
Code generation for multi-phase tasks on a multi-core
distributed memory platform

Frédéric Fort1, Julien Forget 1, Claire Pagetti2

1Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, Lille, France
firstname.lastname@univ-lille.fr

2Onera, Toulouse, France
claire.pagetti@onera.fr

1/30

Introduction

Outline

1 Introduction

2 A question of semantics: synchronous real-time with Prelude

3 Code generation for distributed memory

4 Conclusion

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 2 / 30 �

Introduction

Problem: memory bottleneck and its impact on WCET

CPU 0 CPU 1

E

Memory

Shared memory on multicore ⇒ bus contentions;
Bus contentions ⇒ delays, hard to predict;

⇒ Overly pessimistic WCET.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 3 / 30 �

Introduction

Solution: multi-phase tasks

PRedictable Execution Model (PREM)
Main idea: decouple computation from communication.

Tasks are split into several phases;
Computation phases do not access shared memory;
Communication phases contend for the bus;

⇒ No need to account for contentions in WCET of computation phases.

In this work we consider the AER 3-phase model:
Acquisition of inputs;
Execution (computation);
Restitution of outputs.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 4 / 30 �

Introduction

Related works

Difficulty: writing PREM-compliant code is unintuitive.

In the litterature, we find works on:

Schedulability analysis;
OS/HW support;
Source refactoring for legacy code;
C compiler support.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 5 / 30 �

Introduction

Our contribution: AER code generation

Contribution
A compiler from synchronous code, in Prelude, to multi-task AER code.

Input: synchronous data-flow + real-time constraints;
Output: C code, multi-task;
Automated code generation.

Benefits:
1 Programmer abstracts from low-level details:

Task synchronizations;
Memory transfers;

2 Easy PREM vs non-PREM comparison.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 6 / 30 �

Synchronous real-time with Prelude

Outline

1 Introduction

2 A question of semantics: synchronous real-time with Prelude

3 Code generation for distributed memory

4 Conclusion

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 7 / 30 �

Synchronous real-time with Prelude

Synchronous reactive programming

control system

physical environment

outputsinputs

Control a device in its physical environment;
Acquire inputs - Compute - Produce Outputs ⇒ loop.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 8 / 30 �

Synchronous real-time with Prelude

The synchronous data-flow model

Program behaviour = succession of instants (reactions);
Synchronous hypothesis: computations complete before the next
instant;
⇒ We can ignore the duration of an instant;
⇒ Behaviour described on a logical time scale;

Expressions and variables = flows (infinite sequences);
Clock of a flow = its logical time scale.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 9 / 30 �

Synchronous real-time with Prelude

Example: a simple Lustre program

Example

node s imple (i , j : i n t ; c : bool) r e tu rn s (o , p : i n t ; q : i n t when c)
l e t

o=i+j ;
p=0 fby (p+1);
q=i when c ;

t e l

i 1 3 5 7 9
j 2 2 4 4 3
c T T F T F
o 3 5 9 11 12
p 0 1 2 3 4
q 1 3 7

What about real-time constraints?

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 10 / 30 �

Synchronous real-time with Prelude

Example: a simple Lustre program

Example

node s imple (i , j : i n t ; c : bool) r e tu rn s (o , p : i n t ; q : i n t when c)
l e t

o=i+j ;
p=0 fby (p+1);
q=i when c ;

t e l

i 1 3 5 7 9
j 2 2 4 4 3
c T T F T F
o 3 5 9 11 12
p 0 1 2 3 4
q 1 3 7

What about real-time constraints?

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 10 / 30 �

Synchronous real-time with Prelude

Debunking the zero-time myth

Misleading claims:
An instant takes zero time?

Only an idealized model, computation still does take time;
The synchronous hypothesis must be validated by a WCET analysis;

Inputs, computations, outputs, within an instant are simultaneous?
From a logical time point-of-view, indeed;
However, execution order, within an instant, must respect
data-dependencies: causality.

Can we mix logical time with real-time?

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 11 / 30 �

Synchronous real-time with Prelude

Debunking the zero-time myth

Misleading claims:
An instant takes zero time?

