and testing suffer from being incomplete:

each simulation run and each test evaluates the system for
a single set of operating conditions and input signals. For
complex autonomous and embedded systems it is impossible
to cover even a small fraction of the total operating space with
simulations. Finally, testing is already too expensive; today
building a test harness to simulate a component’s environment
is often more expensive than building the component itself.

B. Architecture and Tools,

Designing and developing software for an autonomous robot
is quite a challenging and complex task. One has to take into
account the following context:

• there is a wide range of software “types” to integrate
(from low level servo loop, to data processing, up to high
level automated action planning and plan execution).

• the temporal requirements of these software components
vary a lot (from hard real-time, to polynomial, and up to
NP complete decisional algorithm).

• the various software components are developed by differ-
ent programmers, with different backgrounds who in most
case know little about the other components involved,

To address these concerns, the robotic community has relied
on architectures and tools. these architecture and tools rely on
a number of good software engineering practices.

• The software components are organized in levels or
layers. Most of the time, these layers correspond to dif-
ferent temporal requirements, or to different abstraction
requirements.

• The architecture and tools provide some control flow
mechanisms to support requests or commands with ar-
guments passed from one component to another, as well
as reports sent back to the requester upon completion.

• Similarly, some data flow mechanisms are provided to
offers access to data produced by a component to another
component.

Some architectures go further and provide:
• Interoperability library to convert data from one frame-

work to another (e.g. your low level functional com-
ponents may be written in C or C++, while your high
level planner or execution controller use a symbolic
representation)

• Software tools which encapsulate the components and
provide a clear API of what each component provides
as services, or exported data structures (e.g. GenoM).
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• Software development environment to map particular
services in threads, processes and even CPUs.

• Seamless integration with higher level tools for autonomy
(action planner, plan execution control, FDIR, etc)

All of these properties are welcomed and have been of great
value in the development of software platforms in the robotics
community. This has resulted in a large number of successful
architectures (LAAS [3], CLARAty [4], etc), middleware
(PlayerStage [5], ORCA2 [6], etc), and tools (CARMEN [7],
YARP [8], etc) etc1. Each of them has pros, cons, strong points
and limitations. Despite some efforts to compare them, nobody
has really been able to do it (apart from some communica-
tion performances, or memory footprint [9]). Nevertheless,
as of today, these architectures and tools and middleware
have achieved a lot, and they have allowed the deployment
of numerous successful robotic experiments. However most
of them do not rely on any formal model and approach.
Such approach, which can guarantee safety properties and
specifications, may soon be expected by manufacturer and
certification bodies.

C. Desirable and Critical Properties

None of the current architecture and associated tools are
able to unambiguously answer simple questions such as:

• Can you prove that your nursebot will not start full
throttle while an elderly person is walking while leaning
on it?

• Can you guarantee that the arm of your service robot
is not going to open its gripper while holding a cup of
coffee and drop it on the carpet?

• Can you prove that there is no deadlock in the initializa-
tion sequence of your robot?

• Can you prove that there is no race condition in a
perception action loop?

• Can you prove that current speed of the robot is consistent
with the range of your sensor and the data processing
duration?

• etc
These are difficult questions, even for regular software, and

a fortiori even more for autonomous robots software. But
one must admit that little has been done to address them
on a complete robotics system. In [10], the authors present
an interesting approach based on a the Esterel synchronous
language which however suffer from the limitation of the
synchronous programming paradigm. Meantime, robots are
becoming more and more pervasive, and the time will soon
come where a certification body will require robot software
developers to exhibit what is being done to address such
serious security and dependability issues. It is not clear if just
having good software engineering practices will be enough.

Roboticists are interested in a number of properties, and one
need to “translate” these in formal statement or constraints,
such as (but not limited to):

1We invite the reader to check the wiki:
http://wiki.robot-standards.org/index.php
/Current_Middleware_Approaches_and_Paradigms for a good
overview and comparative analysis.

• dead lock detection (e.g. to prove that adding a particular
software module on the robot will not lead to deadlock
during execution),

• temporal constraints (e.g. to guarantee that any particular
initialization sequence of the robot will execute action A
before action B),

• timed constraints (e.g. to guarantee that a particular
perception/action loop takes less than a given amount of
time).

• etc.

