Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion

1-synchronous clocks, underspecified clocks and non-determinism

Guillaume looss, Albert Cohen, Marc Pouzet

ENS - PARKAS

April 29, 2019

<ロ > < 団 > < 畳 > < 茎 > < 茎 > = うへで 1/24

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	00000	000	O
Context of the presentation				

- Link with the previous presentation:
 - Front-end in the previously presented compilation chain
 - Based on the synchronous compiler Heptagon
 - Orthogonal to the architecture used

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	00000	000	O
Context of	the presentatio	on		

- Link with the previous presentation:
 - Front-end in the previously presented compilation chain
 - Based on the synchronous compiler Heptagon
 - Orthogonal to the architecture used
- In relation to Lopht:
 - Manage the harmonic multi-periodic aspect
 - $\bullet\,$ Normalization of the input Lustre program + annotations
- Other motivations:
 - Make specification easier to write manually in Lustre
 - Using more information which could be specified

Del				
00000	000000	00000	000	
Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion

Background - Synchronous language

- Manipulate infinite flow of values
- Global tick synchronize the production of values
- Point-to-point operators
- Accessing past values possible ("fby" \approx memory)

X	0	1	1	2	
у	4	-2	1	4	
42	42	42	42	42	
x + y	4	-1	2	6	
42 fby <i>y</i>	42	4	-2	1	

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
0●0000	0000000	00000	000	0
Backgroun	d - Clocks			

- A stream might have no value on a tick
- Clock: *x* :: *clk*
 - Encode the presence of a value
 - Can be an arbitrary boolean stream
- Temporal operators: sub-sampling (when) and fusion (merge)
- Clocking analysis: check coherency of clocks

X	:: c	0	1	1	2	
b	:: c	t	f	t	t	
z = x when b	:: c on b	0	_	1	2	
у	:: c on not b	_	42	_	_	
merge b z y	:: c	0	42	1	2	

<ロ > < 部 > < 言 > < 言 > こ 三 の Q で 4/24

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
00●000	0000000	00000	000	O
Backgroun	d - Lustre			

• Equational language for synchronous programs (similar languages: Scade, Heptagon, ...)

```
node accumulator(i : int) returns (o : int)
var x : int
let
x = 0 fby o;
o = x + i;
tel
```

<ロ > < 部 > < 書 > < 書 > 三 の Q で 5/24

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
00●000	0000000	00000	000	O
Backgroun	d - Lustre			

• Equational language for synchronous programs (similar languages: Scade, Heptagon, ...)

```
node accumulator(i : int) returns (o : int)
var x : int
let
x = 0 fby o;
o = x + i;
tel
```

• Code generation:

- "reset" and "step" functions
- Infinite "while" loop (1 iteration = 1 base tick)
- Clocks: encoded using "if" conditions

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000				
	1 KI I			

Background - N-synchronous model

• N-synchronous model:

- Ultimately periodic clocks
- Example: 101(1001)
- Strictly periodic: no initialization phase

\Rightarrow Clocking analysis becomes more predictable

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000				
	I NI I			

Background - N-synchronous model

• N-synchronous model:

- Ultimately periodic clocks
- Example: 101(1001)
- Strictly periodic: no initialization phase
- \Rightarrow Clocking analysis becomes more predictable

- **buffer**: Communication between variables on two different clocks
 - Clocks must be compatible (adaptability relation: <:)
 - \Rightarrow Able to compute the size of a buffer

1_synchro	nous clocks			
Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
	0000000	00000	000	O

Consider integration program: Top-level node, orchestrating all tasks of an application

• Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / \dots)

• Tasks are present only once per period

000000	0000000	00000	000	0
1-synchro	onous clocks			

• Consider integration program: Top-level node, orchestrating all tasks of an application

• Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / \dots)

- Tasks are present only once per period
- 1-synchronous clocks: " $(0^k 10^{n-k-1})$ " (or " $0^k (10^{n-1})$ ") with $0 \le k < n$, n = period and k = phase

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
	0000000	00000	000	O
1-synchro	onous clocks			

- Consider integration program: Top-level node, orchestrating all tasks of an application
 - Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / \dots)
 - Tasks are present only once per period
- 1-synchronous clocks: " $(0^k 10^{n-k-1})$ " (or " $0^k (10^{n-1})$ ") with $0 \le k < n$, n = period and k = phase
- Integration program: only 1-synchronous clocks are used
 → Can use that condition to do more inside a compiler

