Code generation for multi-phase tasks on a multi-core
distributed memory platform

Frédéric Fort!, Julien Forget !, Claire Pagetti?

LUniv. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, Lille, France
firstname.lastname@univ-lille.fr

2Qnera, Toulouse, France
claire.pagetti@onera.fr

& [@RIStAL Université g -
de Lille &@W

Signal et Automatique de Lille

Introduction

Outline

@ Introduction

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform «2/30 >

Introduction

Problem: memory bottleneck and its impact on WCET

@ Shared memory on multicore = bus contentions;

Memory

|/

CPU O

CPU1

@ Bus contentions = delays, hard to predict;
= Overly pessimistic WCET.

Julien Forget (CRIStAL, Lille)

Code generation for AER tasks on a distributed memory platform

« 3/30 >

Introduction

Solution: multi-phase tasks

PRedictable Execution Model (PREM) J

Main idea: decouple computation from communication.

@ Tasks are split into several phases;
@ Computation phases do not access shared memory;
@ Communication phases contend for the bus;

= No need to account for contentions in WCET of computation phases.

In this work we consider the AER 3-phase model:
@ Acquisition of inputs;
e Execution (computation);

@ Restitution of outputs.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 4/30 -

Introduction

Related works

Difficulty: writing PREM-compliant code is unintuitive.

In the litterature, we find works on:
@ Schedulability analysis;
e OS/HW support;
@ Source refactoring for legacy code;

@ C compiler support.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform

« 5 /30 —>

Introduction

Our contribution: AER code generation

Contribution
A compiler from synchronous code, in Prelude, to multi-task AER code. J

@ Input: synchronous data-flow + real-time constraints;
@ Output: C code, multi-task;
@ Automated code generation.

Benefits:
© Programmer abstracts from low-level details:

e Task synchronizations;
o Memory transfers;

© Easy PREM vs non-PREM comparison.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 6 /30—

Synchronous real-time with Prelude

Outline

© A question of semantics: synchronous real-time with Prelude

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 7/30—>

Synchronous real-time with Prelude

Synchronous reactive programming

physical environment

inputs outputs

control system

@ Control a device in its physical environment;

@ Acquire inputs - Compute - Produce Outputs = loop.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform «8/30 —

Synchronous real-time with Prelude

The synchronous data-flow model

@ Program behaviour = succession of instants (reactions);

@ Synchronous hypothesis: computations complete before the next
instant;

= We can ignore the duration of an instant;
= Behaviour described on a logical time scale;

@ Expressions and variables = flows (infinite sequences);

@ Clock of a flow = its logical time scale.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform «9/30 >

Synchronous real-time with Prelude

Example: a simple Lustre program

Example

node simple(i,j: int; c: bool) returns (o,p: int; q: int when c)
let

o=i+j;

p=0 fby (p+1);

g=i when c;
tel

i 1 3 5 7 9
T2 2 4 4 3
c| T T F T F
ol 3 5 9 11 12
pl 0 1 2 3 4
ql| 1l 3 7

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 10 /30 —

Synchronous real-time with Prelude

Example: a simple Lustre program

Example

node simple(i,j: int; c: bool) returns (o,p: int; q: int when c)
let

o=i+j;

p=0 fby (p+1);

g=i when c;
tel

i 1 3 5 7 9
T2 2 4 4 3
c| T T F T F
ol 3 5 9 11 12
pl 0 1 2 3 4
ql| 1l 3 7

What about real-time constraints?

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 10 /30 —

Synchronous real-time with Prelude

Debunking the zero-time myth

Misleading claims:
@ An instant takes zero time?
e Only an idealized model, computation still does take time;
e The synchronous hypothesis must be validated by a WCET analysis;
@ Inputs, computations, outputs, within an instant are simultaneous?
e From a logical time point-of-view, indeed;
e However, execution order, within an instant, must respect
data-dependencies: causality.

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 11 /30 —

Synchronous real-time with Prelude

Debunking the zero-time myth

Misleading claims:
@ An instant takes zero time?

e Only an idealized model, computation still does take time;
e The synchronous hypothesis must be validated by a WCET analysis;

@ Inputs, computations, outputs, within an instant are simultaneous?
e From a logical time point-of-view, indeed;
e However, execution order, within an instant, must respect
data-dependencies: causality.

Can we mix logical time with real-time?

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 11 /30 —

Synchronous real-time with Prelude

Synchronous model vs AER model

@ In the synchronous model, data-dependencies are explicit:

o Tasks have no side-effects;
e No implicitely shared state;

@ All inputs must be available before task execution starts;
@ All outputs are produced at task completion;

= Synchronous model: a natural fit for the AER model.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform

« 12 /30 —

Synchronous real-time with Prelude

Synchronous model vs AER model

@ In the synchronous model, data-dependencies are explicit:

o Tasks have no side-effects;
e No implicitely shared state;

@ All inputs must be available before task execution starts;
@ All outputs are produced at task completion;

= Synchronous model: a natural fit for the AER model.