Only an idealized model, computation still does take time;
The synchronous hypothesis must be validated by a WCET analysis;

Inputs, computations, outputs, within an instant are simultaneous?
From a logical time point-of-view, indeed;
However, execution order, within an instant, must respect
data-dependencies: causality.

Can we mix logical time with real-time?

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 11 / 30 �

Synchronous real-time with Prelude

Synchronous model vs AER model

In the synchronous model, data-dependencies are explicit:
Tasks have no side-effects;
No implicitely shared state;

All inputs must be available before task execution starts;
All outputs are produced at task completion;

⇒ Synchronous model: a natural fit for the AER model.

Ok, but what about real-time constraints?

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 12 / 30 �

Synchronous real-time with Prelude

Synchronous model vs AER model

In the synchronous model, data-dependencies are explicit:
Tasks have no side-effects;
No implicitely shared state;

All inputs must be available before task execution starts;
All outputs are produced at task completion;

⇒ Synchronous model: a natural fit for the AER model.

Ok, but what about real-time constraints?

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 12 / 30 �

Synchronous real-time with Prelude

The multi-rate synchronous model in Prelude
Duration of instants

time

F F F F F F

S S

Scale 2: short instants (10ms)

Scale 1: long instants (30ms)

Different logical time scales ⇒ different durations for instants;
Real-time serves as a reference between different logical time scales.

Relaxed synchronous hypothesis
Computations complete before next activation (as good ol’ Liu&Layland).

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 13 / 30 �

Synchronous real-time with Prelude

Simple multi-rate example

Multi-rate system
period = 10ms

F
period = 30ms

S

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 14 / 30 �

Synchronous real-time with Prelude

Multi-rate communications: rate transition operators

Example

node sampling (i : r a t e (10 , 0)) r e tu rn s (o)
var vf , vs ;

l e t
(o , v f)=F(i , (0 fby vs)∗^3) ;
vs=S(v f /^3);

t e l

date 0 10 20 30 40 50 60 70 80 ...
vf vf0 vf1 vf2 vf3 vf4 vf5 vf6 vf7 vf8 ...
vf/^3 vf0 vf3 vf6 ...
vs vs0 vs1 vs2 ...
0 fby vs 0 vs0 vs1 ...
(0 fby vs)∗^3 0 0 0 vs0 vs0 vs0 vs1 vs1 vs1 ...

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 15 / 30 �

Synchronous real-time with Prelude

Communication semantics: latest-value

Output data is available at job completion;
No inter-task synchronizations.

Example

0 2 4 6 8 10 12

τ1

τ2

Advantage: easy to implement;
Inconvenient: functional behaviour depends on schedule.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 16 / 30 �

Synchronous real-time with Prelude

Communication semantics: Logical Execution Time (LET)

Output data is available at job deadline.

Example

0 2 4 6 8 10 12

τ1

τ2

Advantage: no synchronizations needed, deterministic;
Inconvenient: potentially huge end-to-end latencies.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 17 / 30 �

Synchronous real-time with Prelude

Communication semantics: causal communications
Output data is available at job completion
Precedence constraints between dependent tasks.

Example

0 2 4 6 8 10 12

τ1

τ2

Advantage: deterministic, lower latencies;
Inconvenient: harder schedulability analysis and implementation.

Prelude relies on causal communications.
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 18 / 30 �

Synchronous real-time with Prelude

Causal communications: induced constraints

Conditions to respect the causal semantics:
1 Consumer starts after producer ends ⇒ precedence constraints;
2 Do not overwrite data before consumer ends ⇒ buffer copies.

Example
(Tj = 2Ti)

τi τi

τj τj

(1): τ0
j after τ0

i (2) keep τ0
i available

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 19 / 30 �

Code generation for distributed memory

Outline

1 Introduction

2 A question of semantics: synchronous real-time with Prelude

3 Code generation for distributed memory

4 Conclusion

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 20 / 30 �

Code generation for distributed memory

Target hardware model

CPU 0 CPU 1Local
mem. 0

Local
mem. 1

Shared memory

Distributed memory architecture
Local memory (Mi)

Contention-free;
Private to a CPU;
Implemented with:

Cache;
Scratchpad
...