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
○○○○○●	0000000	00000	000	O
In this talk				

Three incremental modifications on top of Lustre:

- Restriction of the clock calculus to 1-synchronous clocks
 - Specialization of the N-synchronous clocks
 - Associated specialized clocking rules
 - Code generation possibilities (Hyperperiod Expansion)

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
○○○○○●	0000000	00000	000	0
In this talk				

Three incremental modifications on top of Lustre:

- Restriction of the clock calculus to 1-synchronous clocks
 - Specialization of the N-synchronous clocks
 - Associated specialized clocking rules
 - Code generation possibilities (Hyperperiod Expansion)

Phases of the clock of some variables are not specified

- Kahn semantic satisfied, dataflow semantic not
- Constraints on phases obtained from clocking rules
- Solution used to go back to fully-specified Lustre program

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
○○○○○●	0000000	00000	000	O
In this talk				

Three incremental modifications on top of Lustre:

- Restriction of the clock calculus to 1-synchronous clocks
 - Specialization of the N-synchronous clocks
 - Associated specialized clocking rules
 - Code generation possibilities (Hyperperiod Expansion)

Phases of the clock of some variables are not specified

- Kahn semantic satisfied, dataflow semantic not
- Constraints on phases obtained from clocking rules
- Solution used to go back to fully-specified Lustre program
- In Non-deterministic computation
 - Don't mind which instance of a value used
 - Neither semantics are satisfied
 - More freedom for phase selection
 - Go back to deterministic program

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	●000000	00000	000	O
1-synchron	ous clock calcul	us - Same pe	riod	

Clock calculus restricted to 1-synchronous clocks.
 → What happens to temporal operators?

- Clock calculus restricted to 1-synchronous clocks.
 → What happens to temporal operators?
- (buffer: phase not specified ~> not yet)
- delay: increment the phase of the clock / delay(d) = delay^d
 - Should not cross the period (no initialization)

$$H dash$$
 a :: $(0^k 10^{n-k-1})$ $0 \leq d < n-k$

$$H \vdash \mathsf{delay}(\mathsf{d}) \mathsf{a} :: (0^{k+d} 10^{n-(k+d)-1})$$

- Clock calculus restricted to 1-synchronous clocks.
 → What happens to temporal operators?
- (buffer: phase not specified \rightsquigarrow not yet)
- delay: increment the phase of the clock / delay(d) = delay^d
 - Should not cross the period (no initialization)

$$H dash$$
 a :: $(0^k 10^{n-k-1})$ $0 \leq d < n-k$

$$H \vdash \mathsf{delay}(\mathsf{d}) \mathsf{a} :: (0^{k+d} 10^{n-(k+d)-1})$$

• delayfby(d): (initialization required / \approx "short fby")

$$\frac{H \vdash a :: (0^{k}10^{n-k-1}) \quad H \vdash i :: (0^{k+d-n}10^{n-(k+d-n)-1}) \quad 0 \le k+d-n < n}{H \vdash i \text{ delayfby}(d) a :: (0^{k+d-n}10^{n-(k+d-n)-1})}$$

- \Rightarrow Harmonicity condition
- \Rightarrow Argument of the when must be of the form "($F^k T F^{n-k-1}$)"

<ロト<日ト<日</th>10/24

- \Rightarrow Harmonicity condition
- \Rightarrow Argument of the when must be of the form "($F^k T F^{n-k-1}$)"

<ロト<日ト<日</th>10/24

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	00●0000	00000	000	O
Toward fas	ster periods (r	nerge/current)		

- \Rightarrow Harmonicity condition
 - merge: one branch per instance of fast period
 - current (repetition of a value, with eventual updates)
 - Argument (when the update occurs) must be " $(F^k T F^{n-k-1})$ "

• Initialization needed ("i")

- \Rightarrow Harmonicity condition
 - merge: one branch per instance of fast period
 - current (repetition of a value, with eventual updates)
 - Argument (when the update occurs) must be " $(F^k T F^{n-k-1})$ "
 - Initialization needed ("i")

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	०००●०००	00000	000	O
Code gene	ration			

• Use 1-synchronous restriction to generate efficient code

<ロト < 母 ト < 喜 ト < 喜 ト 言 の へ で 12/24

- Know exactly when the activation will happen
- All "buffer" are of size $1 \rightsquigarrow$ memory cell