D. Formal Methods

Formal verification is the process of determining whether
a system satisfies a given property of interest. Today the best
known verification methods are model checking and theorem
proving, both of which have sophisticated tool support and
have been used in non-trivial case studies, including the
design and debugging of microprocessors, cache coherence
protocols, internetworking protocols, smartcards, and air traffic
collision avoidance systems (see [11] for other examples).
Model checking in particular has enjoyed huge success in
industry for verifying hardware designs. Formal verification
can be used to provide guarantees of system correctness. It
is an attractive alternative to traditional methods of testing
and simulation, which for autonomous and embedded systems,
as argued above, tend to be expensive, time consuming, and
hopelessly inadequate. By formal verification we mean not
just the traditional notion of program verification, where the
correctness of code is at question. We more broadly mean
design verification, where an abstract model of a system is
checked for desired behavioral properties. Finding a bug in a
design is more cost-effective than finding the manifestation of
the design flaw in the code.

Unfortunately, after decades of research formal verification
has not become part of standard engineering practice. One
reason is that these techniques do not scale: code size is too
large for practical program verification; the underlying math-
ematical formalisms (i.e., logics) do not handle all features
of the programming language or all behavioral aspects of
the system; and proof methods lack compositionality. Another
reason is that the tools do not scale: model checkers are limited
by the size of the state spaces they can handle; theorem provers
require too much human time and effort for too little perceived
gain; and the tools are not integrated to work with others found
already in the engineer’s workbench.

The software is an integral part of autonomous robot sys-
tems2. The shortcomings of current design, validation, and
maintenance processes make software, paradoxically, the most
costly and least reliable part of the systems used in critical
application. In the following we will lay out what we see as an
autonomous robot software design challenge. In our opinion,
this challenge raises not only a technology questions, but
more importantly, it requires the building of a foundation that
systematically and even-handedly integrates, from the bottom
up, computation and physicality [12].

2Our most complex robotic experiments have source code whose size is in
the order of half million to one million lines.
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E. The Claims of this Paper

This paper presents an evolution of the LAAS architecture
which integrates a state of the art component based design ap-
proach (BIP). This evolution allows us to produce a complete
controller correct by construction which enforces “online” the
modeled interactions. The resulting model can also be checked
“offline” with Verification & Validation tools and suites (dead-
lock detection, timed automata, etc).

The paper is organized as follow. Section II presents the
existing LAAS architecture with an emphasis on the GenoM
tool, while section III introduces the BIP componentization
approach for embedded systems. Section IV explains how
we merged the later in the former to obtain a model of all
the generic components of any GenoM module. Section V
presents a real example on the DALA robot and show how
we write a BIP model for the functional modules involved in
its navigation activity. We then explain how we produce a con-
troller correct by construction (section V-B) and what are the
properties we are able to show on the model (section V-C). We
conclude the paper with the prospective, and future research
avenues we intend to explore.

II. AN EXISTING ARCHITECTURE...

Execution Control Level
Execution Controller (R2C)

Decisional Level
Procedural
Executive

(open-PRS)

Temporal Planner
Temporal Executive

(IxTeT)

Po
s Y

Module 
X Functional Module Poster

Functional Level

Pos 
5

Module 
5

Pos 6
Module 

6

Modality 1

Pos 
2

Module 
2

Module
4

Pos 
4

Module 
12

Module 
12

Pos 
12

Module 
11

Pos 
11

Module 
8Pos 8

(Modules produced
with GenoM)

Modality 2 Modality 4

Modality 3

ENVIRONMENT

Module
3

Pos 
3

Pos 
1

Module 
1

Pos 
9

Module 
9

Pos 
10

Module 
10

Fig. 1. The LAAS Architecture.

At LAAS, researchers have developed a framework, a global
architecture, that enables the integration of processes with
different temporal properties and different representations. As
presented on fig. 1, this architecture decomposes the robot
software into three main levels, having different temporal con-
straints and manipulating different data representations [13].
This architecture is used on all our robots at LAAS (e.g.
DALA, an iRobot ATRV; HRP2; Rackham, an iRobot B21;
Jido, etc) and in other institutes. The levels in this architecture
are :

• a functional level: it includes all the basic built-in robot
action and perception capacities. These processing func-
tions and control loops (e.g., image processing, obstacle
avoidance, motion control, etc.) are encapsulated into
controllable communicating modules developed using
GenoM3. Each module provides services which can be
activated by the decisional level according to the current
tasks, and exports posters containing data produced by the
module and for others (modules or the decisional level)
to use.