Ok, but what about real-time constraints?

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 12 /30 —

Synchronous real-time with Prelude

The multi-rate synchronous model in Prelude

Duration of instants

Scale 1: long instants (30ms)

Wi
< - - d

EET S

— : : :
Scale 2: short instants (10ms)

time

o Different logical time scales = different durations for instants;
@ Real-time serves as a reference between different logical time scales.

Relaxed synchronous hypothesis
Computations complete before next activation (as good ol Liu&Layland). J

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 13 /30 —

Synchronous real-time with Prelude

Simple multi-rate example

Multi-rate system

period = 10ms

| F T s |

period = 30ms

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 14 /30 —

Synchronous real-time with Prelude

Multi-rate communications: rate transition operators

Example

node sampling(i: rate (10, 0)) returns (o)
var vf, vs;

let
(o, vf)=F(i, (0 fby vs)*73);
vs=S(vf/"3);
tel
date 0 10 20 30 40 50 60 70 80
vf vlp vfi vl vy viy vy vig vz vfg
vf/73 vfy vf3 vig
vs vsp vsy vsy
0 fby vs 0 vsg vsy
(0 fby vs)*3 0 0 0 vsy Vsg VSg VS, VS] Vsy

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 15 /30 —

Synchronous real-time with Prelude

Communication semantics: latest-value

@ Output data is available at job completion;

@ No inter-task synchronizations.

Example
R !
1 1 1 1
T2]]]]
1

0 2 4 6 8 10 12

@ Advantage: easy to implement;
@ Inconvenient: functional behaviour depends on schedule.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform

« 16 / 30 —

Synchronous real-time with Prelude

Communication semantics: Logical Execution Time (LET)

@ OQutput data is available at job deadline.

Example
M lml |
T \\\ \\\ \“ \\\
0 2 4 6 8 10 12]

@ Advantage: no synchronizations needed, deterministic;

@ Inconvenient: potentially huge end-to-end latencies.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 17 / 30 —

Synchronous real-time with Prelude

Communication semantics: causal communications

@ Output data is available at job completion

@ Precedence constraints between dependent tasks.

Example

Tlil_ﬁl ﬂl
gl ¥

0 2 4 6 8 10 12

@ Advantage: deterministic, lower latencies;
@ Inconvenient: harder schedulability analysis and implementation.

Prelude relies on causal communications.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 18 /30 —

Synchronous real-time with Prelude

Causal communications: induced constraints

Conditions to respect the causal semantics:
© Consumer starts after producer ends = precedence constraints;

@ Do not overwrite data before consumer ends = buffer copies.

Example
(Tj=2T;)

(1): ij after 'r,p (2) keep 7‘,p available

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 19 /30 —

Code generation for distributed memory

Outline

© Code generation for distributed memory

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 20 /30 —

Code generation for distributed memory

Target hardware model

Shared memory

CPU 0 CPU 1

Distributed memory architecture

Local memory (M) Shared memory (M)
@ Contention-free; @ Subject to contentions;
@ Private to a CPU; @ Inter-core communication.

@ Implemented with:

o Cache;
e Scratchpad
o ...

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 21 /30 —

Code generation for distributed memory

Multi-phase tasks

B
71, T=5
™0, T=10 0, T=5 |
1
TC 1
I N
T=6 TR
T, 1= D i \\
& -
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 22 /30 -

Code generation for distributed memory

Multi-phase tasks

e | tem L ;
7o, T=5 Tc T i—- L

L IREN
Wl ERERER =" Yar REEEEREN

7o, T=10

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 22 /30 —

Code generation for distributed memory

Multi-phase tasks

75 | l
7c | L rmm,
™ |1 oo
[A-phase
M E-phase
B R-phase
Simplification 1: Sensors/Actuators have no A-/R-phase

— v

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 22 /30 —

Code generation for distributed memory

Multi-phase tasks

B h 1
7, T=5 1
A 0, T=10 0, T=5 TC T m\\ l
- e ol _w !
- [A-phase
. T=0 [l E-phase
B R-phase

Simplification 1: Sensors/Actuators have no A-/R-phase
Simplification 2: E-phases handle colocated communications

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform

« 22 /30 —»

Code generation for distributed memory

Multi-phase tasks

B h 1
7, T=5 1
7o, T=10 o, T=5 e |l V-I L
5 c——D il W |
- [A-phase
. T=0 [l E-phase
B R-phase

Simplification 1: Sensors/Actuators have no A-/R-phase
Simplification 2: E-phases handle colocated communications
Simplification 3: Remove redundant data-dependencies

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform

« 22 /30 —»

Code generation for distributed memory

Code generation: non-PREM

[un

COWTOU A WN -

void CQ) void AQ)

{ {
int a_loc=A_C_buf; int a_loc = AQ);
int b_loc;

if (must_write_A_CQ))
if (must_change_B_C()) A_C_buff=a_loc;

b_loc=B_C_buff [next_cell()];