Shared memory (MG)
Subject to contentions;
Inter-core communication.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 21 / 30 �

Code generation for distributed memory

Multi-phase tasks

A

B
C D

π1, T=5

π1, T=6

π0, T=10 π0, T=5

τB

τC

τD

Simplification 1: Sensors/Actuators have no A-/R-phase
Simplification 2: E-phases handle colocated communications
Simplification 3: Remove redundant data-dependencies

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 22 / 30 �

Code generation for distributed memory

Multi-phase tasks

A

B
C D

π1, T=5

π1, T=6

π0, T=10 π0, T=5

τB

τC

τD

A-phase
E-phase
R-phase

Simplification 1: Sensors/Actuators have no A-/R-phase
Simplification 2: E-phases handle colocated communications
Simplification 3: Remove redundant data-dependencies

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 22 / 30 �

Code generation for distributed memory

Multi-phase tasks

A

B
C D

π1, T=5

π1, T=6

π0, T=10 π0, T=5

τB

τC

τD

A-phase
E-phase
R-phase

Simplification 1: Sensors/Actuators have no A-/R-phase

Simplification 2: E-phases handle colocated communications
Simplification 3: Remove redundant data-dependencies

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 22 / 30 �

Code generation for distributed memory

Multi-phase tasks

A

B
C D

π1, T=5

π1, T=6

π0, T=10 π0, T=5

τB

τC

τD

A-phase
E-phase
R-phase

Simplification 1: Sensors/Actuators have no A-/R-phase
Simplification 2: E-phases handle colocated communications

Simplification 3: Remove redundant data-dependencies

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 22 / 30 �

Code generation for distributed memory

Multi-phase tasks

A

B
C D

π1, T=5

π1, T=6

π0, T=10 π0, T=5

τB

τC

τD

A-phase
E-phase
R-phase

Simplification 1: Sensors/Actuators have no A-/R-phase
Simplification 2: E-phases handle colocated communications
Simplification 3: Remove redundant data-dependencies

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 22 / 30 �

Code generation for distributed memory

Code generation: non-PREM

1 void C()
2 {
3 int a_loc=A_C_buf;
4 int b_loc;
5
6 if(must_change_B_C())
7 b_loc=B_C_buff[next_cell()];
8
9 C_D_buf = C(a_loc, b_loc);

10 }

1 void A()
2 {
3 int a_loc = A();
4
5 if (must_write_A_C())
6 A_C_buff=a_loc;
7 }

X_X_buff: global shared variable;
x_loc: local variable;
must_*_X_Y: multi-periodic communication protocol.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 23 / 30 �

Code generation for distributed memory

Code generation: PREM
1 void C_A()
2 {
3 wait_sem(sem_A_C);
4
5 if (must_wait_B_C())
6 wait_sem(sem_B_C);
7
8 a_loc = read_val(A_C_buff);
9

10 if(must_change_B_C())
11 b_loc = read_val(B_C_buff);
12 }
13
14 void C_E()
15 {
16 c_out = C(a_loc, b_loc);
17
18 C_D_buff = c_out;
19
20 post_sem(sem_C_D);
21 }

1 void A_E()
2 {
3 a_out = A();
4 }
5
6 void A_R()
7 {
8 if (must_write_A_C())
9 write_val(A_C_buff, a_loc);

10
11 if (must_post_A_C())
12 post_sem(sem_A_C);
13 }

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 24 / 30 �

Code generation for distributed memory

Code generation: PREM
1 void C_A()
2 {
3 wait_sem(sem_A_C);
4
5 if (must_wait_B_C())
6 wait_sem(sem_B_C);
7
8 a_loc = read_val(A_C_buff);
9

10 if (must_change_B_C())
11 b_loc = read_val(B_C_buff);
12 }
13
14 void C_E()
15 {
16 c_out = C(a_loc, b_loc);
17
18 C_D_buff = c_out;
19
20 post_sem(sem_C_D);
21 }

