
1/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

1-synchronous clocks, underspecified clocks and
non-determinism

Guillaume Iooss, Albert Cohen, Marc Pouzet

ENS - PARKAS

April 29, 2019

2/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Context of the presentation

Link with the previous presentation:
Front-end in the previously presented compilation chain
Based on the synchronous compiler Heptagon
Orthogonal to the architecture used

In relation to Lopht:
Manage the harmonic multi-periodic aspect
Normalization of the input Lustre program + annotations

Other motivations:
Make specification easier to write manually in Lustre
Using more information which could be specified

2/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Context of the presentation

Link with the previous presentation:
Front-end in the previously presented compilation chain
Based on the synchronous compiler Heptagon
Orthogonal to the architecture used

In relation to Lopht:
Manage the harmonic multi-periodic aspect
Normalization of the input Lustre program + annotations

Other motivations:
Make specification easier to write manually in Lustre
Using more information which could be specified

3/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Background - Synchronous language

Manipulate infinite flow of values
Global tick synchronize the production of values
Point-to-point operators
Accessing past values possible ("fby" ≈ memory)

x 0 1 1 2 . . .

y 4 −2 1 4 . . .

42 42 42 42 42 . . .

x + y 4 −1 2 6 . . .

42 fby y 42 4 −2 1 . . .

4/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Background - Clocks

A stream might have no value on a tick
Clock: x :: clk

Encode the presence of a value
Can be an arbitrary boolean stream

Temporal operators: sub-sampling (when) and fusion (merge)
Clocking analysis: check coherency of clocks

x :: c 0 1 1 2 . . .

b :: c t f t t . . .

z = x when b :: c on b 0 − 1 2 . . .

y :: c on not b − 42 − − . . .

merge b z y :: c 0 42 1 2 . . .

5/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Background - Lustre

Equational language for synchronous programs
(similar languages: Scade, Heptagon, . . .)

node accumulator(i : int) returns (o : int)
var x : int
let

x = 0 fby o;
o = x + i;

tel

Code generation:
"reset" and "step" functions
Infinite "while" loop (1 iteration = 1 base tick)
Clocks: encoded using "if" conditions

5/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Background - Lustre

Equational language for synchronous programs
(similar languages: Scade, Heptagon, . . .)

node accumulator(i : int) returns (o : int)
var x : int
let

x = 0 fby o;
o = x + i;

tel

Code generation:
"reset" and "step" functions
Infinite "while" loop (1 iteration = 1 base tick)
Clocks: encoded using "if" conditions

6/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Background - N-synchronous model

N-synchronous model:
Ultimately periodic clocks
Example: 101(1001)
Strictly periodic: no initialization phase

⇒ Clocking analysis becomes more predictable

buffer: Communication between variables on two different
clocks

Clocks must be compatible (adaptability relation: <:)
⇒ Able to compute the size of a buffer

6/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Background - N-synchronous model

N-synchronous model:
Ultimately periodic clocks
Example: 101(1001)
Strictly periodic: no initialization phase

⇒ Clocking analysis becomes more predictable

buffer: Communication between variables on two different
clocks

Clocks must be compatible (adaptability relation: <:)
⇒ Able to compute the size of a buffer

7/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

1-synchronous clocks

Consider integration program:
Top-level node, orchestrating all tasks of an application

Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / . . .)
Tasks are present only once per period

1-synchronous clocks: "(0k10n−k−1)" (or "0k(10n−1)")
with 0 ≤ k < n, n = period and k = phase

Integration program: only 1-synchronous clocks are used
; Can use that condition to do more inside a compiler

7/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

1-synchronous clocks

Consider integration program:
Top-level node, orchestrating all tasks of an application

Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / . . .)
Tasks are present only once per period

1-synchronous clocks: "(0k10n−k−1)" (or "0k(10n−1)")
with 0 ≤ k < n, n = period and k = phase

Integration program: only 1-synchronous clocks are used
; Can use that condition to do more inside a compiler

7/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

1-synchronous clocks

Consider integration program:
Top-level node, orchestrating all tasks of an application

Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / . . .)
Tasks are present only once per period

1-synchronous clocks: "(0k10n−k−1)" (or "0k(10n−1)")
with 0 ≤ k < n, n = period and k = phase