• a decisional level: this level includes the capacities of
producing the task plan (using the IxTeT planner) and
supervising its execution (with OpenPRS), while being
at the same time reactive to events from the functional
level.

• At the interface between the decisional and the functional
levels, lies an execution control level that controls the
proper execution of the services according to safety
constraints and rules, and prevents functional modules
from unforeseen interactions leading to catastrophic out-
comes. In recent years, we have used the R2C [14] to
play this role, yet it was programmed on the top of
existing functional modules, and controlling their services
execution and interactions, but not the internal execution
of the modules themselves. One of the goal of this study
is to embed such models in the controller correct by
construction produced with BIP.

This study focuses, for now, on the functional level and
on the execution control level. Our approach heavily relies on
the existing functional module generation tool: GenoM but also
completely replaces the R2C.

A. GenoM Functional Modules

The LAAS/GenoM methodology is based on the encapsula-
tion of each basic functionality of the robot in a module. For
example the basic sensors and effectors are managed by their
own module (e.g. one module for the camera pair, one module
for the laser range finder, etc). More complex functionalities
are encapsulated in higher level module (e.g. a module doing
stereo correlation will use the image taken by the camera
module, a module building an obstacle map will use the LRF
scan, etc). Last, some complex modalities, such as navigation,
are obtained by combining a number of modules.

3The GenoM tool as well as other tools from the LAAS architecture can be
freely downloaded from:
http://softs.laas.fr/openrobots/wiki/genom
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Fig. 2. A GenoM module organization.

All these modules are built by instantiating a unique generic
canvas (Fig. 2). Each module is specified by providing the
following information: the internal functional data structure
(IfDS), the list of services (started with requests) provided by
this module, the list of posters (if any) exported by this module
and the list of execution tasks with their respective activation
period.

• The internal functional data structure (IfDS) defines the
various “public” C-structures used by the module . These
can be used to specify posters, arguments and reports to
services, etc.

• The services correspond to the ”commands” the module
will accept. There are two types of service: the control
ones only modify the IfDS and will not be executed by
an activity and the execution ones will be executed by
an activity. Arguments can be passed and reports (status
and values) can be sent back upon completion. For each
execution service, one has to specify the various pieces
of C code (codels) which have to be executed, and in
which execution task the activity of the service will run.

• Posters are data structures which are produced by the
module and can be read by other modules.

• Execution tasks are cyclic tasks (threads in most imple-
mentations) which execute the activities corresponding to
the active services.

The services are initially managed by a control task which
is responsible for launching the corresponding activities within
the appropriate execution tasks and for executing control
services. Control and execution tasks share data using the
internal data structures (IDS). Fig. 3 presents the automata of
an activity as executed by all the launched services. Activity
states correspond to the execution of particular codels avail-
able through libraries and dedicated either to initialize some

Fig. 3. Execution automaton of an activity. The codels of GenoM are called
in each state except ETHER and ZOMBIE.

parameters (START state), to execute the activity (EXEC state)
or to safely end the activity leading to reseting parameters,
sending error signals, etc. According to the value returned by
the codels, the automata make the proper transition E.g. if the
EXEC codel return EXEC, then it stays in this state, and the
same codels will be called the next time the activity is run but
if it returns OK, it goes in the END state.

The organization of the LAAS architecture in layers and
of the functional level in modules are definitely a plus with
respect to the ease of integration and reusability. Our goal is
not to redesign a new architecture and develop a new set of
tools from scratch. Most of the assets offered by the existing
setup should be kept. Thus our approach is merely to build on
the existing solution.

III. ... AND A COMPONENTIZATION APPROACH FOR
EMBEDDED SYSTEMS...

A. Component Based Design

Component-based design is essential to any engineering
discipline when complexity dictates methodologies that lever-
age reuse and correct-by-construction approaches. A cen-
tral idea in systems engineering, such as robot software, is
that complex systems are built by assembling components
(building blocks) [15], [16]. This is essential for the devel-
opment of large-scale, evolvable systems in a timely and
affordable manner. Component-based design confers many
advantages with respect to monolithic design, such as reuse
of solutions, modular analysis and validation, reconfigurability
and controllability. Components are systems characterized
by an abstraction that is adequate for composition and re-
use, provided via an interface. An interface specifies how
a component is viewed by its potential users. Composition
and its properties are essential for mastering the component
construction process. Component-based design relies on a
separation between coordination and computation. Systems
are built from units processing sequential code insulated from
concurrent execution issues. The isolation of coordination
mechanisms allows their global treatment and analysis.