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	०००●०००	00000	000	O
Code gene	ration			

- Use 1-synchronous restriction to generate efficient code
 - Know exactly when the activation will happen
 - All "buffer" are of size $1 \rightsquigarrow$ memory cell

- Three code generation schemes:
 - Classical step function (base clock)
 - If conditions
 - One step function per phase (base clock)
 - No if conditions / while loop looping on them in order
 - One step function for the whole period (slowest clock)
 - $\Rightarrow~$ Hyperperiod expansion transformation

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	○○○○●○○	00000	000	O
Hyperperio	d expansion - E	xample		

Idea: change base period to a slower one (ex: scm of all periods) \Rightarrow (duplicate fast computation)

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	○○○○●○○	00000	000	O
Hyperperio	d expansion - E	xample		

Idea: change base period to a slower one (ex: scm of all periods) \Rightarrow (duplicate fast computation)

Example:

Input: x :: (1) Local: a :: (1), b :: (10) a = f(x); // f stateless b = g(a when (10)); //g stateless. . . Input: $x_0, x_1 :: (1)$ Local: $a_0, a_1, b :: (1)$ $a_0 = f(x_0);$ $a_1 = f(x_1);$ $b = g(a_0);$. . .

	•••••	00000	000	0		
Hyperperiod expansion - More details						

• $r(Var) \in \mathbb{N}^*$: ratio between Var's period and slowest period

- Variable duplication: $Var \sim Var_0, \ldots, Var_{r(Var)-1}$
- Applied on a normalized program
- Each equation is duplicated r(lhsVar) times

000000	0000000	00000	000	0			
Hynerne	Hyperperiod expansion - More details						

- $r(Var) \in \mathbb{N}^*$: ratio between Var's period and slowest period
- Variable duplication: $Var \sim Var_0, \ldots, Var_{r(Var)-1}$
- Applied on a normalized program
- Each equation is duplicated r(lhsVar) times

Some interesting rules (informaly written):

•
$$\mathbf{a} = \mathbf{op}(\mathbf{b1}, \dots, \mathbf{bm}) \Rightarrow \mathsf{a}_i = \mathsf{op}(\mathsf{b1}_i, \dots, \mathsf{bm}_i)$$
 for $0 \le i < r$

000000	0000000	00000	000	0			
Hynerne	Hyperperiod expansion - More details						

- $r(Var) \in \mathbb{N}^*$: ratio between Var's period and slowest period
- Variable duplication: $Var \sim Var_0, \ldots, Var_{r(Var)-1}$
- Applied on a normalized program
- Each equation is duplicated r(lhsVar) times

Some interesting rules (informaly written):

•
$$\mathbf{a} = \mathbf{op}(\mathbf{b1}, \dots, \mathbf{bm}) \Rightarrow \mathbf{a}_i = \mathbf{op}(\mathbf{b1}_i, \dots, \mathbf{bm}_i)$$
 for $0 \le i < r$

•
$$\mathbf{a} = \mathbf{i}$$
 fby $\mathbf{b} \Rightarrow \mathbf{a}_0 = \mathbf{i}$ fby $\mathbf{b}_{r-1} \mid \mathbf{a}_i = b_{i-1}$ for $1 \le i < r$

				U
Introduction 000000	1-synchronous clocks	Unknown phases	Non-determinism 000	Conclusion O

- $r(Var) \in \mathbb{N}^*$: ratio between Var's period and slowest period
- Variable duplication: $Var \sim Var_0, \ldots, Var_{r(Var)-1}$
- Applied on a normalized program
- Each equation is duplicated r(lhsVar) times

Some interesting rules (informaly written):

•
$$\mathbf{a} = \mathbf{op}(\mathbf{b1}, \dots, \mathbf{bm}) \Rightarrow \mathbf{a}_i = \mathbf{op}(\mathbf{b1}_i, \dots, \mathbf{bm}_i)$$
 for $0 \le i < r$

•
$$\mathbf{a} = \mathbf{i}$$
 fby $\mathbf{b} \Rightarrow \mathsf{a}_0 = \mathsf{i}$ fby $\mathsf{b}_{r-1} \mid \mathsf{a}_i = b_{i-1}$ for $1 \le i < r$

