
Form Methods Syst Des (2010) 36: 167–194
DOI 10.1007/s10703-010-0091-z

Causal semantics for the algebra of connectors

Simon Bliudze · Joseph Sifakis

Published online: 15 April 2010
© Springer Science+Business Media, LLC 2010

Abstract The Algebra of Connectors AC(P) is used to model structured interactions in the
BIP component framework. Its terms are connectors, relations describing synchronization
constraints between the ports of component-based systems. Connectors are structured com-
binations of two basic synchronization protocols between ports: rendezvous and broadcast.

In a previous paper, we have studied interaction semantics for AC(P) which defines
the meaning of connectors as sets of interactions. This semantics reduces broadcasts into
the set of their possible interactions and thus blurs the distinction between rendezvous and
broadcast. It leads to exponentially complex models that cannot be a basis for efficient im-
plementation. Furthermore, the induced semantic equivalence is not a congruence.

For a subset of AC(P), we propose a new causal semantics that does not reduce broadcast
into a set of rendezvous and explicitly models the causal dependency relation between ports.
The Algebra of Causal Interaction Trees T (P) formalizes this subset. It is the set of the
terms generated from interactions on the set of ports P , by using two operators: a causality
operator and a parallel composition operator. Terms are sets of trees where the successor
relation represents causal dependency between interactions: an interaction can participate
in a global interaction only if its father participates too. We show that causal semantics is
consistent with interaction semantics; the semantic equivalence on T (P) is a congruence.
Furthermore, it defines an isomorphism between T (P) and a subset of AC(P).

Finally, we define for causal interaction trees a boolean representation in terms of causal
rules. This representation is used for their manipulation and simplification as well as for
synthesizing connectors.

Keywords BIP · Component · Connectors · Connector synthesis · Interaction · Causal
semantics · Causal interaction trees

S. Bliudze (�)
CEA, LIST, 91191 Gif-sur-Yvette, France
e-mail: Simon.Bliudze@cea.fr

J. Sifakis
VERIMAG, Centre Équation, 2 av de Vignate, 38610 Gières, France
e-mail: Joseph.Sifakis@imag.fr

mailto:Simon.Bliudze@cea.fr
mailto:Joseph.Sifakis@imag.fr

168 Form Methods Syst Des (2010) 36: 167–194

1 Introduction

Component-based design is based on the separation between coordination and computation.
Systems are built from units processing sequential code insulated from concurrent execution
issues. The isolation of coordination mechanisms allows a global treatment and analysis.

One of the main limitations of the current state-of-the-art is the lack of a unified paradigm
for describing and analyzing information flow between components. Such a paradigm would
allow system designers and implementers to formulate their solutions in terms of tangible,
well-founded and organized concepts instead of using dispersed coordination mechanisms
such as semaphores, monitors, message passing, remote call, protocols etc. A unified para-
digm should allow a comparison of otherwise unrelated architectural solutions and could be
a basis for evaluating them and deriving implementations in terms of specific coordination
mechanisms. Furthermore, it should be expressive enough to directly encompass various
coordination as discussed in [11].

Taking the unbuffered synchronous communication approach (see, for example, [18]
or [21, Chap. 1]) allows one to separate the model of a system in three layers:

1. Behavior, representing the sequential computation of individual components,
2. Coordination, defining the synchronization between these components,
3. Data Transfer, specifying how the data is exchanged among the components upon syn-

chronization.

Although each layer depends on the layers underneath, it can only restrict the overall
behavior of the system, thus inducing an abstraction/refinement relation. The separation of
concerns principle means that the three layers are modeled explicitly and can be analyzed
separately from one another. We are particularly interested in studying the Coordination
layer responsible for modeling scheduling constraints such as synchronization and mutual
exclusion, while abstracting away from the Data Transfer layer.

A number of paradigms for unifying interaction in heterogeneous systems have been
studied in [3, 4, 14]. In these works, unification is achieved by reduction to a common low-
level semantic model. Coordination mechanisms and their properties are not studied inde-
pendently of behavior.

Similarly, although numerous compositional [1, 15, 25, 27] and algebraic [7, 12, 13, 18,
23, 28] frameworks exist for system modeling and design, they all fail to respect the sepa-
ration of concerns by mixing at least two of the three layers mentioned above. In particular,
the term “connector” is widely used in the component frameworks literature with a number
of different interpretations, often combining aspects of the three layers. This failure to re-
spect the separation of concerns results in formalisms that are too complex, restricting the
potential analysis and applications.

Connectors are often specified in an operational setting, e.g., a process algebra. In [7]
and [19], process algebras are used to define architectural types as a set of compo-
nent/connector instances related by a set of attachments among their interactions. In [27], a
connector is defined as a set of processes, with one process for each role of the connector,
plus one process for the “glue” that describes how all the roles are bound together. A sim-
ilar approach is developed by J. Fiadeiro and his colleagues in a categorical framework for
CommUnity [15]. Reo [1] is a channel-based exogenous coordination model. It uses con-
nectors compositionally built out of different types of channels formalized in data-stream
semantics and interconnected by using nodes. The connectors in Reo allow computation,
but it is limited to the underlying channels. The nodes of connectors realize coordination

Form Methods Syst Des (2010) 36: 167–194 169

between these channels. All these models define connectors that can exhibit complex be-
havior. That is computation is not limited to the components, but can be partly performed in
the connectors.

Our approach is closest to that of [12], where an algebra of connectors is developed that
allows, in particular, an algebraic translation of the categorical approach used in CommU-
nity. This algebra allows one to construct stateless connectors from a number of basic ones.

In this paper, we propose a new causal semantics for the Algebra of Connectors AC(P),
studied in [9]. Terms of AC(P) are connectors—the basic concept for modeling coordi-
nation between components. Connectors are relations between ports with synchronization
types, allowing description of complex coordination patterns with an extremely small set of
basic primitives.

In [9], we have studied an interaction semantics for AC(P), used to model interactions in
the BIP (Behavior, Interaction, Priority) component framework [5, 26]. In [11], we propose
a notion of expressiveness for component-based systems and show that any type of coordi-
nation can be expressed in BIP. In particular, most of the frameworks listed above can be
modeled in BIP.

The interaction semantics defines the meaning of a connector as the set of the interactions
it allows. AC(P) is defined from a set P of ports. Its terms represent sets of interactions
which are non-empty sets of ports. Within a connector, an interaction can take place in
two situations: either an interaction is fired when all involved ports are ready to participate
(strong synchronization), or some subset of ports triggers the interaction without waiting for
other ports. Thus, connectors are generated from the ports of P by using a binary fusion
operator and a unary typing operator. Typing associates with terms (ports or connectors)
synchronization types: trigger or synchron.

A Simple (or flat) connector is an expression of the form p′
1 . . . p′

kpk+1 . . . pn, where
primed ports p′

i are triggers, and unprimed ports pj are synchrons. For a flat connector
involving the set of ports {p1, . . . , pn}, interaction semantics defines the set of its interactions
by the following rule: an interaction is any non-empty subset of {p1, . . . , pn} which contains
some port that is a trigger; otherwise (if all the ports are synchrons), the only possible
interaction is the maximal one, that is p1 . . . pn. As usual, we abbreviate {p1, . . . , pn} to
p1 . . . pn.

In particular, two basic synchronization protocols can be modeled naturally: (1) ren-
dezvous, when all the related ports are synchrons, and the only possible interaction is the
maximal one containing all ports of the connector; (2) broadcast, when the transmitting port
is a trigger, receiving ports are synchrons, and possible interactions are those containing the
trigger. Connectors, representing these two protocols for a sender s and receivers r1, r2, r3,
are shown in Fig. 1(a, b). Triangles represent triggers, whereas bullets represent synchrons.

Hierarchical connectors are expressions composed of typed ports and/or typed sub-
connectors. Figure 1(c) shows a connector realizing an atomic broadcast from a port s to
ports r1, r2, r3. The sender port s is a trigger, and the three receiver ports are strongly syn-
chronized in a sub-connector itself typed as a synchron. The corresponding AC(P) term is
s ′[r1r2r3], and the possible interactions are: s and sr1r2r3. Here the term in brackets [·] is
a sub-connector typed as a synchron. Primed brackets [·]′ denote a sub-connector typed as
a trigger. The connector shown in Fig. 1(d) is a causal chain of interactions initiated by the
port s. The corresponding AC(P) term is s ′[r ′

1[r ′
2r3]], and the possible interactions are s, sr1,

sr1r2, sr1r2r3: a trigger s alone or combined with some interaction from the sub-connector
r ′

1[r ′
2r3], itself a shorter causal chain.
As shown in the above examples, interaction semantics reduces a connector into the set

of its interactions. This leads to exponentially complex representations. Furthermore, it blurs

170 Form Methods Syst Des (2010) 36: 167–194

Fig. 1 Connectors and causal interaction trees representing a rendezvous (a, e), a broadcast (b, f), an atomic
broadcast (c, g), and a causal chain (d, h)

the distinction between rendezvous and broadcast as each interaction of a broadcast can be
realized by a rendezvous. In [9], we have shown that this also has deep consequences on the
induced semantic equivalence: broadcasts may be equivalent to sets of rendezvous but they
are not congruent (with respect to the AC(P) operators). In [10], we have further studied
the maximal congruence relation on AC(P) and presented its complete axiomatization.

The deficiencies of interaction semantics have motivated the investigation of a new
causal semantics for a subset of connectors of AC(P), formalized as the Algebra of Causal
Interaction Trees T (P). This semantics distinguishes broadcast and rendezvous by explic-
itly modeling the causal dependency relation between triggers and synchrons in broadcasts.
The terms of T (P) represent sets of interactions, generated from atomic interactions on the
set of ports P , by using two operators:

• A causality operator → which defines the causal relationship. The term a1 → a2 → a3 is
a causal chain meaning that interaction a1 may trigger interaction a2 which may trigger
interaction a3. The possible interactions for this chain are a1, a1a2, a1a2a3.