Integration program: only 1-synchronous clocks are used
; Can use that condition to do more inside a compiler

8/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

In this talk

Three incremental modifications on top of Lustre:
1 Restriction of the clock calculus to 1-synchronous clocks

Specialization of the N-synchronous clocks
Associated specialized clocking rules
Code generation possibilities (Hyperperiod Expansion)

2 Phases of the clock of some variables are not specified
Kahn semantic satisfied, dataflow semantic not
Constraints on phases obtained from clocking rules
Solution used to go back to fully-specified Lustre program

3 Non-deterministic computation
Don’t mind which instance of a value used
Neither semantics are satisfied
More freedom for phase selection
Go back to deterministic program

8/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

In this talk

Three incremental modifications on top of Lustre:
1 Restriction of the clock calculus to 1-synchronous clocks

Specialization of the N-synchronous clocks
Associated specialized clocking rules
Code generation possibilities (Hyperperiod Expansion)

2 Phases of the clock of some variables are not specified
Kahn semantic satisfied, dataflow semantic not
Constraints on phases obtained from clocking rules
Solution used to go back to fully-specified Lustre program

3 Non-deterministic computation
Don’t mind which instance of a value used
Neither semantics are satisfied
More freedom for phase selection
Go back to deterministic program

8/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

In this talk

Three incremental modifications on top of Lustre:
1 Restriction of the clock calculus to 1-synchronous clocks

Specialization of the N-synchronous clocks
Associated specialized clocking rules
Code generation possibilities (Hyperperiod Expansion)

2 Phases of the clock of some variables are not specified
Kahn semantic satisfied, dataflow semantic not
Constraints on phases obtained from clocking rules
Solution used to go back to fully-specified Lustre program

3 Non-deterministic computation
Don’t mind which instance of a value used
Neither semantics are satisfied
More freedom for phase selection
Go back to deterministic program

9/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

1-synchronous clock calculus - Same period

Clock calculus restricted to 1-synchronous clocks.
; What happens to temporal operators?

(buffer: phase not specified ; not yet)
delay: increment the phase of the clock / delay(d) = delayd

Should not cross the period (no initialization)
H ` a :: (0k10n−k−1) 0 ≤ d < n − k

H ` delay(d) a :: (0k+d10n−(k+d)−1)
delayfby(d): (initialization required / ≈ "short fby")

H ` a :: (0k10n−k−1) H ` i :: (0k+d−n10n−(k+d−n)−1) 0 ≤ k + d − n < n

H ` i delayfby(d) a :: (0k+d−n10n−(k+d−n)−1)
delay

• •

delay(2)

• •

delayfby(1)

• •
0 1 2 3 0 1 2 3 0

9/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

1-synchronous clock calculus - Same period

Clock calculus restricted to 1-synchronous clocks.
; What happens to temporal operators?

(buffer: phase not specified ; not yet)
delay: increment the phase of the clock / delay(d) = delayd

Should not cross the period (no initialization)
H ` a :: (0k10n−k−1) 0 ≤ d < n − k

H ` delay(d) a :: (0k+d10n−(k+d)−1)

delayfby(d): (initialization required / ≈ "short fby")

H ` a :: (0k10n−k−1) H ` i :: (0k+d−n10n−(k+d−n)−1) 0 ≤ k + d − n < n

H ` i delayfby(d) a :: (0k+d−n10n−(k+d−n)−1)
delay

• •

delay(2)

• •

delayfby(1)

• •
0 1 2 3 0 1 2 3 0

9/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

1-synchronous clock calculus - Same period

Clock calculus restricted to 1-synchronous clocks.
; What happens to temporal operators?

(buffer: phase not specified ; not yet)
delay: increment the phase of the clock / delay(d) = delayd

Should not cross the period (no initialization)
H ` a :: (0k10n−k−1) 0 ≤ d < n − k

H ` delay(d) a :: (0k+d10n−(k+d)−1)
delayfby(d): (initialization required / ≈ "short fby")

H ` a :: (0k10n−k−1) H ` i :: (0k+d−n10n−(k+d−n)−1) 0 ≤ k + d − n < n

H ` i delayfby(d) a :: (0k+d−n10n−(k+d−n)−1)
delay

• •

delay(2)

• •

delayfby(1)