• a = b when (
$$\mathbf{F}^p \mathbf{T} \mathbf{F}^{n-p-1}$$
) $\Rightarrow a_i = b_{p+i \times n}$ for $0 \le i < r(a)$

		Mana data da		Ŭ
Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000		00000	000	0

- $r(Var) \in \mathbb{N}^*$: ratio between Var's period and slowest period
- Variable duplication: $Var \sim Var_0, \ldots, Var_{r(Var)-1}$
- Applied on a normalized program
- Each equation is duplicated r(lhsVar) times

Some interesting rules (informaly written):

•
$$\mathbf{a} = \mathbf{op}(\mathbf{b1}, \dots, \mathbf{bm}) \Rightarrow \mathbf{a}_i = \mathbf{op}(\mathbf{b1}_i, \dots, \mathbf{bm}_i) \text{ for } 0 \le i < r$$

• $\mathbf{a} = \mathbf{i}$ fby $\mathbf{b} \Rightarrow \mathbf{a}_0 = \mathbf{i}$ fby $\mathbf{b}_{r-1} | \mathbf{a}_i = b_{i-1}$ for $1 \le i < r$
• $\mathbf{a} = \mathbf{b}$ when $(\mathbf{F}^p \ \mathbf{T} \ \mathbf{F}^{n-p-1}) \Rightarrow \mathbf{a}_i = b_{p+i \times n}$ for $0 \le i < r(a)$
• $\mathbf{a} = \mathbf{current}((\mathbf{F}^p \ \mathbf{T} \ \mathbf{F}^{n-p-1}), \mathbf{init}, \mathbf{b})$
 $\Rightarrow \begin{cases} a_i = init_i \text{ fby } b_{r(b)-1} & \text{for } 0 \le i$

Hyperperie	od expansion -	Discussion		
	000000			
Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion

Positive points:

- Get rid of the multi-periodic aspect
- Natural way to manage long tasks (with no cutting)
- Decouple the phases of different instances of a variable

<ロト</th>
 ・< 三ト< 三ト</th>
 シーン
 15/24

Hyperperio	d expansion - [Discussion		
Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	○○○○○○●	00000	000	0

• Positive points:

- Get rid of the multi-periodic aspect
- Natural way to manage long tasks (with no cutting)
- Decouple the phases of different instances of a variable

• Negative points:

- Stateless functions needed (If stateful, need to expose the internal state and pass it
 - + reset function to get initial state
 - + at annotation to reuse the memory of states)
- Additional real-time constraints needed on inputs/outputs (release/deadline)

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	●0000	000	O
The problem with phases				

- Phases = large-grain schedule across the periods
 - \rightarrow "Good" choice of phases is architecture dependent (sequential: WCET balancing / parallel: . . . more complicated)

<ロト<日

ト<三ト

ト<三ト

ト

ト

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	●0000	000	O
The proble	m with phases			

- Phases = large-grain schedule across the periods
 - \rightarrow "Good" choice of phases is architecture dependent (sequential: WCET balancing / parallel: ...more complicated)

・ロト ・ 日 ト ・ 三 ト ・ 三 ・ つ へ つ 16/24

- Phase computation is tedious to write and modify:
 - One phase modification impacts many equations
 - Humanly impossible for large applications

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	●0000	000	O
The proble	m with phases			

- Phases = large-grain schedule across the periods
 - \rightarrow "Good" choice of phases is architecture dependent (sequential: WCET balancing / parallel: . . . more complicated)

・ロト ・ 日 ト ・ 三 ト ・ 三 ・ つ へ つ 16/24

- Phase computation is tedious to write and modify:
 - One phase modification impacts many equations
 - Humanly impossible for large applications
- \Rightarrow Choice of phases should be separated from the computation

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	●0000	000	O
The proble	m with phases			

- Phases = large-grain schedule across the periods
 - \rightarrow "Good" choice of phases is architecture dependent (sequential: WCET balancing / parallel: . . . more complicated)
- Phase computation is tedious to write and modify:
 - One phase modification impacts many equations
 - Humanly impossible for large applications
- \Rightarrow Choice of phases should be separated from the computation

Modification proposed:

- Option to only define the period of some local variables
- Implicit buffers operator (clock of rhs <: clock of lhs)

Compilation flow:

- Clocking analysis gathers the constraints on phase
- Solver finds a solution (given cost function)
- $\bullet\,$ Use this solution to explicit phases and buffer ($\rightarrow\,$ delay)