• An associative and commutative parallel composition operator ⊕. A causal interaction
tree can be considered as the parallel composition of all its causal chains. For instance,
the term a1 → (a2 ⊕ a3) is equivalent to (a1 → a2) ⊕ (a1 → a3) (both describing the set
of four interactions: a1, a1a2, a1a3, and a1a2a3).

Terms of T (P) are naturally represented as sets of trees where ‘→’ corresponds to the
parent/son relation. Figure 1(e–h) shows the causal interaction trees for the four connectors
discussed above.

Causality has already been studied in several contexts such as the Causal Trees by Daron-
deau and Degano [13], the step semantics of Statecharts [20], and synchronous systems such
as Lustre [17] or Signal [6] in general. The main accent of these studies is different from that
of our paper: causal relations are considered between subsequent actions of a process rather
than between the participation of different ports in the same interaction. Although structural
similarities can be found between the concepts considered so far and causal interaction trees,
their study is beyond the scope of the present paper.

The main results of the paper are the following:

• We define causal semantics for AC(P) in terms of causal trees, as a function AC(P) →
T (P). Causal semantics is sound with respect to interaction semantics. An important
result is that the algebra of causal interaction trees T (P) is isomorphic to classes of causal
connectors ACc(P) and causal sets of interactions AI c(P). A causal set of interactions

Form Methods Syst Des (2010) 36: 167–194 171

is closed under synchronization. Furthermore, we show that interaction equivalence on
T (P) is a congruence.

• We define for causal interaction trees, T (P) a boolean representation by using causal
rules. Terms are represented by boolean expressions on P . The boolean valuation of port
p is interpreted as the presence/absence of a port in an interaction. This representation is
used for their symbolic manipulation and simplification as well as for performing boolean
operations on connectors. It is applied for the efficient implementation of BIP, in particu-
lar, to compute the possible interactions for a given state.

• We also present a method for synthesizing AC(P) connectors for a given set of atomic
components characterized by their behavior. Connectors are synthesized from a set of
boolean constraints on the set P of ports of the components, expressing their possible
interactions.

The examples of Sect. 6 show how certain safety properties, such as mutual exclusion,
can be expressed by this kind of boolean constraints. Connectors are then synthesized that
enforce these properties.

The paper is structured as follows. Section 2 provides a succinct presentation of the
basic semantic model for BIP and in particular, its composition parametrized by interactions.
Section 3 presents the Algebra of Connectors and its global interaction semantics. Section 4
introduces the Algebra of Causal Interaction Trees and its properties. It then develops a
causal semantics for AC(P) and shows a way to efficiently compute a boolean representation
for connectors. Section 5 studies the opposite transformation, i.e., from boolean functions
to causal interaction trees and AC(P) connectors. Section 6 provides examples of connector
synthesis based on this transformation. Finally, Sect. 7 concludes the paper.

2 The BIP component framework

BIP is a component framework for constructing systems by superposing three layers of
modeling: Behavior, Interaction, and Priority. The lower layer consists of a set of atomic
components representing transition systems. The second layer models interactions between
components, specified by connectors. These are relations between ports equipped with syn-
chronization types. Priorities are used to enforce scheduling policies applied to interactions
of the second layer.

The BIP component framework has been implemented in a language and a tool-set. The
BIP language offers primitives and constructs for modeling and composing layered com-
ponents. Atomic components are communicating automata extended with C functions and
data. Their transitions are labeled with sets of communication ports. The BIP language also
allows composition of components parametrized by sets of interactions as well as applica-
tion of priorities.

The BIP tool-set includes an editor and a compiler for generating from BIP programs,
C++ code executable on a dedicated platform (see [5, 8]).

The execution of a BIP program is driven by a dedicated engine, which has access to the
set of the connectors and the priority model of the program. In a given global state, each
atomic component waits for an interaction through a set of active ports (i.e., ports labeling
enabled transitions) communicated to the engine. The engine computes from the connectors
of the BIP program and the set of all the active ports, the set of the maximal interactions (in-
volving active ports). It chooses one of them, computes associated data transfer and notifies
the components involved in the chosen interaction. Below we provide a succinct formal-
ization of this system-level operational semantics, focusing on component interaction and
priorities.

172 Form Methods Syst Des (2010) 36: 167–194

Definition 2.1 For a set of ports P , an interaction is a non-empty subset a ⊆ P of ports. To
simplify notation we represent an interaction {p1,p2, . . . , pn} as p1p2 . . . pn.

Definition 2.2 A transition system is a triple B = (Q,P,→), where Q is a set of states,
P is a set of ports, and →⊆ Q×2P ×Q is a set of transitions, each labeled by an interaction.

For any pair of states q, q ′ ∈ Q and interaction a ∈ 2P , we write q
a→ q ′, iff

(q, a, q ′) ∈→. When the interaction is irrelevant, we simply write q → q ′.
An interaction a is enabled in state q , denoted q

a→, iff there exists q ′ ∈ Q such that
q

a→ q ′.

In BIP, a system can be obtained as the composition of n components, each modeled by a
transition system Bi = (Qi,Pi,→i), for i ∈ [1, n], such that their sets of ports are pairwise
disjoint: for i, j ∈ [1, n] (i �= j), we have Pi ∩ Pj = ∅. We take P = ⋃n

i=1 Pi , the set of all
ports in the system.

The composition of components {Bi}n
i=1, parametrized by a set of interactions γ ⊂ 2P

is the transition system B = (Q,P,→γ), where Q = ∏n

i=1 Qi and →γ is the least set of
transitions satisfying the rule

a ∈ γ ∀i ∈ [1, n],
(
qi

a∩Pi−→i q ′
i ∨ (a ∩ Pi = ∅ ∧ qi = q ′

i)
)

(q1, . . . , qn)
a→γ (q ′

1, . . . , q
′
n)

. (1)

We write B = γ (B1, . . . ,Bn).
Notice that an interaction a ∈ γ is enabled in γ (B1, . . . ,Bn), only if, for each i ∈ [1, n],

the interaction a ∩Pi is enabled in Bi ; the states of components that do not participate in the
interaction remain unchanged.

Several distinct interactions can be enabled at the same time, thus introducing non-
determinism in the product behavior. This can be restricted by means of priorities [8, 9].
Throughout this paper, whenever two interactions, a and a′, such that a ⊂ a′, are possible,
we always choose a′.

Example 2.3 (Sender/Receivers) Figure 2 shows a component πγ (S,R1,R2,R3) obtained
by composition of four atomic components: a sender, S, and three receivers, R1, R2, R3

with a set of interactions γ and priorities π . The sender has a port s for sending messages,
and each receiver has a port ri (i = 1,2,3) for receiving them. Table 1 specifies γ for four
different interaction schemes.

Rendezvous means strong synchronization between S and all Ri . This is specified by a sin-
gle interaction involving all the ports. This interaction can occur only if all the components
are in states enabling transitions labeled respectively by s, r1, r2, r3.

Broadcast means weak synchronization, that is a synchronization involving S and any (pos-
sibly empty) subset of Ri . This is specified by the set of all interactions containing s. These

Fig. 2 A system with four
atomic components

Form Methods Syst Des (2010) 36: 167–194 173

Table 1
Interaction scheme Interactions

Rendezvous sr1r2r3

Broadcast s, sr1, sr2, sr3, sr1r2, sr1r3, sr2r3, sr1r2r3

Atomic broadcast s, sr1r2r3

Causal chain s, sr1, sr1r2, sr1r2r3

Fig. 3 A BIP model for the Modulo-8 counter (a), parallel composition of two Modulo-2 counter LTS (b),
and the Modulo-4 counter LTS (c)

interactions can occur only if S is in a state enabling s. Each Ri participates in the interac-
tion only if it is in a state enabling ri .

Atomic broadcast means that either a message is received by all Ri , or by none. Two in-
teractions are possible: s, when at least one of the receiving ports is not enabled, and the
interaction sr1r2r3, corresponding to strong synchronization.

Causal chain means that for a message to be received by Ri it has to be received by all Rj ,
for j < i. This interaction scheme is common in reactive systems.

Example 2.4 (Modulo-8 counter) Figure 3(a) shows a BIP model for the Modulo-8 counter
presented in [22]. It is obtained by composing three Modulo-2 counter components. Ports
p, r , and t correspond to inputs, whereas q , s, and u correspond to outputs. One can easily
verify that the interactions pqr , pqrst , and pqrstu happen, respectively, on every second,
fourth, and eighth occurrence of an interaction through the port p. This can be done by
computing the semantics of this model according to (1). For simplicity, we only consider
here the first two Modulo-2 counter components, but the observations are extended to the
complete model in a straightforward manner.

Figure 3(b) shows an LTS obtained by parallel composition of the first two Modulo-2
counter components in Fig. 3(a), whereas its restriction under the interaction model
{p,pqr,pqrs} is shown in Fig. 3(c).

Notice that the composition operator can express usual parallel composition opera-
tors [9], such as the ones used in CSP [18] and CCS [23]. By enforcing maximal progress,
priorities allow to express broadcast.

3 The algebra of connectors

In this section, we introduce the algebra of connectors AC(P), which formalizes the concept
of connector, supported by the BIP language [5].

174 Form Methods Syst Des (2010) 36: 167–194

Table 2 AI(P), AC(P), and T (P) representations of four basic interaction schemes

AI(P) AC(P) T (P)

Rendezvous sr1r2r3 sr1r2r3 sr1r2r3

Broadcast s(1 + r1)(1 + r2)(1 + r3) s′r1r2r3 s → (r1 ⊕ r2 ⊕ r3)

Atomic broadcast s(1 + r1r2r3) s′[r1r2r3] s → r1r2r3

Causal chain s(1 + r1(1 + r2(1 + r3))) s′[r ′
1[r ′

2r3]] s → r1 → r2 → r3

3.1 The algebra of interactions

Let P be a set of ports, such that 0,1 �∈ P . Recall (Definition 2.1) that an interaction is a non-
empty subset a ⊆ P . In the following, to simplify the presentation, we lift the non-emptiness
restriction.