• •
0 1 2 3 0 1 2 3 0

10/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Toward slower periods (when)

Clocks must be 1-synchronous + subclock condition:
⇒ Harmonicity condition
⇒ Argument of the when must be of the form "(F kTF n−k−1)"

• • •

•

q × n + k

l

y = x when (FTF)

H ` a :: (0k10n−k−1) m = pn l = qn + k

H ` a when (F qTF p−1−q) :: (0l10m−l−1)

10/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Toward slower periods (when)

Clocks must be 1-synchronous + subclock condition:
⇒ Harmonicity condition
⇒ Argument of the when must be of the form "(F kTF n−k−1)"

• • •

•

q × n + k

l

y = x when (FTF)

H ` a :: (0k10n−k−1) m = pn l = qn + k

H ` a when (F qTF p−1−q) :: (0l10m−l−1)

11/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Toward faster periods (merge/current)

Clocks must be 1-synchronous + subclock condition:
⇒ Harmonicity condition

merge: one branch per instance of fast period
current (repetition of a value, with eventual updates)

Argument (when the update occurs) must be "(F kTF n−k−1)"
Initialization needed ("i")

•

• • •

k

q ×m+ l

y = current((FTF), 0, x)

H ` a :: (0k10n−k−1) H ` i :: (0l10m−l−1) n = pm l = k −mq

H ` current((F qTF p−1−q), i , a) :: (0l10m−l−1)

11/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Toward faster periods (merge/current)

Clocks must be 1-synchronous + subclock condition:
⇒ Harmonicity condition

merge: one branch per instance of fast period
current (repetition of a value, with eventual updates)

Argument (when the update occurs) must be "(F kTF n−k−1)"
Initialization needed ("i")

•

• • •

k

q ×m+ l

y = current((FTF), 0, x)

H ` a :: (0k10n−k−1) H ` i :: (0l10m−l−1) n = pm l = k −mq

H ` current((F qTF p−1−q), i , a) :: (0l10m−l−1)

12/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Code generation

Use 1-synchronous restriction to generate efficient code
Know exactly when the activation will happen
All "buffer" are of size 1 ; memory cell

Three code generation schemes:
Classical step function (base clock)

If conditions
One step function per phase (base clock)

No if conditions / while loop looping on them in order
One step function for the whole period (slowest clock)

⇒ Hyperperiod expansion transformation

12/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Code generation

Use 1-synchronous restriction to generate efficient code
Know exactly when the activation will happen
All "buffer" are of size 1 ; memory cell

Three code generation schemes:
Classical step function (base clock)

If conditions
One step function per phase (base clock)

No if conditions / while loop looping on them in order
One step function for the whole period (slowest clock)

⇒ Hyperperiod expansion transformation

13/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Hyperperiod expansion - Example

Idea: change base period to a slower one (ex: scm of all periods)
⇒ (duplicate fast computation)

Example:

Input: x :: (1)
Local: a :: (1), b :: (10)

a = f(x); // f stateless
b = g(a when (10)); // g stateless

. . .
Input: x0, x1 :: (1)
Local: a0, a1, b :: (1)

a0 = f(x0);
a1 = f(x1);
b = g(a0);

. . .

13/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Hyperperiod expansion - Example

Idea: change base period to a slower one (ex: scm of all periods)
⇒ (duplicate fast computation)

Example:

Input: x :: (1)
Local: a :: (1), b :: (10)

a = f(x); // f stateless
b = g(a when (10)); // g stateless

. . .
Input: x0, x1 :: (1)
Local: a0, a1, b :: (1)

a0 = f(x0);
a1 = f(x1);
b = g(a0);

. . .

14/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:
r(Var) ∈ N∗: ratio between Var’s period and slowest period
Variable duplication: Var ; Var0, . . . ,Varr(Var)−1

Applied on a normalized program
Each equation is duplicated r(lhsVar) times

Some interesting rules (informaly written):
a = op(b1, . . . , bm) ⇒ ai = op(b1i , . . . , bmi) for 0 ≤ i < r
a = i fby b ⇒ a0 = i fby br−1 | ai = bi−1 for 1 ≤ i < r
a = b when (Fp T Fn−p−1) ⇒ ai = bp+i×n for 0 ≤ i < r(a)
a = current((Fp T Fn−p−1), init, b)