One of the main limitations of the current state-of-the-art is
the lack of unified frameworks for describing and analyzing
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the coordination between components. This is particularly
true for robotic systems where the coordination is usually
enforced by a high level model, but not from a clean bottom
up approach. Such frameworks would allow system designers
and implementers to formulate their solutions in terms of
tangible, well-founded and organized concepts, instead of
using dispersed low-level coordination mechanisms including
semaphores, monitors, message passing, remote call, protocols
etc. Unified frameworks should allow a comparison and evalu-
ation of otherwise unrelated architectural solutions, as well as
derivation of implementations in terms of specific coordination
mechanisms. The component-based design problem can be
formulated as follows: “build a system meeting a given set
of requirements from a given set of components that are
known to satisfy another set of requirements.” This is an
essential problem in any engineering discipline. It lies at the
basis of various system-design activities, including modeling,
architecting, programming, synthesis, upgrading, and reuse.

Component-based design has been used in hardware. During
the past decade, IT developers and end-users have benefited
from the commoditization of commercial-off-the-shelf (COTS)
hardware (such as CPUs and storage devices) and network-
ing elements (such as IP routers). For VLSI circuit design,
component-based design methodologies, supported by CAD
tools, have been in use for System-on-Chip products albeit
much remains to be done to achieve the level of maturity
needed to make this approach a standard in the industry.

An important trend in modern systems engineering is
model-based design, which relies on the use of explicit
models to describe development activities and their prod-
ucts. It aims at bridging the gap between application soft-
ware and its implementation by allowing predictability and
guidance through analysis of global models of the system
under development. The first model-based approaches, such
as those based on ADA, synchronous languages [17] and
Matlab/Simulink, support very specific notions of components
and composition. More recently, modeling languages, such
as UML [18] and AADL [19], attempt to be more generic.
They support notions of components which are independent
from a particular programming language, and put emphasis
on system architecture as a means to organize computation,
communication, and implementation constraints. Software and
system component-based techniques have not yet achieved a
satisfactory level of maturity. Systems built by assembling
together independently developed and delivered components,
often exhibit pathological behavior. Part of the problem is that
developers of these systems do not have a precise way of ex-
pressing the behavior of components at their interfaces, where
inconsistencies may occur. Components may be developed
at different times and by different developers with, possibly,
different uses in mind. Their different internal assumptions,
further exposed by concurrent execution, can give rise to
emergent behavior when these components are used in concert,
e.g. race conditions, and deadlocks. All these difficulties
and weaknesses are amplified in embedded system design
in general. They cannot be overcome, unless we solve the
hard fundamental problems raised by the definition of rigorous
frameworks for component-based design.

B. BIP

BIP is a software framework for modeling heterogeneous
real-time components. The BIP component model is the
superposition of three layers: the lower layer describes the
behavior of a component as a set of transitions (i.e a finite
state automaton extended with data); the intermediate layer
includes connectors describing the interactions between tran-
sitions of the layer underneath; the upper layer consists of a
set of priority rules used to describe scheduling policies for
interactions. Such a layering offers a clear separation between
component behavior and structure of a system (interactions
and priorities).

BIP allows hierarchical construction of compound compo-
nents from atomic ones by using connectors and priorities.

An atomic component consists of a set of ports used for
the synchronization with other components, a set of transitions
and a set of local variables. Transitions describe the behavior
of the component. They are represented as a labeled relation
between control states.

empty

full

get, 0<x

y:=f(x)g
e
t

p
u

t

x y

put

Fig. 4. An example of an atomic component in BIP.

tick1 tick2 tick3

out1 in2 in3

Fig. 5. Possible interactions in BIP (triangle for complete port, and circle
for incomplete port).

Fig. 4 shows an example of an atomic component with two
ports get, put, variables x, y, and control states empty, full.
At control state empty, the transition labeled get is possible
if the guard 0 < x is true. When an interaction through get
takes place, the variable x is eventually modified and a new
value for y is computed. From control state full, the transition
labeled put can occur.