In [9], we have introduced the algebra of interactions AI(P), used to define the inter-
action semantics of AC(P). The elements of this algebra can be bijectively mapped to sets
of interactions. The additive union operator in AI(P) corresponds to the set union in 22P

,
whereas the multiplicative synchronization operator corresponds to the element-wise union:
the synchronization of two sets of interactions is the set consisting of interactions obtained
by taking the union of two interactions, one from each of the operands. For instance, the
term p + q in AI({p,q, r}), represents the set of interactions {p,q}, whereas (p + q)r rep-
resents the set {pr, qr}. The additive and multiplicative identity elements 0 and 1 correspond
respectively to the sets ∅ and {∅}.

AI(P) provides a clear and convenient notation for manipulation of sets of interactions.

Example 3.1 (Sender/Receiver continued) The second column of Table 2 shows the repre-
sentation in AI(P) for the four interaction schemes of Example 2.3.

Any interaction a ∈ 2P defines a boolean valuation on P with, for each p ∈ P , p = true
iff p ∈ a. In other words, a valuation on P determines for each port whether it participates
in the interaction or no. Notice that the constant valuation false is associated to the interac-
tion 1, which corresponds to the empty set of ports ∅ ∈ 2P .

Below, we denote by B[P] the free boolean algebra generated by the set P . Each element
of B[P] is a formula defining a set of interactions in a system with the set of ports P .

Definition 3.2 An interaction a ∈ 2P satisfies a formula R ∈ B[P] (denoted a |= R) iff the
corresponding boolean valuation satisfies R. A term x ∈ AI(P) satisfies R (denoted x |= R)
iff all interactions belonging to x satisfy R, that is

x |= R
def⇐⇒ ∀a ∈ x, a |= R.

3.2 Syntax and interaction semantics for AC(P)

In this section, we introduce the Algebra of Connectors, AC(P). We follow the mathematical
style of defining algebraic structures. First, we provide the grammar generating a set of
connector terms from the set P of ports of the system by using two operations: fusion and
typing. Then, we introduce the axioms satisfied by these operators, which results in the
algebraic structure that is the quotient of the set of connector terms by the equivalence

Form Methods Syst Des (2010) 36: 167–194 175

relation induced by the axioms. Finally, we give the interaction semantics of connectors
by defining |x| ∈ AI(P) for each term x generated by the grammar, and show that this
definition is unambiguous, i.e., the function | · | respects the axioms.

For the sake of simplicity, we consider the subset of terms of AC(P) that do not involve
union, that is the subset of monomial connectors (cf. [9]).

Syntax Let P be a set of ports, such that 0,1 �∈ P . The syntax of the algebra of connectors,
AC(P), is defined by

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x,

(2)

for p ∈ P , and where ‘·’ is a binary operator called fusion, and brackets ‘[·]’ and ‘[·]′’ are
unary typing operators.

Fusion is a generalization of synchronization in AI(P). Typing is used to form connec-
tors: [·]′ defines triggers (which can initiate an interaction), and [·] defines synchrons (which
need synchronization with other ports).

In order to simplify notation, we will omit brackets on 0, 1, and ports p ∈ P , as well as
‘·’ for the fusion operator.

Definition 3.3 In a system with a set of ports P , connectors are elements of AC(P).

The algebraic structure of AC(P) inherits most of the axioms of AI(P).

Axioms

1. Fusion is associative, commutative, idempotent, and has an identity element [1].
2. Typing satisfies the following axioms, for x ∈ AC(P):

a) [0]′ = [0],
b) [[x]]′ = [[x]′]′ = [x]′ and [[x]] = [[x]′] = [x].

Semantics The semantics of AC(P) is given by the function | · | : AC(P) → AI(P), de-
fined by the rules

|p| = p, (3)
∣
∣
∣
∣
∣

n∏

i=1

[xi]
∣
∣
∣
∣
∣
=

n∏

i=1

|xi |, (4)

∣
∣
∣
∣
∣

n∏

i=1

[xi]′ ·
m∏

j=1

[yj]
∣
∣
∣
∣
∣
=

n∑

i=1

|xi |
∏

k �=i

(
1 + |xk|

) m∏

j=1

(
1 + |yj |

)
, (5)

for p ∈ P ∪{0,1} and x, x1, . . . , xn, y1, . . . , ym ∈ AC(P). In (5),
∑

and
∏

are, respectively,
the union and synchronization operators of AI(P).

Example 3.4 Consider a system consisting of two Senders with ports s1, s2, and three Re-
ceivers with ports r1, r2, r3. The meaning of s ′

1s
′
2r1[r2r3] is

176 Form Methods Syst Des (2010) 36: 167–194

|s ′
1s

′
2r1[r2r3]|

(5)= |s1|(1 + |s2|)(1 + |r1|)(1 + |r2r3|) + |s2|(1 + |s1|)(1 + |r1|)(1 + |r2r3|)
(4)= (|s1|(1 + |s2|) + |s2|(1 + |s1|)

)
(1 + |r1|)(1 + |r2||r3|)

(3)= (
s1(1 + s2) + s2(1 + s1)

)
(1 + r1)(1 + r2r3)

= (s1 + s2 + s1s2)(1 + r1 + r2r3 + r1r2r3),

which corresponds to the set of the interactions containing at least one of s1 and s2, and
possibly r1 and a synchronization of both r2 and r3.

Proposition 3.5 ([9]) The axiomatization of AC(P) is sound, that is, for x, y ∈ AC(P), the
equality x = y implies |x| = |y|.

Example 3.6 (Sender/Receiver continued) The third column of Table 2 shows the connectors
for the four interaction schemes of Example 2.3.

Notice that AC(P) allows compact representation of interactions and, moreover, explic-
itly captures the difference between broadcast and rendezvous. The typing operator induces
a hierarchical structure.

Example 3.7 (Modulo-8 counter continued) In the model shown in Fig. 4, the causal chain
pattern is applied to connectors p, qr , st , and u. Interactions are modeled by a single struc-
tured connector p′[[qr]′[[st]′u]]:

∣
∣p′ [[qr]′[[st]′u]]∣

∣ = p + pqr + pqrst + pqrstu.

These are exactly the interactions of the Modulo-8 counter of Fig. 3.

Definition 3.8 Two connectors x, y ∈ AC(P) are equivalent (denoted x � y), iff they have
the same sets of interactions, i.e., x � y if and only if |x| = |y|.

Note 3.9 Notice that, in general, two equivalent terms are not congruent. For example,
p′ � p, but p′q � p + pq �� pq , for p,q ∈ P . Similarly, the following terms are equiva-
lent, but not congruent: pqr , p[qr], and [pq]r , as different sets of interactions are obtained,
when these terms are fused with a trigger. For instance, s ′[pq]r � s + spq + sr + spqr ,
whereas s ′p[qr] � s + sp + sqr + spqr . This is due to the fact that the semantics of the fu-
sion operator is not defined in the same way according to whether the operands have triggers
or not (cf. (4), (5)).

Fig. 4 Modulo-8 counter

Form Methods Syst Des (2010) 36: 167–194 177

Definition 3.10 We denote by ‘∼=’ the largest congruence relation contained in �, that is
the largest relation satisfying

x ∼= y �⇒ ∀E ∈ AC(P ∪ {z}), E(x/z) � E(y/z), (6)

where x, y ∈ AC(P), z �∈ P , E(x/z), and (resp. E(y/z)) denotes the expression obtained
from E by replacing all occurrences of z by x (resp. y).

Theorem 3.11 ([9]) For x, y ∈ AC(P), we have x ∼= y iff the following three conditions
hold simultaneously

1. x � y,
2. x · 1′ � y · 1′,
3. #x > 0 ⇔ #y > 0,

where we denote by #x the number of non-zero triggers in x, that is, for x = ∏k

i=1[xi]′ ×
∏n

i=k+1[xi], #x
def=#{i ∈ [1, k]|xi �� 0}.

The last two conditions in this theorem ensure that the two connectors “behave” similarly
when fused with other connectors. For instance, to illustrate the application of the third
condition, consider x[p][q] and y[p][q]. If #x = 0 �= #y, all interactions of x[p][q] contain
both ports p and q , whereas interactions in y[p][q] can contain any combination of these
two ports (p and/or q , or neither).

Corollary 3.12 For x, y ∈ AC(P), it holds [x]′[y]′ ∼= [[x]′[y]′]′.

Note 3.13 A complete axiomatization of the congruence relation ∼= is given in [10].

4 Causal semantics for connectors

In this section, we propose a new causal semantics for AC(P) connectors, which is consis-
tent with that given in terms of interactions. This semantics allows efficient computation of
a boolean representation for connectors.

Indeed, in [9], we have shown that efficient computation of boolean operations (e.g., in-
tersection, complementation) is crucial for efficient implementation of some classes of sys-
tems, e.g., synchronous systems. In this section, we present a method for computing boolean
representations for AC(P) connectors through a translation into the algebra of causal inter-
action trees T (P). The terms of the latter have a natural boolean representation as sets of
causal rules (implications). In particular, this boolean representation allows the use of ex-
isting techniques such as BDDs avoiding the complex enumeration of the interactions of
connectors.

The key idea for causal semantics is to render explicit the causal relations between differ-
ent parts of the connector. In a fusion of typed connectors, triggers are mutually independent,
and can be considered parallel to each other. Synchrons participate in an interaction only if
it is initiated by a trigger. This introduces a causal relation: the trigger is a cause that can
provoke an effect, which is the participation of a synchron in an interaction.