⇒
{

ai = initi fby br(b)−1 for 0 ≤ i < p
ai = bb i−p

n c
for p ≤ i < r(a)

14/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:
r(Var) ∈ N∗: ratio between Var’s period and slowest period
Variable duplication: Var ; Var0, . . . ,Varr(Var)−1

Applied on a normalized program
Each equation is duplicated r(lhsVar) times

Some interesting rules (informaly written):
a = op(b1, . . . , bm) ⇒ ai = op(b1i , . . . , bmi) for 0 ≤ i < r

a = i fby b ⇒ a0 = i fby br−1 | ai = bi−1 for 1 ≤ i < r
a = b when (Fp T Fn−p−1) ⇒ ai = bp+i×n for 0 ≤ i < r(a)
a = current((Fp T Fn−p−1), init, b)

⇒
{

ai = initi fby br(b)−1 for 0 ≤ i < p
ai = bb i−p

n c
for p ≤ i < r(a)

14/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:
r(Var) ∈ N∗: ratio between Var’s period and slowest period
Variable duplication: Var ; Var0, . . . ,Varr(Var)−1

Applied on a normalized program
Each equation is duplicated r(lhsVar) times

Some interesting rules (informaly written):
a = op(b1, . . . , bm) ⇒ ai = op(b1i , . . . , bmi) for 0 ≤ i < r
a = i fby b ⇒ a0 = i fby br−1 | ai = bi−1 for 1 ≤ i < r

a = b when (Fp T Fn−p−1) ⇒ ai = bp+i×n for 0 ≤ i < r(a)
a = current((Fp T Fn−p−1), init, b)

⇒
{

ai = initi fby br(b)−1 for 0 ≤ i < p
ai = bb i−p

n c
for p ≤ i < r(a)

14/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:
r(Var) ∈ N∗: ratio between Var’s period and slowest period
Variable duplication: Var ; Var0, . . . ,Varr(Var)−1

Applied on a normalized program
Each equation is duplicated r(lhsVar) times

Some interesting rules (informaly written):
a = op(b1, . . . , bm) ⇒ ai = op(b1i , . . . , bmi) for 0 ≤ i < r
a = i fby b ⇒ a0 = i fby br−1 | ai = bi−1 for 1 ≤ i < r
a = b when (Fp T Fn−p−1) ⇒ ai = bp+i×n for 0 ≤ i < r(a)

a = current((Fp T Fn−p−1), init, b)

⇒
{

ai = initi fby br(b)−1 for 0 ≤ i < p
ai = bb i−p

n c
for p ≤ i < r(a)

14/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:
r(Var) ∈ N∗: ratio between Var’s period and slowest period
Variable duplication: Var ; Var0, . . . ,Varr(Var)−1

Applied on a normalized program
Each equation is duplicated r(lhsVar) times

Some interesting rules (informaly written):
a = op(b1, . . . , bm) ⇒ ai = op(b1i , . . . , bmi) for 0 ≤ i < r
a = i fby b ⇒ a0 = i fby br−1 | ai = bi−1 for 1 ≤ i < r
a = b when (Fp T Fn−p−1) ⇒ ai = bp+i×n for 0 ≤ i < r(a)
a = current((Fp T Fn−p−1), init, b)

⇒
{

ai = initi fby br(b)−1 for 0 ≤ i < p
ai = bb i−p

n c
for p ≤ i < r(a)

15/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Hyperperiod expansion - Discussion

Positive points:
Get rid of the multi-periodic aspect
Natural way to manage long tasks (with no cutting)
Decouple the phases of different instances of a variable

Negative points:
Stateless functions needed
(If stateful, need to expose the internal state and pass it

+ reset function to get initial state
+ at annotation to reuse the memory of states)

Additional real-time constraints needed on inputs/outputs
(release/deadline)

15/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Hyperperiod expansion - Discussion

Positive points:
Get rid of the multi-periodic aspect
Natural way to manage long tasks (with no cutting)
Decouple the phases of different instances of a variable

Negative points:
Stateless functions needed
(If stateful, need to expose the internal state and pass it

+ reset function to get initial state
+ at annotation to reuse the memory of states)

Additional real-time constraints needed on inputs/outputs
(release/deadline)