Connectors specify the interactions between the atomic
components. A connector consists of a set of ports of the
atomic components which may interact. An interaction of a
connector is any non empty subset of its set of ports. A typing
mechanism is used for the ports in order to determine the
feasible interactions of a connector and in particular to model
the two basic modes of synchronization. As shown on Fig. 5:
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rendezvous when all the ports are incomplete (tick1 and tick2
and tick3) and broadcast when at least one port is complete
(out1, out1 and in2, out1 and in3).

Priorities In composite components, many interactions can
be enabled at the same time, introducing a degree of non-
determinism in the product behavior. Non-determinism can
be restricted by means of priorities, specifying which of the
interactions should be preferred among enabled ones.

The model of a system is represented as a BIP compound
component which defines new components from existing com-
ponents (atoms or compounds) by creating their instances,
specifying the connectors between them and the priorities.

The BIP toolset [20] is a collection of tools dedicated to
execution and analysis of BIP programs currently providing:
• A compilation chain that transforms BIP programs into

C/C++ code. Compilation relies on model-based technologies
available for Java under the Eclipse platform. Starting from
BIP programs, the compiler generates BIP models conforming
to a full-fledged BIP meta-model developed using EMF4. On
the models, we can apply source-to-source transformations as
well as static analysis techniques. Finally, models are used to
generate C/C++ code to be executed on a dedicated platform,
as follows.
• A platform for execution and analysis of the generated

C/C++ code. The execution platform includes an Engine and
the associated software infrastructure for multithreaded execu-
tion of the C/C++ code. Each atomic component is assigned
to a thread, the Engine being a thread itself. Communication
takes place only between the atomic components and the
Engine, and never directly between different atomic compo-
nents – this leads to a centralized architecture. The Engine
implements the distributed semantics [21] and is parameterized
by a dynamic5 or lazy6 oracle. Iteratively, the Engine computes
feasible interactions available on ready components. Then, if
such interactions exist and the oracle allows them, the Engine
selects one for execution and notifies the involved components.

IV. ... MERGED IN AN UNIFIED FRAMEWORK

In section II we have described the “previous” LAAS archi-
tecture, while in section III we introduces the BIP framework.
The main idea of this work is to retain the modular and leveled
organization of the former while merging the later in a new
framework. Indeed, if we model the GenoM generic module
and its components in BIP and if we then instantiate it and
connect the existing “codels” to the resulting component, then
we obtain a BIP model of all the GenoM modules. Adding the
BIP model of the interaction between the modules (which were
encapsulated in the R2C in the previous LAAS architecture)
will give us a BIP model of the overall functional layer and
of the execution control layer. Such a BIP model is then used
to synthesize a controller for the overall execution of all the

4Eclipse Meta-modeling Framework.
5For the dynamic oracle, the Engine does not need a complete knowledge

of the state of the system in order to compute a dynamic approximation for
a given partial state.

6The lazy oracle forbids all interactions from partial states. It waits for all
the atomic components to finish their computation in order to know all the
possible interactions.

functional modules and enforce by construction the constraints
and the rules inside modules but also between the various
functional modules.

In this section we show how we map the GenoM modules
and components in BIP. The GenoM generic module orga-
nization (Fig. 2) can easily be mapped in a hierarchy of
BIP components (Fig. 6): execution tasks, activities, etc. For
example, the service components are further composed with (at
least one if not more) Execution Task and poster components
to obtain a module component.
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Fig. 6. The componentization of a GenoM module.

Overall, we propose the following mapping:

Functional level ::= (Module)+
Module ::= (Service)+ . (Execution Task)+ . (Poster)+
Service ::= (Service Controller) . (Activity)
Execution Task ::= (Timer) . (Scheduler Activity)

where ”+” means the presence of one or more of sub-
component and”.” means the composition of different com-
ponents.

A component modeling the generic service (as presented
in section II-A and Fig. 3) is obtained from the atomic
components service controller and activity and the connectors
between them, as shown on Fig. 7.