There are essentially three possibilities for connectors involving ports p and q:

178 Form Methods Syst Des (2010) 36: 167–194

1. A strong synchronization pq .
2. One trigger p′q , i.e., p is the cause of an interaction and q a potential effect, which we

will denote in the following by p → q .
3. Two triggers p′q ′, i.e., p and q are independent (parallel), which we will denote in the

following by p ⊕ q .

This can be further extended to chains of causal relations between interactions. For ex-
ample, (p ⊕ q) → (rs → t) corresponds to the connector p′q ′[[rs]′t]. It means that any
combination of p and q (i.e., p, q , or pq) can trigger an interaction in which both r and
s may participate (thus, the corresponding interactions are p, q , pq , prs, qrs, and pqrs).
Moreover, if r and s participate then t may do so, which adds the interactions prst , qrst ,
and pqrst .

Causal interaction trees constructed with these two operators provide a compact and clear
representation for connectors that shows explicitly the atomic interactions (p, q , rs, and t

in the above example) and the dependencies between them. They also allow to exhibit the
boolean causal rules, which define the necessary conditions for a given port to participate
in an interaction. Intuitively, this corresponds to expressing arrows in the causal interaction
trees by implications.

A causal rule is a boolean formula over P , which has the form p ⇒ ∨n

i=1 ai , where p is
a port and ai are interactions that can provoke p. Thus, in the above example, the causal rule
for the port r is r ⇒ ps ∨ qs, which means that for the port r to participate in an interaction
of this connector, it is necessary that this interaction contain either ps or qs.

A set of causal rules uniquely describes the set of interactions that satisfy it (cf. Sect. 3.1),
which provides a simple and efficient way for computing boolean representations for con-
nectors by transforming them first into causal interaction trees and then into a conjunction
of the associated causal rules.

In the following sub-sections we formalize these ideas.

4.1 Causal interaction trees

In this section, we introduce the Algebra of Causal Interaction Trees, T (P). We adopt the
same approach as in Sect. 3.2, that is we proceed by introducing the syntax of the elements,
followed by the axioms for the operators and the semantics of the algebra. We also show that
the semantic equivalence respects the axioms, i.e., these axioms are sound (but not complete)
with respect to the semantic equivalence.

Syntax Let P be a set of ports such that 0,1 �∈ P . The syntax of the algebra of causal
interaction trees, T (P), is defined by

t ::= a|a → t |t ⊕ t, (7)

where a is an interaction, and ‘→’ and ‘⊕’ are respectively the causality and the parallel
composition operators. Causality binds stronger than parallel composition.

Although the causality operator is not associative, for interactions a1, . . . , an, we abbrevi-
ate a1 → (a2 → (· · · → an) · · ·)) to a1 → a2 → ·· · → an. We call this construction a causal
chain.

Notice that causality is an operator transforming a pair consisting of an interaction and a
causal interaction tree into a causal interaction tree, that is →: 2P × T (P) → T (P). In the
end of this section we extend causality to a total operator on T (P).

Form Methods Syst Des (2010) 36: 167–194 179

Axioms

1. Parallel composition, ‘⊕’, is associative, commutative, idempotent, and its identity ele-
ment is 0.

2. Causality, ‘→’, satisfies the following axioms:
(a) a → 1 = a,
(b) a → (1 → t) = a → t ,
(c) a → 0 = a,
(d) 0 → t = 0.

3. The following axiom relates the two operators:

a → (t1 ⊕ t2) = a → t1 ⊕ a → t2.

Semantics The semantics of T (P) is given by the function | · | : T (P) → AI(P), defined
by the rules

|a| = a, (8)

|a → t | = a
(
1 + |t |), (9)

|t1 ⊕ t2| = |t1| + |t2| + |t1||t2|, (10)

where a is an interaction and t, t1, t2 ∈ T (P).

Example 4.1 (Causal chain) Consider interactions a1, . . . , an ∈ 2P and a causal chain a1 →
a2 → ·· · → an. Iterating rule (9), we then have

|a1 → a2 → ·· · → an| = a1

(
1 + |a2 → ·· · → an|

)

= a1 + a1a2
(
1 + |a3 → ·· · → an|

)

= · · ·
= a1 + a1a2 + · · · + a1a2 · · ·an.

Definition 4.2 Two causal interaction trees t1, t2 ∈ T (P) are equivalent, denoted t1 ∼ t2, iff
|t1| = |t2|.

Proposition 4.3 The axiomatization of T (P) is sound with respect to the semantic equiva-
lence, i.e., for t1, t2 ∈ T (P), t1 = t2 implies t1 ∼ t2.

Sketch This proposition is proved by verifying that the semantics of left- and right-hand
sides coincide for all axioms above. For most axioms, this trivially follows from the prop-
erties of AI(P), such as, in particular, the idempotence of both union and synchronization.
Let us show this, for instance, for axiom 3. We compute the semantics of both sides:

|a → (t1 ⊕ t2)| = a
(
1 + |t1 ⊕ t2|

) = a
(
1 + |t1| + |t2| + |t1||t2|

)
,

and

|a → t1 ⊕ a → t2| = |a → t1| + |a → t2| + |a → t1||a → t2|
= a

(
1 + |t1|

) + a
(
1 + |t2|

) + a
(
1 + |t1|

)
a
(
1 + |t2|

)

= a
(
1 + |t1| + |t2| + |t1||t2|

)
,

180 Form Methods Syst Des (2010) 36: 167–194

Fig. 5 A causal interaction tree
is the parallel composition of its
causal chains

where the last equation follows from the idempotence of operations on AI(P). �

Note 4.4 Axiom 3 of T (P) implies that any causal interaction tree can be represented as
a parallel composition of its causal chains (see Fig. 5). Thus an interaction belonging to a
causal interaction tree is a synchronization of any number of prefixes (cf. Example 4.1) of
the corresponding causal chains, i.e., branches of this tree.

Example 4.5 (Sender/Receiver continued) The fourth column of Table 2 shows the causal
interaction trees for the four interaction schemes of Example 2.3.

Proposition 4.6 The equivalence relation ∼ on T (P) is a congruence.

Sketch We have to show that for t1, t2 ∈ T (P) and a context C(z) ∈ T (P ∪ {z}), the equiva-
lence t1 ∼ t2 implies C(t1/z) ∼ C(t2/z), where C(ti/z) (i = 1,2) is the expression obtained,
as in Definition 3.10, by replacing in C all occurrences of z by ti . As the semantics of
T (P) operators does not depend on the syntactic structure of their operands (cf. Note 3.9),
structural induction on the context C(z) proves the proposition. �

Note 4.7 Notice that the system of axioms for T (P) presented above is not complete with
respect to ∼. For instance, for a, b �∈ {0,1} we have a → ab ∼ a → b, but a → ab �= a → b.

Finally, we recursively define a total causality operator on T (P), by putting

t → t ′ def=
{

a → (t1 ⊕ t ′), if t = a → t1,

t1 → t ′ ⊕ t2 → t ′, if t = t1 ⊕ t2.

This definition simplifies the presentation, in the next section, of the τ function transforming
AC(P) connectors into causal interaction trees (see (12)).

Proposition 4.8 For all t, t1, t2 ∈ T (P), hold the following properties of the total causality
operator on T (P).

1. t → 1 = t ,
2. t → (1 → t1) = t → t1,
3. t → 0 = t ,
4. t → (t1 ⊕ t2) = t → t1 ⊕ t → t2.

Sketch All these properties follow directly from the corresponding T (P) axioms by struc-
tural induction on t . �

4.2 Correspondence with AC(P)

We define the function τ : AC(P) → T (P) associating a causal interaction tree with a con-
nector. By Corollary 3.12 and the associativity of both fusion in AC(P) and parallel com-

Form Methods Syst Des (2010) 36: 167–194 181

position in T (P), the following equations are sufficient to define τ :

τ(p) = p, (11)

τ

(

[x]′
n∏

i=1

[yi]
)

= τ(x) →
n⊕

i=1

τ(yi), (12)

τ
([x1]′[x2]′

) = τ(x1) ⊕ τ(x2), (13)

τ
([y1][y2]

) =
m1⊕

i=1

m2⊕

j=1

a1
i a

2
j → (

t1
i ⊕ t2

j

)
, (14)

where x, x1, x2, y1, . . . , yn ∈ AC(P), p ∈ P ∪ {0,1}, and, in (14), we assume τ(yk) =⊕mk

i=1 ak
i → tki , for k = 1,2.

Example 4.9 Consider P = {p,q, r, s, t, u} and p′q ′[[r ′s][t ′u]] ∈ AC(P). We have

τ
(
p′q ′[[r ′s][t ′u]]) = τ

([
p′q ′]′[[r ′s][t ′u]]

)
= τ(p′q ′) → τ

([r ′s][t ′u])

= (p ⊕ q) → (
rt → (s ⊕ u)

)

= (
p → rt → (s ⊕ u)

) ⊕ (
q → rt → (s ⊕ u)

)
.

We also define the function σ : T (P) → AC(P), which associates with a causal interac-
tion tree a connector:

σ(a) = a, (15)

σ(a → t) = [a]′[σ(t)], (16)

σ(t1 ⊕ t2) = [σ(t1)]′[σ(t2)]′. (17)

Proposition 4.10 The functions σ : T (P) → AC(P) and τ : AC(P) → T (P), satisfy the
following properties

1. ∀x ∈ AC(P), |x| = |τ(x)|,
2. ∀t ∈ T (P), |t | = |σ(t)|,
3. τ ◦ σ = id ,
4. σ ◦ τ � id , that is ∀x ∈ AC(P), σ(τ(x)) � x.

Sketch The first three properties can be demonstrated by comparing definitions (3)–(5) and
(8)–(10) of the semantic function | · | and (12)–(17) for functions τ and σ . The fourth prop-
erty then follows trivially from the first two. �

The above proposition says that the diagram shown in Fig. 6 is commutative except for
the loop AC(P)

τ→ T (P)
σ→ ACc(P) ↪→ AC(P).

