
Leakage in presence of an active and adaptive

adversary

Cristian Ene , Laurent Mounier
e-mail : Cristian.Ene@univ-grenoble-alpes.fr

Laurent.Mounier@univ-grenoble-alpes.fr

October 21, 2022

Measuring the information leakage of a system is very important for security.
From side-channels to biases in random number generators, quantifying how
much information a system leaks about its secret inputs is crucial for preventing
adversaries from exploiting it; this has been the focus of intensive research efforts
in the areas of privacy and of quantitative information flow (QIF). For example,
both programs in Figure 1 are leaking some additional information about the
secret if one can measure the execution time or if one can observe the instruction
cache. Moreover, by interacting iteratively with the application, the adversary
is able to improve his knowledge [3].

void compare(int l, int s){
if (s<l)

{write_log(‘‘too large’’);} // 1 sec.
else

{some_computation();} // 2 sec.
}

int pwdCheck(char *l, char* pwd){
unsigned i;
for (i=0; i<B_Size; i++)

if (l[i]!=pwd[i])
{return 0;}

return 1;
}

Figure 1: Leaking programs

Hence the overall scenario (Figure 2) is the following one:

• There is some secret x ∈ X randomly generated (for example a database
containing some confidential informations)

• Iteratively and adaptively,

1. The adversary provides some application together with some public
input l ∈ L

2. The application (taking x as a secret parameter) does some compu-
tation and outputs some y ∈ Y

The adversary’s knowledge about the the secret x ∈ X at some moment i
is called the prior probability πi (e.g. initially, π0 would be the uniform dis-
tribution on X ). In our context, an application corresponds to a family of

1



Secret : x

Output: y

Input : l

Application

*

Figure 2: The target scenario

probabilistic channels (Cl)l∈L, such that for each x ∈ X and l ∈ L, it returns a
y ∈ Y according to some distribution PCl

(Y = y | X = x). In the considered
scenario, the adversary interacts iteratively (Figure 3) with the database con-
taining the secret information x until his knowledge πk achieves some desired
vulnerability level V(πk).

π←π0; // (1)

while V(π) ≤ ε do // (2)

l0←argmaxl∈L V[π.Cl]; // (3)

Provide and Execute App with input l0;
Get the output y0 returned by App;

Update π according to y0 // (4)

where

• (1) π0 is the initial probabilistic information about the secret x[1] (called
the prior)

• (2) ε is the intended level of knowledge (modelled by some measure V)
about the secret

• (3) find the “best” input l0 that optimises the leakage ; π.Cl0 is the hyper-
distribution corresponding to executing App with prior π and input l0,
i.e. the distribution of posteriors P(X | Y = y0, L = l0), each with
probability P(Y = y0 | L = l0)

• (4) use the Bayes law to update the belief: π←P(X | Y = y0, L = l0)

Figure 3: Attacker’s strategy

In [2], the authors explicitely track the querier’s belief about secret data,
represented as a probability distribution, and deny any query that could increase
knowledge above a given threshold. Their security model is quite restrictive,
resulting in denying even a very popular query corresponding to a password
checker. In [5] we extended this work in several directions: we developped
an algorithm able to quantify the information leaked by the application about
the secret in a more realistic security model and taking into account a more
powerfull adversary, able to get side-channel informations about the execution

2



of the application (for example, the branchings taken during an execution).
In this internship, we plan to build upon this work in several directions:

• to extend the algorithm from [5];

• to implement this algorithm via abstract interpretation, for example by
extending the probabilistic polyhedra model introduced in [2];

• apply the prototype tool in order to measure the vulnerability of different
benchmarks from literature;

• implement the scenario from Figure 3 in order to synthesis an adaptive
attack [4].

References

[1] Mário S. Alvim, Konstantinos Chatzikokolakis, Carroll Morgan, Catuscia
Palamidessi, Geoffrey Smith, and Annabelle McIver. An Axiomatization of
Information Flow Measures. Theoretical Computer Science, 777:32–54, 2019.

[2] P Mardziel, S Magill, M Hicks, and M Srivatsa. Dynamic enforcement of
knowledge-based security policies using probabilistic abstract interpretation.
Journal of Computer Security ACM SIGSOFT, 21(4):463–532, 2013.

[3] Quoc-Sang Phan, Lucas Bang, Corina S Pasareanu, Pasquale Malacaria,
and Tevfik Bultan. Synthesis of adaptive side-channel attacks. In 2017
IEEE 30th Computer Security Foundations Symposium (CSF), pages 328–
342. IEEE, 2017.

[4] Seemanta Saha, William Eiers, Ismet Burak Kadron, Lucas Bang, and Tevfik
Bultan. Incremental attack synthesis. ACM SIGSOFT Software Engineering
Notes, 44(4):16–16, 2019.

[5] Valentin Viollet. Weighted side channel analysis. master cybersecurity, mas-
ter of science in informatics at grenoble, master mathematiques and appli-
cations, september 2022.

3