The left sub-component represents the controller of a ser-
vice. It is launched by synchronization through port trigger.
The Service Controller controls the validity of the parameters
(if any) of the request and will either reject it or start the
activity by synchronizing with the activity component (right
sub-component). In each state, the status of the service is
available by synchronizing through port status of the controller
component. The activity will then wait for execution (i.e.
synchronization on the exec port with the control task) and
will either safely end, fail, or abort. Each of the transitions
control, start, exec, fail, end and inter may call an external
function corresponding to GenoM codels.
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Fig. 7. The BIP generic model of an execution GenoM service.

Fig. 8. The partial BIP model corresponding to the NDD module. All services are not included in the figure in order to make it more readable.

V. AN ILLUSTRATED EXAMPLE AND RESULTING
PROPERTIES

The approach presented has been implemented and tested
in on a real robot as well as its simulation.

A. The DALA Robot: previous approach

To illustrate the overall approach, we implemented our new
approach on the DALA robot, an iRobot ATRV (see Fig. 9)
running a simple, yet complete, functional layer with a laser

based navigation using the Near Diagram navigation. The
GenoM/BIP approach has been used to model the following
modules as well as their interactions. We focus our first
efforts on these four modules, because together they close the
perception action loop, and yet are sufficient to have the robot
moving around controlled with our new approach.

• RFLEX: This is the module that ensures the robot
locomotion. After proper initialization, upon receiving
the RflexTrackSpeedStart (with a poster name as
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Fig. 9. An instance of the LAAS architecture for the DALA Robot.

argument) it servo-controls (at a period of 4 ticks7) the
wheels speed contained in the poster given as argument
(in our case this poster is produced by NDD). It also
maintain the current robot odometry position in a poster
(pos).

• Laser RF: This module manages the laser range finder
sensor. After proper initialization with the service Init,
it cyclically (every 20 ticks) produces the position of the
closest obstacles with respect to the robot position. These
data are stored in the (scan) poster.

• Aspect: It uses the (scan) poster to periodically (every
4 ticks) produce/update a poster (Obs) of the obstacles
map in the robot vicinity.

• NDD: This module is responsible for the navigation of
the robot, i.e. reach a goal while avoiding obstacles.
After proper initialization, it cyclically (every 10 ticks)
recovers the current position (in the RFLEX (pos)
poster) and the obstacles in the Aspect (Obs) poster,
and it produces the poster (Speed) which will be used
by RFLEX to speed servo-control the wheels.

71 tick is equal to 10 ms.

This experiment uses other modules (antenna, platine,
camera and science) whose role is not critical in the scope
of this paper. Moreover, the full BIP description of the four
functional modules presented above is also beyond the scope
of this paper. We rather focus on the modeling of the NDD
module (which is the most complex one) to illustrate the
general idea.

The NDD module contains six services, one poster and
has one execution task as sub-components and the connectors
between them, as shown in Fig. 8. Each service is an instance
of the service model presented on Fig. 7. Similarly, the poster
and the execution task are instance of their respective BIP
model.

The control task wakes up periodically (managed by the
bottom-left component with alternating sleep and trigger tran-
sitions) and always triggers the Permanent service8 at the
beginning of each period. For each cycle, the various services
(GoTo, SetParam, etc) will have the opportunity to execute
the interaction if possible.

Moreover, the BIP formalism allows complex relations to
be defined; such as triggering the Stop control service stops
the robot by interacting with the ”abort” port of the GoTo
service. The connector enforcing this interaction is a broadcast
between the execution task and the port Stop.trigger9

and GoTo.abort. Another property which must always
be verified is that a GoTo should only occur if it is pre-
ceded by the proper initialization with a successful execution
of SetParams and SetSpeed services. We model this
safety property by a connector between GoTo.trigger,
SetParams.getStatus and SetSpeed.getStatus.

These are example of allowed interaction inside the NDD
module. However, we can also model interaction between
modules. For example to model that NDD can only execute
a GoTo (which produced the (Speed) poster) if Aspect
has produced a map (Obs), or that RFLEX can only start
moving the robot if a proper (Speed) reference has been
produced by NDD, etc. All these “operational” constraints will
be introduced in the BIP model and the resulting controller
will enforce them by construction.

B. Functional Level Controller Synthesis

Previously, in the LAAS architecture, a centralized con-
troller (R2C) was used to control the proper execution of the
services and to enforce the safety constraints on the modules
interactions. On the contrary, in the BIP model, the proper
execution order and the safety properties are enforced by the
BIP connectors between the controllers of different services.
A BIP connector has guarded actions associated to each of its
possible interactions. Dependency between the controllers of
service in different modules are modeled by connectors associ-
ated with guards which represents either some valid execution
condition or some safety rule. The composite behavior of these
local controllers, synchronized by the connectors and restricted

8The Permanent service executes a codel associated to the execution task
in GenoM.