In this diagram, ACc(P) ⊂ AC(P) is the set of causal connectors, which is the image of
T (P) by σ . Note that any connector has an equivalent representation in ACc(P). Similarly,
AI c(P) ⊂ AI(P) is the set of causal interactions, the image of T (P) by the semantic func-
tion | · |. Proposition 4.12 provides a characteristic property of the set of causal interactions.

182 Form Methods Syst Des (2010) 36: 167–194

Fig. 6 A diagram relating the
algebras

Note 4.11 Notice that σ together with the restriction of τ to ACc(P) define an isomorphism
between T (P) and ACc(P). Indeed, consider x ∈ ACc(P). By definition of ACc(P), there
exists t ∈ T (P) such that x = σ(t). By Proposition 4.10.3, we then have

σ(τ(x)) = σ(τ(σ (t))) = σ(t) = x,

which shows that (σ ◦ τ)|A Cc(P) = id , that is ∀x ∈ ACc(P), σ(τ(x)) = x. This equality,
together with Proposition 4.10.4 proves the isomorphism.

Proposition 4.12 The set of the causal interactions is closed under synchronization, that is
x ∈ AI c(P) iff ∀a, b ∈ x, ab ∈ x.

Proof Consider x ∈ AI c(P) and interactions a, b ∈ x. There exists t ∈ T (P) such that
x = |t |. Hence, according to Note 4.4, both a and b can be represented as unions of a number
of prefixes of branches of t , which implies automatically that ab can also be represented in
this form, and therefore ab ∈ x.

To prove that the condition of the proposition is sufficient, consider x ∈ AI(P) satis-
fying this property, and take t = ⊕

a∈x a. Clearly, |t | = x, which, by definition, implies
x ∈ AI c(P). �

4.3 Boolean representation of connectors

We now introduce causal rules that provide a mechanism for operations on causal trees and,
consequently, a simple and efficient way for computing boolean representations for AC(P)

connectors.

Definition 4.13 A causal rule is a B[P] formula E ⇒ C, where E (the effect) is either a
constant, true, or a port variable p ∈ P , and C (the cause) is either a constant, true or false,
or a disjunction of interactions, i.e.,

∨n

i=1 ai where, for all i ∈ [1, n], ai are conjunctions of
port variables.

Causal rules without constants can be rewritten as formulas of the form p ∨∨n

i=1 ai and,
consequently, are conjunctions of dual Horn clauses, i.e., disjunctions of variables whereof
at most one is negative.

In line with Definition 3.2, an interaction a ∈ 2P satisfies the rule p ⇒ ∨n

i=1 ai , iff p ∈ a

implies ai ⊆ a, for some i ∈ [1, n], that is for a port to belong to an interaction at least one
of the corresponding causes must belong there too.

Example 4.14 Let p ∈ P , a ∈ 2P , and x ∈ AI(P). Three particular types of causal rules
can be set apart:

1. For an interaction to satisfy the rule true ⇒ a, it is necessary that it contain a.

Form Methods Syst Des (2010) 36: 167–194 183

2. Rules of the form p ⇒ true are satisfied by all interactions.
3. An interaction can satisfy the rule p ⇒ false only if it does not contain p.

Note 4.15 Notice that a1 ∨ a1a2 = a1, and therefore causal rules can be simplified accord-
ingly:

(p ⇒ a1 ∨ a1a2) � (p ⇒ a1). (18)

We assume that all the causal rules are simplified by using (18).

Definition 4.16 A system of causal rules is a set R = {p ⇒ xp}p∈P t , where P t def=P ∪{true}.
An interaction a ∈ 2P satisfies the system R (denoted a |= R), iff a |= ∧

p∈P t (p ⇒ xp). We
denote by |R| the union (in the sense of AI(P)) of the interactions satisfying R:

|R|def=
∑

a|=R

a.

A causal interaction tree t ∈ T (P) is equivalent to a system of causal rules R iff |t | = |R|.

We associate with t ∈ T (P) the system of causal rules

R(t)
def={p ⇒ cp(t)}p∈P t , (19)

where, for p ∈ P t , the function cp : T (P) → B[P] is defined as follows. For a ∈ 2P (with
p �∈ a) and t, t1, t2 ∈ T (P), we put

cp(0) = false, (20)

cp(p → t) = true, (21)

cp(pa → t) = a, (22)

cp(a → t) = a ∧ cp(t), (23)

cp(t1 ⊕ t2) = cp(t1) ∨ cp(t2). (24)

Similarly, we define ctrue(t) by

ctrue(0) = false,

ctrue(1 → t) = true,

ctrue(a → t) = a,

ctrue(t1 ⊕ t2) = ctrue(t1) ∨ ctrue(t2).

Note 4.17 It is important to observe that, for any t ∈ T (P), the system of causal rules R(t),
defined by (19), contains exactly one causal rule for each p ∈ P t (i.e., each p ∈ P and true).
For ports that do not participate in t , the rule is p ⇒ false. For ports that do not have any
causality constraints, the rule is p ⇒ true.

Example 4.18 Consider the causal interaction tree t = p → (q → r ⊕ qs) shown in Fig. 7.
The associated system R(t) of causal rules is

{true ⇒ p, p ⇒ true, q ⇒ p, r ⇒ pq, s ⇒ pq}.

184 Form Methods Syst Des (2010) 36: 167–194

Fig. 7 Graphical representation
of the causal interaction tree
t = p → (q → r ⊕ qs)

Notice that cq(t) = p(cq(q → r) ∨ cq(qs)) = p ∨ ps = p.
The corresponding boolean formula is then

(true ⇒ p) ∧ (p ⇒ true) ∧ (q ⇒ p) ∧ (r ⇒ pq) ∧ (s ⇒ pq) = pq ∨ pr s.

Proposition 4.19 For any causal interaction tree t ∈ T (P), |t | = |R(t)|.

Sketch This proposition follows from Note 4.4 and a similar observation for the sys-
tem R(t). Indeed, according to the rules (20)–(24) and the simplification rule (18), the cause
in a causal rule p ⇒ cp(t) is the union of all the shortest prefixes in t , containing p. �

5 Synthesis of causal interaction trees

5.1 Expressing boolean functions as causal rules

In the previous section, we have introduced the causal rules providing a straightforward way
for computing boolean representations of connectors (and causal interaction trees). This sec-
tion deals with the reverse procedure: given a boolean function on P , we construct a causal
interaction tree model (and consequently an AC(P) connector). We proceed in two steps:
given a boolean formula, we translate it into an equivalent one, which is the disjunction of
the corresponding causal rules, from which we construct an equivalent causal interaction
tree. This translation leads, in particular, to the definition of a normal form for causal in-
teraction trees. We also derive a simple algorithm for computing the intersection of causal
interaction trees directly on the corresponding systems of causal rules.

In order to compute the causal rules for a given boolean function ϕ ∈ B[P], we
take its conjunctive normal form (CNF) ϕ = C1 ∧ C2 ∧ · · · ∧ Cn with, for k ∈ [1, n],
Ck = ∨

i∈Ik
pi ∨ ∨

j∈Jk
pj , where Ik ∩ Jk = ∅, and pi,pj ∈ P for all i ∈ Ik and j ∈ Jk .

We can now rewrite every clause Ck , with Jk �= ∅, as a disjunction of dual Horn clauses
Ck = ∨

j∈Jk
(pj ∨ ∨

i∈Ik
pi). By distributivity, we obtain a representation of ϕ as a disjunc-

tion of dual Horn formulas and, after combining the clauses with the same negative variable,
ϕ = R1 ∨ R2 ∨ · · · ∨ Rm with, for k ∈ [1,m],

Rk =
∧

i∈Ĩk

(

pi ∨
∨

j∈J̃k,i

aj

)

=
∧

i∈Ĩk

(

pi ⇒
∨

j∈J̃k,i

aj

)

,

where, for all i ∈ Ĩk , pi ∈ P t and, for all j ∈ J̃k,i , aj is false, true, or a conjunction of positive
variables. Recall (Example 4.14) that for a positive clause Ck we have Ck = (true ⇒ Ck),
whereas p = (p ⇒ false). Thus, each Rk is a system of causal rules as defined in Sect. 4.3.

Proposition 5.1 For ϕ ∈ B[P], the above representation is defined uniquely.

Form Methods Syst Des (2010) 36: 167–194 185

The next section presents an algorithm for constructing a causal interaction tree for a sys-
tem of causal rules, thus completing the chain of transformations necessary for constructing
the causal interaction tree corresponding to a boolean function.

This algorithm also allows one to normalize and compute intersections of causal interac-
tion trees by transforming them into systems of causal rules and back. These two operations
are also presented in the subsequent sections.

5.2 Constructing causal interaction trees from causal rules

Definition 5.2 A system of causal rules {pi ⇒ xi}n
i=1 is saturated iff, for all i ∈ [1, n],

xi = xi[(xjpj)/pj], where xi[(xjpj)/pj] is obtained by substituting (xjpj) for pj in xi , for
all j �= i. We denote by C R(P) the set of saturated systems of causal rules over P .

For a given system of causal rules R = {pi ⇒ xi}n
i=1, we denote by Rsat = {pi ⇒ x∗

i }n
i=1,

the saturated system of rules, where {x∗
i }n

i=1 is the unique fixpoint iteratively computed by

x0
i = xi, xk+1

i = xk
i [(pjx

k
j)/pj], for i = 1, . . . , n.

Clearly, this computation terminates within a bounded number of iterations.

Lemma 5.3 Let R be a system of causal rules, and Rsat be the corresponding saturated
system. Then |R| = |Rsat|.

Sketch This lemma follows directly from the fact that the substitution, used to compute the
fixpoint in the definition of saturation, preserves boolean equivalence of systems of causal
rules. �

Example 5.4 Consider the system of causal rules {p ⇒ ap , q ⇒ paq}, where p,q ∈ P are
two ports, and ap, aq ∈ 2P . To saturate it, we substitute pap for p in the second rule to obtain
{p ⇒ ap , q ⇒ papaq}.