1 void A_E()
2 {
3 a_out = A();
4 }
5
6 void A_R()
7 {
8 if (must_write_A_C())
9 write_val(A_C_buff, a_loc);

10
11 if (must_post_A_C())
12 post_sem(sem_A_C);
13 }

X_X_buff located in MG ;
x_loc located in Mi ;
read_val/write_val: do MG ↔ Mi transfer;

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 24 / 30 �

Code generation for distributed memory

Code generation: PREM
1 void C_A()
2 {
3 wait_sem(sem_A_C);
4
5 if (must_wait_B_C())
6 wait_sem(sem_B_C);
7
8 a_loc = read_val(A_C_buff);
9

10 if (must_change_B_C())
11 b_loc = read_val(B_C_buff);
12 }
13
14 void C_E()
15 {
16 c_out = C(a_loc, b_loc);
17
18 C_D_buff = c_out;
19
20 post_sem(sem_C_D);
21 }

1 void A_E()
2 {
3 a_out = A();
4 }
5
6 void A_R()
7 {
8 if (must_write_A_C())
9 write_val(A_C_buff, a_loc);

10
11 if (must_post_A_C())
12 post_sem(sem_A_C);
13 }

sem_X_Y: binary semaphore for synchronization;

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 24 / 30 �

Code generation for distributed memory

Experimental setup: hardware

NIOS
CPU 0

Instr.
scratchpad 0

Data
scratchpad 0

NIOS
CPU 1

Instr.
scratchpad 1

Data
scratchpad 1

Avalon Interconnect Fabric

Timers
CPU 0

Timers
CPU 1 Shared RAM Mutex

IO

On FPGA;
Can switch between scratchpad and cache memories.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 25 / 30 �

Code generation for distributed memory

Experimental setup: software

Rosace case-study (longitudinal flight controller);
Measured speedup between:

PREM + scratchpad private memory;
Non-PREM + cache private memory;

Both codes generated by the Prelude compiler (two options);
Shared RAM artificially slowed down.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 26 / 30 �

Code generation for distributed memory

Results: PREM speedup (vs non-PREM)
en

gi
ne

de
lta

_
th

_
c

de
lta

_
e_

c

Va
_

co
nt

ro
l_

25

Vz
_

co
nt

ro
l_

25

ai
rc

ra
ft

_
dy

na
m

ic
s

Vz
_

fil
te

r

Va
_

fil
te

r

al
tit

ud
e_

ho
ld

Va
_

c

h_
c

h_
fil

te
r

q_
fil

te
r

az
_

fil
te

r

el
ev

at
or

2
4
6
8

10
12 Same clock

Clock divided by 4

Clock divided by 8

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 27 / 30 �

Conclusion

Outline

1 Introduction

2 A question of semantics: synchronous real-time with Prelude

3 Code generation for distributed memory

4 Conclusion

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 28 / 30 �

Conclusion

Summary

The synchronous model is a natural fit for AER;
The relaxed synchronous model is a natural fit for implicit-deadline
tasks;
Extending Prelude for AER code generation is…natural;
Advantages:

Spares error-prone low-level concerns;
Enables easy PREM vs non-PREM comparison.

Semantics matters.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 29 / 30 �

Conclusion

References

J. Forget.
Prelude: programming critical real-time systems.
https://www.cristal.univ-lille.fr/~forget/prelude.html.

F. Fort and J. Forget.
Code generation for multi-phase tasks on a multi-core distributed memory platform.
In 2019 IEEE 25th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’19), pages 1–6. IEEE, 2019.

C. Pagetti, J. Forget, H. Falk, D. Oehlert, and A. Luppold.
Automated generation of time-predictable executables on multi-core.
In RTNS 2018, Proceedings of the 26th International Conference on Real-Time Networks
and Systems, POITIERS, France, Oct. 2018.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform � 30 / 30 �

	Introduction
	A question of semantics: synchronous real-time with Prelude
	Code generation for distributed memory
	Conclusion