16/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

The problem with phases

Phases = large-grain schedule across the periods
→ "Good" choice of phases is architecture dependent

(sequential: WCET balancing / parallel: . . . more complicated)

Phase computation is tedious to write and modify:
One phase modification impacts many equations
Humanly impossible for large applications

⇒ Choice of phases should be separated from the computation

Modification proposed:
Option to only define the period of some local variables
Implicit buffers operator (clock of rhs <: clock of lhs)

Compilation flow:
Clocking analysis gathers the constraints on phase
Solver finds a solution (given cost function)
Use this solution to explicit phases and buffer (→ delay)

16/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

The problem with phases

Phases = large-grain schedule across the periods
→ "Good" choice of phases is architecture dependent

(sequential: WCET balancing / parallel: . . . more complicated)
Phase computation is tedious to write and modify:

One phase modification impacts many equations
Humanly impossible for large applications

⇒ Choice of phases should be separated from the computation

Modification proposed:
Option to only define the period of some local variables
Implicit buffers operator (clock of rhs <: clock of lhs)

Compilation flow:
Clocking analysis gathers the constraints on phase
Solver finds a solution (given cost function)
Use this solution to explicit phases and buffer (→ delay)

16/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

The problem with phases

Phases = large-grain schedule across the periods
→ "Good" choice of phases is architecture dependent

(sequential: WCET balancing / parallel: . . . more complicated)
Phase computation is tedious to write and modify:

One phase modification impacts many equations
Humanly impossible for large applications

⇒ Choice of phases should be separated from the computation

Modification proposed:
Option to only define the period of some local variables
Implicit buffers operator (clock of rhs <: clock of lhs)

Compilation flow:
Clocking analysis gathers the constraints on phase
Solver finds a solution (given cost function)
Use this solution to explicit phases and buffer (→ delay)

16/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

The problem with phases

Phases = large-grain schedule across the periods
→ "Good" choice of phases is architecture dependent

(sequential: WCET balancing / parallel: . . . more complicated)
Phase computation is tedious to write and modify:

One phase modification impacts many equations
Humanly impossible for large applications

⇒ Choice of phases should be separated from the computation

Modification proposed:
Option to only define the period of some local variables
Implicit buffers operator (clock of rhs <: clock of lhs)

Compilation flow:
Clocking analysis gathers the constraints on phase
Solver finds a solution (given cost function)
Use this solution to explicit phases and buffer (→ delay)

17/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Extracting constraints from clocking rules

buffer: delay of an unknown length
(0k10n−k−1) <: (0l10m−l−1) iff m = n and k ≤ l

H ` a :: (0k10n−k−1) 0 ≤ k ≤ l < n

H ` buffer a :: (0l10n−l−1)

bufferfby: additional initialization (period crossed)
Variations of buffer with other constraints:

buffer which fixes its phase (ex: p ≤ 3)
buffer which constraint the latency (ex: pB − pA ≤ 3)

17/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Extracting constraints from clocking rules

buffer: delay of an unknown length
(0k10n−k−1) <: (0l10m−l−1) iff m = n and k ≤ l

H ` a :: (0k10n−k−1) 0 ≤ k ≤ l < n

H ` buffer a :: (0l10n−l−1)

bufferfby: additional initialization (period crossed)
Variations of buffer with other constraints:

buffer which fixes its phase (ex: p ≤ 3)
buffer which constraint the latency (ex: pB − pA ≤ 3)

18/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Example of clock extraction

a,e :: period(1);
b,d :: period(2);
c :: period(6);

b = buffer f1(a when (FT));
c = buffer f2(b when (TFF));
d = buffer f3(current((FFT), 0, c))
e = buffer f4(current((TF), 0, d))

•
a

•
b

•
c

•
d

•
e

Bounds from variable declaration:
0 ≤ pa, pe < 1 / 0 ≤ pb, pd < 2 / 0 ≤ pc < 6
Constraints from buffer:
pa + 1 ≤ pb / pb ≤ pc / pc − 4 ≤ pd / pd ≤ pe

Solutions:
pa = pe = 0 / pb = 1 / pd = 0 / 1 ≤ pc ≤ 4

18/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Example of clock extraction

a,e :: period(1);
b,d :: period(2);
c :: period(6);

b = buffer f1(a when (FT));
c = buffer f2(b when (TFF));
d = buffer f3(current((FFT), 0, c))
e = buffer f4(current((TF), 0, d))