Clearly, the corresponding boolean formulas are equivalent:

(p ⇒ ap) ∧ (q ⇒ paq) = (p ∨ ap) ∧ (q ∨ paq)

= pq ∨ apq ∨ papaq = (p ∨ ap) ∧ (q ∨ papaq)

= (p ⇒ ap) ∧ (q ⇒ papaq).

Note 5.5 For any t ∈ T (P), the system of causal rules R(t), defined by (19), is saturated.

Lemma 5.6 Let X = {p ⇒ xp}p∈P t be a saturated system of causal rules simplified by

absorption (18), with xp = ∨mp

i=1 a
p

i . The set Y = {pa
p

i |p ∈ P, i ∈ [1,mp]} ∪ {atrue
i |i ∈

[1,mtrue]} consists exactly of all interactions satisfying X and minimal in the following
sense:

1. Any interaction a, such that a |= X, can be decomposed as a = b1 . . . bk , with
b1, . . . , bk ∈ Y .

2. No a ∈ Y can be further decomposed in this way, i.e., a = b1 . . . bk , with 1 �= bj ∈ Y for
j ∈ [1, k], implies k = 1.

186 Form Methods Syst Des (2010) 36: 167–194

Input: A saturated system of causal rules X = {p ⇒ xp}p∈P t with xp = ∨mp

i=1 a
p

i .
Output: A causal interaction tree t ∈ T (P) equivalent to X.

// Initialisation phase
1. Y := {pa

p

i |p ∈ P, i ∈ [1,mp]} ∪ {atrue
i | i ∈ [1,mtrue]};

2. Z,Z0 := {1}; // 1 corresponds to the empty interaction ∅ ∈ 2P

3. t := 1; // t ∈ T (P)—the resulting tree
4. n := 0; // counter variable for iteration
// Computation phase
5. n := n + 1;
6. Zn := min(Y \ Z); // the subset of interactions of minimal cardinality in Y \ Z

7. for each w ∈ Zn

8. k := max{j ∈ [0, n − 1]|∃z ∈ Zj : z ⊂ w}; // k is defined, as ∀w ⊂ P,1 ⊂ w

9. for each z ∈ Zk such that z ⊂ w

10. // add a son labeled by w to the node z in t

replace the sub-tree z → tz of t rooted in z by z → (tz ⊕ w);
11. Z := Z ∪ Zn;
12. if Y �= Z, goto Step 5;
// Clean-up phase
13. if 1 �∈ Y , t := ⊕

i ti // we had t = 1 → ⊕
i ti due to the initialisation at Step 3.

14. starting from the leaves of t , for all nodes a1 → a2 replace a2 by a2 \ a1.

Fig. 8 Algorithm for constructing a causal interaction tree from a saturated system of causal rules

Proof 1. Consider a |= X, and a port p1 ∈ a. We then have a |= ∧
p∈P t (p ⇒ ∨mp

i=1 a
p

i), and
therefore, for some i1 ∈ [1,mp1], ap1

i1
⊆ a. Hence, a = b1a1, with b1 = p1a

p1
i1

and a1 = a\b1.
Idempotence of synchronization in AI(P) allows us to proceed by picking some p2 ∈ a1 and
applying the same reasoning to obtain a = b1b2a2, where bj = pja

pj

ij
, for j = 1,2, and a2 =

a1 \ b2, and so on. As at each step we select pj ∈ aj−1, we have aj � aj−1, and therefore,
for some k, ak = 1, which implies a = b1 . . . bk , with bj = pja

pj

ij
∈ Y , for j ∈ [1, k].

2. Consider a = b1 . . . bk ∈ Y . As a ∈ Y , for some p ∈ P t , we have a = pap , where ap is
a summand in xp . If k > 1, there exists l ∈ [1, k] such that p ∈ bl and bl � a. As bl ∈ Y , we
have bl = qaq , for some q ∈ P t and aq a summand in xq . The assumption that all rules are
simplified by absorption (18) implies that p �= q . As X is saturated, we have

xq = xq

[
(pxp)/p

] =
mq∨

i=1

mp∨

j=1

a
q

i [(pa
p

j)/p] =
∨

i∈I

(
mp∨

j=1

a
q

i a
p

j

)

∨
∨

i �∈I

a
q

i ,

where I ⊆ [1,mq] is the subset indexing the summands of xq containing p, i.e., i ∈ I iff
p ∈ a

q

i . As aq is a summand in xq and p ∈ aq , there exist i ∈ [1,mq] and j ∈ [1,mp], such
that aq = a

q

i a
p

j . Hence, a
p

j ⊆ aq � ap (recall that q ∈ ap , but q �∈ aq). However, both a
p

j and
ap are summands in xp , which contradicts the assumption that all rules are simplified by
absorption (18). �

Theorem 5.7 Given a saturated system of causal rules X = {p ⇒ xp}p∈P t , the algorithm
shown in Fig. 8, constructs an equivalent causal interaction tree t .

Proof Consider the set Y defined in Lemma 5.6. By Lemma 5.6(2), the elements of Y cor-
respond exactly to all the prefixes in the causal interaction tree constructed by the algorithm

Form Methods Syst Des (2010) 36: 167–194 187

Fig. 9 Construction of the
normal form of causal interaction
trees example: initial (a),
intermediate (b), and normal
form (c) trees

shown in Fig. 8. Thus, Lemma 5.6(1) implies |X| ⊆ |t |. As X is saturated, Y ⊂ |X|. There-
fore, by Proposition 4.12, |t | ⊆ |X|, which finalizes the proof. �

5.3 Normal form for causal interaction trees

Lemma 5.8 Let R1,R2 be two saturated systems of causal rules. Then |R1| = |R2| implies
R1 = R2 (equal as sets of causal rules that cannot be simplified by absorption).

Proof Suppose that R1 �= R2, and all rules are simplified by absorption (18). Then there
exists p ∈ P such that the rules (p ⇒ ∨n

i=1 ai) ∈ R1 and (p ⇒ ∨m

j=1 bj) ∈ R2 do not
coincide. Without loss of generality, for some i ∈ [1, n], we have bj �⊆ ai simultane-
ously for all j ∈ [1,m]. This implies that the interaction pai does not satisfy the rule
(p ⇒ ∨m

j=1 bj) ∈ R2, and therefore pai �∈ |R2|. At the same time pai ∈ |R1|, as R1 is satu-
rated. �

Corollary 5.9 Let t1, t2 ∈ T (P) be two equivalent causal interaction trees. The correspond-
ing systems of causal rules R(t1) and R(t2) (cf. (19)) are identical.

Proof t1 ∼ t2 implies |R(t1)| = |t1| = |t2| = |R(t2)|. Hence, by Lemma 5.8, R(t1) = R(t2). �

Definition 5.10 Let t ∈ T (P) be a causal interaction tree. The normal form of t is the causal
interaction tree obtained by applying the algorithm in Fig. 8 to the system R(t).

Proposition 4.19, Theorem 5.7 and Corollary 5.9 guarantee that the definition above is
well founded and, indeed, defines a normal form.

Example 5.11 Consider again the causal interaction tree t = p → (q → r ⊕ qs) from Ex-
ample 4.18 (also shown in Fig. 9(a)) and the associated system R(t) of causal rules

{true ⇒ p, p ⇒ true, q ⇒ p, r ⇒ pq, s ⇒ pq}.
The set Y defined in Step 1 of the algorithm in Fig. 8 is therefore {p,pq,pqr,pqs}. The

sets of minimal cardinality interactions (represented by Zn) at subsequent iterations at Step 6
are then respectively {p}, {pq}, and {pqr,pqs}. Thus, the intermediate tree constructed in
Steps 2–13 is that shown in Fig. 9(b), whereas the final tree is shown in Fig. 9(c).

6 Examples

6.1 Multi-shot semantics

For the examples of this section we will need the notions of interconnected systems and
multi-shot semantics introduced in [9].

188 Form Methods Syst Des (2010) 36: 167–194

Input: Causal interaction trees t1, t2 ∈ T (P).
Output: A causal interaction tree t ∈ T (P) such that |t | = |t1| ∩ |t2|.
1. compute systems of causal rules R(t1) and R(t2) defined by (19);
2. X := {p ⇒ cp(t1) ∧ cp(t2)|p ∈ P t };
3. compute Xsat by saturating X;
4. apply the algorithm in Fig. 8 to Xsat;

Fig. 10 Algorithm for computing an intersection of two causal interaction trees

Definition 6.1 An interconnected system is a pair ({Bi}n
i=1, {Cj }m

j=1), where Bi =
(Qi,Pi,→i) with →i⊆ Qi × 2Pi × Qi , are components, and Cj ∈ AC(P) with P =⋃n

i=1 Pi .
For an integer parameter 0 < d ≤ m, the d-shot semantics of the interconnected sys-

tem ({Bi}n
i=1, {Cj }m

j=1) is the system γd(B1, . . . ,Bn) defined by applying the rule (1) with
γ = γd , where γd = ∑ |∏i∈I [Ci]′|, where the summation is performed over all subsets
I ⊆ [1,m] of cardinality d .

Multi-shot semantics corresponds to the case, where d is maximal (i.e., d = m), and, in
particular, γm = |∏m

i=1[Ci]′|.

Notice that, for an interconnected system, d-shot semantics entails simultaneous firing
of interactions from at most d connectors.

The application of rule (1) for the d-shot semantics with d > 1, requires the nontrivial
computation of all the possible interactions. For this the following proposition can be used.

Proposition 6.2 Let S = ({Bi}n
i=1, {Cj }m

j=1) be an interconnected system. For i ∈ [1, n], we
denote by Gi = ∑

qi∈Qi
Gqi

, with Gqi
= ∑

qi
a→ a, the set of all interactions offered by the

component i alone. Let G = |∏n

i=1[Gi]′|. The set of the possible interactions for d-shot
semantics of S is G ∩ γd .