9Notation used: service.port



IEEE ROBOTICS AND AUTOMATION MAGAZINE 9

by priorities, is equivalent to the behavior of the centralized
controller.

As an example, we had to enforce a rule between the
NDD and the RFLEX modules which states that the robot can
move using the TrackSpeedStart service of the RFLEX
module only if the module NDD has already executed success-
fully its GoTo service (which updates the poster (Speed)).
Such a rule is enforced by constructing a connector between
port trigger of the TrackSpeedStart service and port
status of the GoTo service, and guarded by the status
value.

With respect to the generation of the real controller, the
BIP tool-chain generates code from the BIP model which is
linked to the corresponding GenoM codels. With GenoM, these
codels are triggered in the corresponding service/automata
states, similarly, with BIP the codels are executed upon the
transition of the corresponding component automata.

The code generated for the four modules NDD, RFLEX,
Aspect, and Laser RF has been integrated and executed on
the real robot.

C. Enforced and Verified Properties
While the constraints imposed by the software architecture

of autonomous system facilitate development, they are also the
potential source of undesired or unexpected task interactions.
In particular, there are special classes of decisional and real-
time bugs that frequently arise in the use of such architectures.
In this work, we addressed three classes of problems:

1) Ordering violations: arise at the behavioral level when
several behaviors recommend conflicting actions. In au-
tonomous systems, there is typically an explicit arbitration
mechanism that chooses among the different behaviors. In
this case, bugs arise when the priority mechanism leads to
the wrong choice of action for a given set of input condi-
tions. Typically, this is because the developer has made some
implicit assumption about the external, or internal, state of
the system at the behavior is triggered. By making these
assumptions explicit, and by reasoning about the interactions,
we described situations in which ordering violations can occur
as temporal properties. To detect violations of these properties
we applied the model-checker Evaluator [22]. Evaluator
performs on-the-fly verification of temporal properties on the
state space generated by the BIP engine on exploration of
the system. For example, in the NDD module, it is required
that the GoTo service is triggered only after a successful
termination of SetSpeed service. To ensure this, in the
BIP module of NDD, we need to guarantee that the in-
teraction GoTo.trigger occurs only after the occurrence
of the interaction SetSpeed.finish. We checked for vi-
olations of this property, i.e. finding a transition sequence
in the statespace where GoTo.trigger is not preceded
by SetSpeed.finish. The result obtained by Evaluator
proves that the initialization property is preserved in the NDD
module.

2) Synchronization violations: typically appear when tasks
are mis-synchronized. Excess synchronization can lead to
deadlock. Lack of synchronization can lead to resource con-
flict. To verify whether the BIP model of the functional level
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Fig. 10. Two interacting modules.

satisfies a synchronization-related property such absence of
deadlocks, we used the D-Finder toolset [23]. D-Finder is an
interactive tool that takes as input BIP programs and applies
proof strategies to eliminate potential deadlocks by computing
increasingly stronger invariants. The result of this analysis
leads to several potential deadlocks. By using finite state
reachability analysis on an abstraction of the system without
variables, we have been able to show that all are unfeasible
deadlocks. For example, the deadlock analysis for the NDD
module found a potential deadlock for the state where all
services are in the EXEC state, all activities are in the ETHER
state, and the control task is in the source state of the transition
labeled by “permanent”. However, this state is unreachable,
hence the deadlock is not possible.

3) Data freshness: As already mentioned above, the com-
munication and the data transfer between the several modules
of the robot are mainly achieved by means of poster (shared
memory in most implementation). Each poster contains data
needed by the module which is reading it. The very near future
behavior of each module depends very strongly on the content
of the posters it is reading.

The data freshness property consists in reading posters
which are “up-to-date”. If the module is still keeping an old
value of the poster, it is using, then this may cause it to make
wrong decisions which may be critical in some cases. For
instance, consider the situation where the robot is in front of an
obstacle while it is moving. The obstacle shall be detected by
the Laser RF module. The latter writes this information in its
poster (Scan) which is read by the Aspect module. In turn,
Aspect writes the obstacle map in its (Obs) poster which is
read by NDD. If all these operations and the corresponding
processing do not happen fast enough then the robot may keep
moving and collide the obstacle.