•
a

•
b

•
c

•
d

•
e

Bounds from variable declaration:
0 ≤ pa, pe < 1 / 0 ≤ pb, pd < 2 / 0 ≤ pc < 6
Constraints from buffer:
pa + 1 ≤ pb / pb ≤ pc / pc − 4 ≤ pd / pd ≤ pe

Solutions:
pa = pe = 0 / pb = 1 / pd = 0 / 1 ≤ pc ≤ 4

19/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Solving the constraints (1)

Solving:
Constraint form allows efficient solving
Issue: Constraints for the cost function have a different form

Use case: flight control application
(6k nodes, 30k data, 4 harmonic periods)

Sequential case: load balancing across phases
(task weight = its WCET)
Direct ILP formulation of the problem tricky possible
(Introduce boolean variable δT ,k for the phases)

⇒ Does not scale...
ILP formulation with only boolean variable

⇒ First integral solution found after 40 mins
Good solution, non-optimal, but takes too mush time

19/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Solving the constraints (1)

Solving:
Constraint form allows efficient solving
Issue: Constraints for the cost function have a different form

Use case: flight control application
(6k nodes, 30k data, 4 harmonic periods)

Sequential case: load balancing across phases
(task weight = its WCET)
Direct ILP formulation of the problem tricky possible
(Introduce boolean variable δT ,k for the phases)

⇒ Does not scale...

ILP formulation with only boolean variable
⇒ First integral solution found after 40 mins

Good solution, non-optimal, but takes too mush time

19/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Solving the constraints (1)

Solving:
Constraint form allows efficient solving
Issue: Constraints for the cost function have a different form

Use case: flight control application
(6k nodes, 30k data, 4 harmonic periods)

Sequential case: load balancing across phases
(task weight = its WCET)
Direct ILP formulation of the problem tricky possible
(Introduce boolean variable δT ,k for the phases)

⇒ Does not scale...
ILP formulation with only boolean variable

⇒ First integral solution found after 40 mins
Good solution, non-optimal, but takes too mush time

20/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Solving the constraints (2)

Using an ILP is an overkill
In this context, no need for an optimal solution
A "good enough" solution is enough

Heuristic:
Initial solution: smallest valid phases for all nodes
Decrease toward local minimum:

Soft push (moving a phase without moving the rest)
Intermediate data structure → quick evaluation of solution

⇒ Result: decreasing takes less than a second
0,6% above the rational average

Reinjection step:
Complete the clocks of local variables
Replace all buffer with delay (or remove them)

20/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Solving the constraints (2)

Using an ILP is an overkill
In this context, no need for an optimal solution
A "good enough" solution is enough

Heuristic:
Initial solution: smallest valid phases for all nodes
Decrease toward local minimum:

Soft push (moving a phase without moving the rest)
Intermediate data structure → quick evaluation of solution

⇒ Result: decreasing takes less than a second
0,6% above the rational average

Reinjection step:
Complete the clocks of local variables
Replace all buffer with delay (or remove them)

20/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Solving the constraints (2)

Using an ILP is an overkill
In this context, no need for an optimal solution
A "good enough" solution is enough

Heuristic:
Initial solution: smallest valid phases for all nodes
Decrease toward local minimum:

Soft push (moving a phase without moving the rest)
Intermediate data structure → quick evaluation of solution

⇒ Result: decreasing takes less than a second
0,6% above the rational average

Reinjection step:
Complete the clocks of local variables
Replace all buffer with delay (or remove them)

20/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Solving the constraints (2)

Using an ILP is an overkill
In this context, no need for an optimal solution
A "good enough" solution is enough

Heuristic:
Initial solution: smallest valid phases for all nodes
Decrease toward local minimum:

Soft push (moving a phase without moving the rest)
Intermediate data structure → quick evaluation of solution

⇒ Result: decreasing takes less than a second
0,6% above the rational average

Reinjection step:
Complete the clocks of local variables
Replace all buffer with delay (or remove them)

21/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Non-deterministic computation

Physical values with low temporal variability
Ex: outside temperature
Want last value, but not strict requirement (older one ok)
Constraint on phase can be relaxed

⇒ Express and use ND to give more freedom to the compiler

• • •

•
?