Notice that G = |∏n

i=1[Gi]′| is the set of all the interactions offered by the components,
whereas γd is the set of the interactions allowed by d-shot semantics. Therefore, the inter-
section of the two sets characterizes all the possible interactions in the system.

To compute efficiently the intersection of two causal connectors we use their boolean
representation. It follows trivially from Proposition 4.12 that an intersection of two causal
sets of interactions is itself causal. To simplify presentation, we reason on causal interaction
trees. The mapping between AC(P) and T (P) is given by functions σ and τ defined in
Sect. 4.2.

Lemma 6.3 For t1, t2 ∈ T (P), the algorithm in Fig. 10 computes the unique causal inter-
action tree in normal form t ∈ T (P) (denoted t1 ∩ t2), such that |t | = |t1| ∩ |t2|.

Example 6.4 Consider two causal interaction trees with opposite causal relations: t1 =
p → q (possible interactions: p and pq) and t2 = q → p (possible interactions: q and pq).
Let us compute t1 ⊕ t2 and t1 ∩ t2.

The systems of causal rules corresponding to t1 and t2 are respectively {true ⇒ p, p ⇒
true, q ⇒ p} and {true ⇒ q , q ⇒ true, p ⇒ q}.

1. To compute t1 ⊕ t2, we apply (24) from the definition of the function cp to obtain the
system of causal rules {true ⇒ p ∨ q , p ⇒ true ∨ q , q ⇒ true ∨ p}, which is simplified

Form Methods Syst Des (2010) 36: 167–194 189

Fig. 11 Multi-shot modulo-8
counter

Table 3 Causal interaction trees
and rules for Example 6.5 G γm

(p → q) ⊕ (r → s) ⊕ (t → u) p ⊕ qr ⊕ st ⊕ u

true ⇒ p + r + t true ⇒ p + qr + st + u

p ⇒ true r ⇒ true t ⇒ true p ⇒ true

q ⇒ p s ⇒ r u ⇒ t q ⇒ r r ⇒ q s ⇒ t t ⇒ s

to {true ⇒ p ∨ q , p ⇒ true, q ⇒ true} by absorption (18). This corresponds to the causal
interaction tree p ⊕ q .

2. To compute t1 ∩ t2, we apply Lemma 6.3 to obtain the system {true ⇒ pq,p ⇒ q, q ⇒
p}, which saturates to {true ⇒ pq,p ⇒ pq,q ⇒ pq}, and produces therefore the causal
interaction tree with a single node pq .

Example 6.5 (Modulo-8 counter continued) Consider the interconnected system in Fig. 11.
The set of the possible interactions for multi-shot semantics is the intersection of G =
[p′q]′[r ′s]′[t ′u]′ and γm = p′[qr]′[st]′u′, and corresponds to the modulo-8 counter from Ex-
ample 2.4. As in Proposition 6.2, G represents the interactions offered by the components,
whereas γm represents those offered by atomic connectors. The causal interaction trees for
G and γm are shown in Table 3, as well as the corresponding systems of causal rules.

Applying Lemma 6.3 and absorption (18), we compute the system of causal rules for
G ∩ γm:

{true ⇒ p + qr + st + ru + tu, p ⇒ true, q ⇒ pr, r ⇒ q, s ⇒ rt, t ⇒ s, u ⇒ t}.
After saturation, we obtain

{true ⇒ p, p ⇒ true, q ⇒ pqr, r ⇒ pqr, s ⇒ pqrts, t ⇒ pqrts, u ⇒ pqrts}.
By applying the algorithm of Fig. 8, we obtain the causal interaction tree p → qr → st → u,
which represents the connector of Example 3.7.

6.2 Two tasks with preemption

Let T1 and T2 be two tasks running on a single processor. We assume that each one of these
tasks can preempt the other. No interactions other than preemption are possible.

Tasks can be modeled by the generic atomic component shown in Fig. 12(a). Its behav-
ior has three states: 1—the task is running, 2—the task is waiting to begin computation,
and 3—the task has been preempted and is waiting to resume computation. The transitions
are labeled b, f , p, and r for begin, finish, preempt, and resume respectively, and can be
synchronized with external events through the corresponding ports of the behavior.

Mutual preemption is described by two statements:

1. A running task is preempted, when the other one begins computation.
2. A preempted task resumes computation, when the other one finishes.

190 Form Methods Syst Des (2010) 36: 167–194

Fig. 12 Three behaviors
modeling a preemptable task

Fig. 13 A causal interaction
tree (a) and an interconnected
system (b) modeling two
mutually preempting tasks

In order to compute the connectors ensuring these interactions, we rewrite these state-
ments as causal rules on {bi, fi,pi, ri}i=1,2:

true ⇒ b1 ∨ f1 ∨ b2 ∨ f2,

p1 ⇒ b2, p2 ⇒ b1,

r1 ⇒ f2, r2 ⇒ f1.

(25)

The first rule in (25) means that at any moment at least one task must execute a begin or
finish action. It can be easily verified that this system of causal rules is saturated. Apply-
ing the algorithm in Fig. 8, we obtain the causal interaction tree shown in Fig. 13(a), and,
furthermore,

σ
(
b1 → p2 ⊕ f1 → r2 ⊕ b2 → p1 ⊕ f2 → r1

) = [
b′

1p2

]′[
f ′

1r2

]′[
b′

2p1

]′[
f ′

2r1

]′
. (26)

Figure 13(b) shows an interconnected system consisting of two tasks and four connectors
forming the right-hand side of (26). The multi-shot semantics of this system realizes the
desired interaction model.

Different behaviors can be used to model a preemptable task. In addition to behavior in
Fig. 12(a), other possible behaviors for tasks are given in Fig. 12(b, c).

1. The behavior in Fig. 12(b) has two states: 1—the task is running, 2—the task is waiting,
with the four transitions labeled by b, f , p, and r .

2. The behavior in Fig. 12(c) has four states. States 1–3 are the same as those of the behavior
in Fig. 12(a), whereas in state 4 the task is sleeping, and the two additional transitions s

and w correspond respectively to actions sleep and wake-up.

Independently of which behavior in Fig. 12 is used to model the tasks, the interactions
offered by each task are Gi = bi + fi + pi + ri , for i = 1,2 (cf. Proposition 6.2). Thus, the
interactions possible in the multi-shot semantics of the system in Fig. 13(b) are described by

[
b1 + f1 + p1 + r1

]′[
b2 + f2 + p2 + r2

]′ ∩ [
b′

1p2

]′[
f ′

1r2

]′[
b′

2p1

]′[
f ′

2r1

]′

� b′
1p2 + f ′

1r2 + b′
2p1 + f ′

2r1.

Hence, the multi-shot and single-shot semantics of this system coincide.

Form Methods Syst Des (2010) 36: 167–194 191

Notice, however, that the connectors computed above define the set of allowed interac-
tions. The actual interactions, as well as the order of their execution, depend on the behavior
that is used to model the tasks. For example, when the behavior in Fig. 12(b) is used, the
following trace is acceptable in the composed system

b1(b2p1)(b1p2)(b2p1) · · · ,
whereas, when the behavior in Fig. 12(a) is used, an interaction f2r1 must follow b2p1:

b1(b2p1)(f2r1) · · · .

6.3 Sequential execution of two tasks

In a setting, similar to that of the previous section—that is two tasks T1 and T2 running on
a single processor and mutually preempting each other—we now additionally require that
each execution of T1 be followed by one of T2, and, conversely, each execution of T2 be
preceded by one of T1. In other words, we impose the sequential execution T1;T2.

The corresponding causal rules can therefore be obtained by adding to (25) the boolean
constraint b2 = f1, expressed as the conjunction of two causal rules f1 ⇒ b2 and b2 ⇒ f1.
The resulting system is shown in Fig. 14(a) and the saturated one in Fig. 14(b).

The causal interaction tree computed by the algorithm in Fig. 8 is shown in Fig. 15(a),
and the corresponding AC(P) connector is

σ
(
b1 → p2 ⊕ b2f1 → (r2 ⊕ p1) ⊕ f2 → r1

) = [
b′

1p2

]′[[b2f1]′r2p1

]′[
f ′

2r1

]′
,

which corresponds to the multi-shot semantics of the interconnected system (with three
connectors) in Fig. 15(b). (Notice that the ports b2 and r2 are interchanged in this figure, as
compared to Fig. 13(b).)

The above systems of causal rules represent boolean constraints on the interactions of
the composed system, derived from the required interaction model (i.e., sequential execu-
tion with preemption). Other boolean constraints can also be considered. When we model
the two tasks as atomic components given in Fig. 12, we can derive additional constraints

Fig. 14 Causal rules for the
sequential execution of two tasks
example

true ⇒ b1 ∨ f1 ∨ b2 ∨ f2

p1 ⇒ b2 p2 ⇒ b1

r1 ⇒ f2 r2 ⇒ f1

f1 ⇒ b2 b2 ⇒ f1

true ⇒ b1 ∨ b2f1 ∨ f2

p1 ⇒ b2f1 p2 ⇒ b1

r1 ⇒ f2 r2 ⇒ b2f1

f1 ⇒ b2 b2 ⇒ f1

(a) (b)

Fig. 15 A causal interaction tree (a) and two interconnected systems (b, c) Medellin a sequential execution
of two mutually preempting tasks

192 Form Methods Syst Des (2010) 36: 167–194

from their behavior: two ports from the same component cannot participate together in the
same interaction. Hence one can, for instance, add to the system in Fig. 14(b) the boolean
constraints p1 ⇒ b1 f1 r1 and r2 ⇒ b2 f2 p2, which modifies the existing causal rules for
p1 and r2, giving p1 ⇒ false and r2 ⇒ false. Thus, the resulting causal interaction tree is
b1 → p2 ⊕ b2f1 ⊕ f2 → r1, and the corresponding AC(P) connector is (see Fig. 15(c))

σ
(
b1 → p2 ⊕ b2f1 ⊕ f2 → r1

) = [
b′

1p2

]′[
b2f1

]′[
f ′

2r1

]′
.