To avoid such a situation, we impose a maximal delay
between the time of reading and the time of writing of each
poster. That is we impose the following property:

tread − twrite ≤ δmax

where tread is the time at which the poster is read, twrite the
time at which the poster is written and δmax the considered
maximal delay between these two time points.
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Fig. 11. The observer used to check the freshness property.

To illustrate this we consider the interaction between As-
pect and NDD (Fig. 10). The constant δmax is arbitrarily
fixed to 2 ticks (i.e., 20 ms). Two cases are then possible.
First, we may force the property by adding an adequate guard
on the interaction between the two modules. In this case we
abstract away the periodicity of each module. In a way, we
synthesize a (timed) controller which guarantees the property
to be satisfied. The second way consists in considering the
periodic behavior of each module and to check whether the
freshness property is satisfied for the considered periods of the
two modules or not. In this case, the property is not explicitly
forced.

In both cases, we used the so-called observers to check
whether the property holds or not. An observer is a particular
BIP component which encodes the considered property. This
BIP component has a particular state called ERROR. This state
is reached as soon as the property is violated. To check whether
the property is satisfied or not we compose the observer
component with the modules Aspect and NDD. Then we
compute the graph of reachable states of the whole system. If
the ERROR state is reachable with this graph then the property
is violated. Otherwise, it is satisfied. The observer used to
check the freshness property above is shown in Fig. 11. The
“write” port (resp., “read” port) of the observer synchronizes
strongly with the “write” port of Aspect (“read” port of NDD).
The counter “c” is used to measure the number of ticks elapsed
since the last “write”.

It is worth noting that the data freshness properties can be
seen as a particular type of general timed properties. These
consist in checking whether each action happens within its
allowed time-interval or not. Several other timed properties
can be checked for the case of the DALA robot.

VI. CONCLUSION AND PERSPECTIVES

Programming autonomous robots is still in the ad-hoc phase,
and suffers from the lack of paradigm and model which en-
compass the full autonomous robot software design challenge.
Current robotic software suffers from limitations that are
introduced by many manual steps, such as system integration,
which proceed mostly by “trial and error” (i.e. test and tweak).
Current models are inadequate, because they address only

isolated aspects of autonomous robot systems, while their
interactions are not always well understood. Meanwhile, as
the need to make autonomous robots more dependable and
safer rises, so does the requirements on the dependability of
the overall software which “drives” these systems.

We propose a mathematical basis for autonomous robot
systems modeling and analysis which integrates both abstract-
machine models and transfer-function models in order to deal
with computation and physical constraints in a consistent,
operative manner. The theory, the methodologies, and the tools
encompass heterogeneous execution and interaction mecha-
nisms for the components of a system, and they provide
abstractions that isolate the subproblems in design that require
human creativity from those that can be automated.

We present an approach integrating component-based con-
struction and validation of robotic systems. We show that a
complex robotic system can be considered as the composition
of a small set of atomic components. Although we build up on
the pre-existing modular LAAS architecture for autonomous
robots, and model in BIP all the generic components of this
architecture, such an approach could be used with other robot
software architectures and tools.

The approach has been fully implemented and we now
have a GenoM/BIP controller for the navigation part of a
functional layer of DALA (an iRobot ATRV), running in
simulation and on the real robot. This controller enforces
online by construction the interactions model (intra-module
and inter-module). Our first runs on the robot show that the
BIP engine performance are good enough for a simple yet
complete robotics experiment. At this stage, the controller is
multi-threaded but not multi-CPU. Current research at Verimag
is being conducted to address this limitation with an interface
model of the host hardware.

The paper shows that it is possible to combine standard
verification techniques, based on global state exploration, with
structural analysis techniques for deadlock detection. Another
possibility is the online monitoring of the functional level
execution using observer components, which would be able to
generate feedback actions for the decisional level which can be
useful for error-recovery. Another work direction is to extend
the BIP model to take into account the decisional capabilities
of autonomous robots. To this effect, we could model part or
all of the decisional layer and components. For example we
already had a study which uses UUPAAL tiga as a planning
system [24]. A similar model could be made in BIP and we
could apply some reachability analysis to perform planning.
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