Wanted constraint: pa + 2 ≤ pb
(instead of pa + 4 ≤ pb)

How to express notion in a minimal way in the language?

21/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Non-deterministic computation

Physical values with low temporal variability
Ex: outside temperature
Want last value, but not strict requirement (older one ok)
Constraint on phase can be relaxed

⇒ Express and use ND to give more freedom to the compiler

• • •

•
?

Wanted constraint: pa + 2 ≤ pb
(instead of pa + 4 ≤ pb)

How to express notion in a minimal way in the language?

22/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Non-deterministic operator: fby?

Proposition: operator "fby?" to control non-determinism

Value of (i fby? expr) can be:
expr
or (i fby expr)

Analysis:
Clocking: same rule than fby
Initialization: no issue
Causality: conservatively assume no fby

Value of (i fby?n expr) can be:
expr
or (i fbyk expr) (with 0 ≤ k ≤ n)

Determinization pass: Replace all fby? by a possible value
(in our case: fix that depending on its phase)

22/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Non-deterministic operator: fby?

Proposition: operator "fby?" to control non-determinism
Value of (i fby? expr) can be:

expr
or (i fby expr)

Analysis:
Clocking: same rule than fby
Initialization: no issue
Causality: conservatively assume no fby

Value of (i fby?n expr) can be:
expr
or (i fbyk expr) (with 0 ≤ k ≤ n)

Determinization pass: Replace all fby? by a possible value
(in our case: fix that depending on its phase)

22/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Non-deterministic operator: fby?

Proposition: operator "fby?" to control non-determinism
Value of (i fby? expr) can be:

expr
or (i fby expr)

Analysis:
Clocking: same rule than fby
Initialization: no issue
Causality: conservatively assume no fby

Value of (i fby?n expr) can be:
expr
or (i fbyk expr) (with 0 ≤ k ≤ n)

Determinization pass: Replace all fby? by a possible value
(in our case: fix that depending on its phase)

22/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Non-deterministic operator: fby?

Proposition: operator "fby?" to control non-determinism
Value of (i fby? expr) can be:

expr
or (i fby expr)

Analysis:
Clocking: same rule than fby
Initialization: no issue
Causality: conservatively assume no fby

Value of (i fby?n expr) can be:
expr
or (i fbyk expr) (with 0 ≤ k ≤ n)

Determinization pass: Replace all fby? by a possible value
(in our case: fix that depending on its phase)

23/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Constraint extraction with non-determinism

• • •

•

fby? fby?

y = (i fby?2 x) when (FFT)

•

• • •
fby? fby?

y = i fby?2 current((TFF), 0, x)

Typing analysis: rule for fby? doesn’t give any constraint
Recognize fby? under a when & above a current

→ Typing rules for these specific situations
Other option: defining when? and current? operators

23/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

Constraint extraction with non-determinism

• • •

•

fby? fby?

y = (i fby?2 x) when (FFT)

•

• • •
fby? fby?

y = i fby?2 current((TFF), 0, x)

Typing analysis: rule for fby? doesn’t give any constraint
Recognize fby? under a when & above a current

→ Typing rules for these specific situations
Other option: defining when? and current? operators

24/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

In summary. . .

3 incremental extensions:
1-synchronous clocks
. . . with unknown phases
. . . with non-deterministic computation

Hyperperiod expansion transformation

Constraints on phase can be inferred from the clocking rules

Non-deterministic operator & adaptation of constraints

Thank you for listening, . . .
. . . Do you have any questions?

24/24

Introduction 1-synchronous clocks Unknown phases Non-determinism Conclusion

In summary. . .

3 incremental extensions:
1-synchronous clocks
. . . with unknown phases
. . . with non-deterministic computation

Hyperperiod expansion transformation

Constraints on phase can be inferred from the clocking rules

Non-deterministic operator & adaptation of constraints

Thank you for listening, . . .
. . . Do you have any questions?

	Introduction
	Background
	Introduction

	1-synchronous clocks
	1-synchronous clocks
	Code generation and hyperperiod expansion

	Unknown phases
	1-synchronous clocks with unspecified phases

	Non-determinism
	Non-deterministic computation

	Conclusion
	Conclusion