6.4 Three sequential tasks running on two processors

We now further develop the example of the previous sections, by introducing one more
task, although running on a different processor. Thus our system is composed of three tasks
T1, T2, and T3, with T1 and T3 running on the same processor and preempting each other
as in Sect. 6.2 (cf. Fig. 16(a)). The second task is running on a separate processor and,
consequently, cannot be preempted. Therefore ports p and r are irrelevant for T2, and will
not be considered in the sequel.

We want to ensure the following execution protocol:

1. Each execution of T2 must be immediately preceded by an execution of T1. However,
T1 can be executed without being immediately followed by an execution of T2 (dashed
arrow in Fig. 16(a)). (One can assume, for example, that T1 represents a producer serving
multiple consumers, whereof only one, represented by T2, has to be considered. Thus
several executions of T1 can happen before an execution of T2 is triggered.)

2. Each execution of T2 must be immediately followed by an execution of T3, and, con-
versely, each execution of T3 must be immediately preceded by an execution of T2 (solid
arrow in Fig. 16(a)).

As in the previous sections, we represent the constraints characterizing this protocol as
causal rules on ports of the three components. The corresponding system of causal rules is
shown in Fig. 17(a) and the saturated one in Fig. 17(b).

The corresponding causal interaction tree is shown in Fig. 16(b) and the interconnected
system in Fig. 16(c).

7 Conclusion

The paper provides a causal semantics for the algebra of connectors. This semantics leads to
simpler and more intuitive representations which can be used for efficient implementation

Fig. 16 An illustration (a), a causal interaction tree (b), and an interconnected system (c) for the example of
three sequential tasks

Form Methods Syst Des (2010) 36: 167–194 193

true ⇒ b1 ∨ f1 ∨ b2 ∨ f2 ∨ b3 ∨ f3

p1 ⇒ b3 p3 ⇒ b1

r1 ⇒ f3 r3 ⇒ f1

b2 ⇒ f1

f2 ⇒ b3 b3 ⇒ f2

true ⇒ b1 ∨ f1 ∨ f2b3 ∨ f3

p1 ⇒ f2b3 p3 ⇒ b1

r1 ⇒ f3 r3 ⇒ f1

b2 ⇒ f1

f2 ⇒ b3 b3 ⇒ f2

(a) (b)

Fig. 17 Causal rules for the sequential execution of three tasks example

Fig. 18 A graphical
representation of the relations
between different algebras

of operations on connectors in BIP. Causal semantics allows a nice characterization of the
set of causal connectors, which is isomorphic to the set of causal interaction trees. The set of
causal connectors also corresponds to the set of causal interactions, which are closed under
synchronization. The relation between the different algebras is shown in Fig. 18.

T (P) breaks with the reductionist view of interaction semantics as it distinguishes be-
tween symmetric and asymmetric interaction. It allows structuring global interactions as the
parallel composition of chains of interactions. This is a very intuitive and alternate approach
to interaction modeling especially for broadcast-based languages such as synchronous lan-
guages. Causal interaction trees are very close to structures used to represent dependencies
between signals in synchronous languages, e.g., [24]. This opens new possibilities for uni-
fying asynchronous and synchronous semantics.

T (P) is a basis for computing boolean representations for connectors, adequate for their
symbolic manipulation and computation of boolean operations. These can be used for effi-
cient implementations of component-based languages such as BIP. The examples provided
in the previous section show that causal rules can be used for the specification of interactions
from which connectors can be synthesized by using the algorithm given in Fig. 8.

Although several approaches to connector synthesis can be found in the literature (e.g.,
[2, 16, 19]), all of them are developed in a rather different context. Indeed, as discussed
above, connectors in these settings can be viewed as special types of components and com-
prise all three layers among Behavior, Coordination, and Data transfer. In [16, 19], connec-
tors are synthesized that enforce specific properties in rather restrained contexts. From this
point of view our approach is rather novel, as it allows one to synthesize connectors in a very
generic setting and respects the separation of concerns principle; it is similar to synthesis of
circuits from boolean specifications. This last idea seems very interesting and deserves fur-
ther investigation. In a new paper currently in preparation, we show how the coordination
layer of BIP (connectors and priorities) can be used to synthesize controllers enforcing any
present-state safety property.

Acknowledgements The authors would like to thank the anonymous reviewers for their comments that
have greatly contributed to the improvement of the original draft.

194 Form Methods Syst Des (2010) 36: 167–194

References

1. Arbab F (2004) Reo: a channel-based coordination model for component composition. Math Struct Com-
put Sci 14(3):329–366

2. Arbab F, Meng S (2008) Synthesis of connectors from scenario-based interaction specifications. In:
CBSE’08. LNCS, vol 5282. Springer, Berlin, pp 114–129

3. Balarin F, Watanabe Y, Hsieh H, Lavagno L, Passerone C, Sangiovanni-Vincentelli A (2003) Metropolis:
an integrated electronic system design environment. IEEE Comput 36(4):45–52

4. Balasubramanian K, Gokhale A, Karsai G, Sztipanovits J, Neema S (2006) Developing applications
using model-driven design environments. IEEE Comput 39(2):33–40

5. Basu A, Bozga M, Sifakis J (2006) Modeling heterogeneous real-time components in BIP. In: 4th IEEE
international conference on software engineering and formal methods (SEFM06), September 2006, pp 3–
12. Invited talk

6. Benveniste A, Guernic PL, Jacquemot C (1991) Synchronous programming with events and relations:
the SIGNAL language and its semantics. Sci Comput Program 16(2):103–149

7. Bernardo M, Ciancarini P, Donatiello L (2000) On the formalization of architectural types with process
algebras. In: SIGSOFT FSE, pp 140–148

8. BIP. http://www-verimag.imag.fr/~async/BIP/bip.html
9. Bliudze S, Sifakis J (2007) The algebra of connectors—structuring interaction in BIP. In: Proceedings of

the EMSOFT’07, pp 11–20. ACM SigBED, October 2007
10. Bliudze S, Sifakis J (2008) The algebra of connectors—structuring interaction in BIP. IEEE Trans Com-

put 57(10):1315–1330
11. Bliudze S, Sifakis J (2008) A notion of glue expressiveness for component-based systems. In: van

Breugel F, Chechik M (eds) CONCUR 2008. LNCS, vol 5201. Springer, Berlin, pp 508–522
12. Bruni R, Lanese I, Montanari U (2006) A basic algebra of stateless connectors. Theor Comput Sci

366(1):98–120
13. Darondeau P, Degano P (1989) Causal trees. In: Ausiello G, Dezani-Ciancaglini M, Rocca SRD (eds)

ICALP. LNCS, vol 372. Springer, Berlin, pp 234–248
14. Eker J, Janneck J, Lee E, Liu J, Liu X, Ludvig J, Neuendorffer S, Sachs S, Xiong Y (2003) Taming

heterogeneity: the Ptolemy approach. Proc IEEE 91(1):127–144
15. Fiadeiro JL (2004) Categories for software engineering. Springer, Berlin
16. Galik O, Bureš T (2005) Generating connectors for heterogeneous deployment. In: SEM’05. ACM, New

York, pp 54–61
17. Halbwachs N, Caspi P, Raymond P, Pilaud D (1991) The synchronous dataflow programming language

LUSTRE. Proc IEEE 79:1305–1320
18. Hoare CAR (1985) Communicating sequential processes. Prentice Hall international series in computer

science. Prentice Hall, New York
19. Inverardi P, Tivoli M (2001) Automatic synthesis of deadlock free connectors for com/dcom applications.

In: ACM proceedings of the joint 8th ESEC and 9th FSE, Vienna, September 2001. ACM, New York
20. Maggiolo-Schettini A, Peron A, Tini S (2003) A comparison of Statecharts step semantics. Theor Com-

put Sci 290(1):465–498
21. Manna Z, Pnueli A (1992) The temporal logic of reactive and concurrent systems: specification, vol 1.

Springer, New York
22. Maraninchi F, Rémond Y (2001) Argos: an automaton-based synchronous language. Comput Lang

27:61–92
23. Milner R (1989) Communication and concurrency. Prentice Hall international series in computer science.

Prentice Hall, New York
24. Nowak D (2006) Synchronous structures. Inf Comput 204(8):1295–1324
25. Ray A, Cleaveland R (2003) Architectural interaction diagrams: AIDs for system modeling. In: ICSE’03:

proceedings of the 25th international conference on software engineering. IEEE Computer Society,
Washington, pp 396–406

26. Sifakis J (2005) A framework for component-based construction. In: 3rd IEEE international conference
on software engineering and formal methods (SEFM05), September 2005, pp 293–300. Keynote talk

27. Spitznagel B, Garlan D (2003) A compositional formalization of connector wrappers. In: ICSE. IEEE
Computer Society, Los Alamitos, pp 374–384

28. Stefănescu G (2000) Network algebra. Springer, New York

http://www-verimag.imag.fr/~async/BIP/bip.html

	Causal semantics for the algebra of connectors
	Abstract
	Introduction
	The BIP component framework
	The algebra of connectors
	The algebra of interactions
	Syntax and interaction semantics for AC(P)

	Causal semantics for connectors
	Causal interaction trees
	Correspondence with AC(P)
	Boolean representation of connectors

	Synthesis of causal interaction trees
	Expressing boolean functions as causal rules
	Constructing causal interaction trees from causal rules
	Normal form for causal interaction trees

	Examples
	Multi-shot semantics
	Two tasks with preemption
	Sequential execution of two tasks
	Three sequential tasks running on two processors

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