• **buffer:** delay of an unknown length • $(0^k 10^{n-k-1}) <: (0^l 10^{m-l-1})$ iff m = n and $k \le l$ $\frac{H \vdash a :: (0^k 10^{n-k-1}) \quad 0 \le k \le l < n}{H \vdash \text{ buffer } a :: (0^l 10^{n-l-1})}$

- **bufferfby:** additional initialization (period crossed)
- Variations of buffer with other constraints:
 - buffer which fixes its phase (ex: $p \leq 3$)
 - buffer which constraint the latency (ex: $p_B p_A \leq 3$)

Example	of algoly autors	tion.		
000000	000000	00000	000	
Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion

Example of clock extraction

- a,e :: period(1);
- b,d :: period(2);
 - c :: period(6);
- $\mathsf{b}=\mathsf{buffer}\ \mathsf{f}_1(\mathsf{a}\ \mathsf{when}\ (\mathsf{FT}));$
- $c = buffer f_2(b when (TFF));$
- $d = buffer \; f_3(current(\;(\mathsf{FFT}), \; 0, \; c))$
- $e = buffer f_4(current((TF), 0, d))$

<ロト<日本

< 日本

<b

Evampla	of clock overage	tion		
		00000		
Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion

- Bounds from variable declaration: $0 \le p_a, p_e < 1 / 0 \le p_b, p_d < 2 / 0 \le p_c < 6$
- Constraints from buffer:

 $p_a + 1 \leq p_b \ / \ p_b \leq p_c \ / \ p_c - 4 \leq p_d \ / \ p_d \leq p_e$

Solutions:

$$p_a = p_e = 0 \ / \ p_b = 1 \ / \ p_d = 0 \ / \ 1 \le p_c \le 4$$

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	00000	000	O
Solving the	e constraints (1)		

- Solving:
 - Constraint form allows efficient solving
 - Issue: Constraints for the cost function have a different form

・ロト ・ 日 ・ ・ 目 ・ ・ 目 ・ ・ 19/24

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	000●0	000	O
Solving the	e constraints (1)		

- Solving:
 - Constraint form allows efficient solving
 - Issue: Constraints for the cost function have a different form
- Use case: flight control application (6k nodes, 30k data, 4 harmonic periods)
 - Sequential case: load balancing across phases (task weight = its WCET)
 - Direct ILP formulation of the problem tricky possible (Introduce boolean variable $\delta_{T,k}$ for the phases)

<ロト</th>
 ・< 言ト< 言ト</th>
 ・< 19/24</th>

 \Rightarrow Does not scale...

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	०००●०	000	O
Solving the	e constraints (1)		

- Solving:
 - Constraint form allows efficient solving
 - Issue: Constraints for the cost function have a different form
- Use case: flight control application (6k nodes, 30k data, 4 harmonic periods)
 - Sequential case: load balancing across phases (task weight = its WCET)
 - Direct ILP formulation of the problem tricky possible (Introduce boolean variable $\delta_{T,k}$ for the phases)

 \Rightarrow Does not scale...

- ILP formulation with only boolean variable
 - \Rightarrow First integral solution found after 40 mins
 - Good solution, non-optimal, but takes too mush time

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	0000●	000	O
Solving the	e constraints (2))		

<ロト < 母 ト < 喜 ト < 喜 ト 言 の へ C 20/24

- Using an ILP is an overkill
 - In this context, no need for an optimal solution
 - A "good enough" solution is enough

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	0000●	000	O
Solving the	e constraints (2))		

- Using an ILP is an overkill
 - In this context, no need for an optimal solution
 - A "good enough" solution is enough

• Heuristic:

- Initial solution: smallest valid phases for all nodes
- Decrease toward local minimum:
 - Soft push (moving a phase without moving the rest)
 - $\bullet~$ Intermediate data structure \rightarrow quick evaluation of solution

<ロト</th>
 ・< 言ト< 言ト</th>
 ・< 20/24</th>

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	0000●	000	O
Solving the	e constraints (2))		

- Using an ILP is an overkill
 - In this context, no need for an optimal solution
 - A "good enough" solution is enough

Heuristic:

- Initial solution: smallest valid phases for all nodes
- Decrease toward local minimum:
 - Soft push (moving a phase without moving the rest)
 - $\bullet~$ Intermediate data structure \rightarrow quick evaluation of solution

<ロト</th>
 ・< 言ト< 言ト</th>
 ・< 20/24</th>

 \Rightarrow **Result:** decreasing takes less than a second 0,6% above the rational average

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	0000●	000	O
Solving the	e constraints (2))		

- Using an ILP is an overkill
 - In this context, no need for an optimal solution
 - A "good enough" solution is enough

• Heuristic:

- Initial solution: smallest valid phases for all nodes
- Decrease toward local minimum:
 - Soft push (moving a phase without moving the rest)
 - $\bullet~$ Intermediate data structure \rightarrow quick evaluation of solution
- ⇒ Result: decreasing takes less than a second 0,6% above the rational average

• Reinjection step:

- Complete the clocks of local variables
- Replace all buffer with delay (or remove them)

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion			
000000	0000000	00000	●00	O			
Non-deterministic computation							

- Physical values with low temporal variability
 - Ex: outside temperature
 - Want last value, but not strict requirement (older one ok)
 - Constraint on phase can be relaxed

 \Rightarrow Express and use ND to give more freedom to the compiler

Wanted constraint: $p_a + 2 \le p_b$ (instead of $p_a + 4 \le p_b$)

000000	000000	00000	•00	0				
Non-deterministic computation								

- Physical values with low temporal variability
 - Ex: outside temperature
 - Want last value, but not strict requirement (older one ok)
 - Constraint on phase can be relaxed

 \Rightarrow Express and use ND to give more freedom to the compiler

Wanted constraint: $p_a + 2 \le p_b$ (instead of $p_a + 4 \le p_b$)

• How to express notion in a minimal way in the language?

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	00000	○●○	O
Non-detern	ninistic operato	r: fby?		

• Proposition: operator "fby?" to control non-determinism

• Proposition: operator "fby?" to control non-determinism

- Value of (i fby? expr) can be:
 - expr
 - or (i fby expr)
- Analysis:
 - Clocking: same rule than fby
 - Initialization: no issue
 - Causality: conservatively assume no fby

• Proposition: operator "fby?" to control non-determinism

<ロ ト < @ ト < E ト < E ト E の Q C 22/24

- Value of (i fby? expr) can be:
 - expr
 - or (i fby expr)
- Analysis:
 - Clocking: same rule than fby
 - Initialization: no issue
 - Causality: conservatively assume no fby
- Value of (i fby?ⁿ expr) can be:
 - expr • or (i fby^k expr) (with $0 \le k \le n$)

- Proposition: operator "fby?" to control non-determinism
- Value of (i fby? expr) can be:
 - expr
 - or (i fby expr)
- Analysis:
 - Clocking: same rule than fby
 - Initialization: no issue
 - Causality: conservatively assume no fby
- Value of (i fby?ⁿ expr) can be:
 - expr • or (i fby^k expr) (with $0 \le k \le n$)
- **Determinization pass:** Replace all fby? by a possible value (in our case: fix that depending on its phase)

Introduction		1.	1-synchronous clocks			Unknowi	Unknown phases		Non-determinism		Conclusion	
000000		0	0000000			00000			00●		0	
<u> </u>						· · · 1		1.1				

Constraint extraction with non-determinism

$$y = i fby?^2 current((TFF), 0, x)$$

<ロト<日本

< 日本

<b

Constraint extraction with non-determinism

- Typing analysis: rule for fby? doesn't give any constraint
 - Recognize fby? under a when & above a current
 - $\rightarrow~$ Typing rules for these specific situations
- Other option: defining when? and current? operators

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
				•
In summa	ary			

- 3 incremental extensions:
 - 1-synchronous clocks
 - ... with unknown phases
 - ... with non-deterministic computation
- Hyperperiod expansion transformation
- Constraints on phase can be inferred from the clocking rules

<ロト</th>
 ・< 言ト< 言ト</th>
 ・< 24/24</th>

• Non-deterministic operator & adaptation of constraints

Introduction	1-synchronous clocks	Unknown phases	Non-determinism	Conclusion
000000	0000000	00000	000	•
In summary				

- 3 incremental extensions:
 - 1-synchronous clocks
 - ... with unknown phases
 - ... with non-deterministic computation
- Hyperperiod expansion transformation
- Constraints on phase can be inferred from the clocking rules
- Non-deterministic operator & adaptation of constraints
- Thank you for listening, ...
 - ... Do you have any questions?