N U W=

C_D_buf = C(a_loc, b_loc);

@ X_X_buff: global shared variable;
@ x_loc: local variable;

@ must_*_X_Y: multi-periodic communication protocol.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform

« 23 /30 -

Code generation for distributed memory

Code generation: PREM

1 void C_AQ) 1 void A_EQ)
2 { 2 {
3 wait_sem(sem_A_C); 3 a_out = AQ);
4 4 }
5 if (must_wait_B_C()) 5
6 wait_sem(sem_B_C); 6 void A_R(Q)
7 7 {
8 a_loc = read_val(A_C_buff); 8 if (must_write_A_C(Q))
9 9 write_val(A_C_buff, a_loc);
10 if (must_change_B_C()) 10
11 b_loc = read_val(B_C_buff); 11 if (must_post_A_C(Q))
12 3 12 post_sem(sem_A_C);
13 13 ¥
14 void C_EQ)
15 {
16 c_out = C(a_loc, b_loc);
17
18 C_D_buff = c_out;
19
20 post_sem(sem_C_D);
21 3

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 24 /30 —

Code generation for distributed memory

Code generation: PREM

1 void C_AQ) 1 void A_E(Q)

2 { 2 {

3 wait_sem(sem_A_C); 3 a_out = AQ);

4 4 }

5 if (must_wait_B_C()) 5

6 wait_sem(sem_B_C); 6 void A_R(Q)

7 7 {

8 a_loc = read_val(A_C_buff); 8 if (must_write_A_CQ))
9 9 write_val(A_C_buff, a_loc);
10 if (must_change B_C(Q)) 10

11 b_loc = read_val(B_C_buff); 11 if (must_post_A_CQ))
12 3 12 post_sem(sem_A_C);
13 13 ¥

14 void C_EQ)

15 {

16 c_out = C(a_loc, b_loc);

17

18 C_D_buff = c_out;

19

20 post_sem(sem_C_D);

21 3

@ X_X_buff located in Mg;
@ x_loc located in M;;

@ read_val/write_val: do Mg < M; transfer;

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform

« 24 /30 —

Code generation for distributed memory

Code generation: PREM

©OTDU A WN -

void C_AQ)
{

wait_sem(sem_A_C);

if (must_wait_B_C())
wait_sem(sem_B_C);

a_loc = read_val(A_C_buff);
if (must_change B_C(Q))
b_loc = read_val(B_C_buff);
}
void C_E(Q)
{
c_out = C(a_loc, b_loc);

C_D_buff = c_out;

post_sem(sem_C_D) ;

}

©OTDU B WN -

void A_EQ)
{

a_out = AQ);
¥

void A_RQ)
{
if (must_write_A_C())
write_val(A_C_buff, a_loc);

if (must_post_A_CQ))
post_sem(sem_A_C);

@ sem_X_Y: binary semaphore for synchronization;

Julien Forget (CRIStAL, Lille)

Code generation for AER tasks on a distributed memory platform

« 24 /30 —

Code generation for distributed memory

Experimental setup: hardware

Timers || Timers

CPU 0| CPU 1 ||Shared RAM || Mutex

Avalon Interconnect Fabric

Instr.
scratchpad 0/ | NIOS NIOS
Data || CPUO CPU 1
scratchpad 0

Instr.

_scratchpad 1

Data

_scratchpad 1

e On FPGA;

@ Can switch between scratchpad and cache memories.

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform

« 25 /30 —»

Code generation for distributed memory

Experimental setup: software

Rosace case-study (longitudinal flight controller);
@ Measured speedup between:

o PREM + scratchpad private memory;
e Non-PREM + cache private memory;

Both codes generated by the Prelude compiler (two options);
Shared RAM artificially slowed down.

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 26 /30 —

Code generation for distributed memory

Results: PREM speedup (vs non-PREM)

12 | I I Same clock
10 [Bctock divided by 4
8 B Clock divided by 8
6
4
2
[} X o = n o X wn e} [Te} A A A o o
c 2 o % S o s 2 3 S s 3 23 o
w F 5 L | & e = 1 & & & I
@ NI I - 2] ml g ‘UI S _CI o-l NI
> 2 ° £ T > F T ot ©
3 g = £ 8
e [e =2
@ @ © N
> Iv] >
=
[0}

Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 27 /30 —

Conclusion

Outline

@ Conclusion

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 28 /30 —

Conclusion

Summary

@ The synchronous model is a natural fit for AER;

@ The relaxed synchronous model is a natural fit for implicit-deadline
tasks;

o Extending Prelude for AER code generation is..natural;

@ Advantages:

e Spares error-prone low-level concerns;
o Enables easy PREM vs non-PREM comparison.

Semantics matters.

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 29 /30 —

Conclusion

References

J. Forget.

Prelude: programming critical real-time systems.
https://www.cristal.univ-lille.fr/~forget /prelude.html.

F. Fort and J. Forget.
Code generation for multi-phase tasks on a multi-core distributed memory platform.
In 2019 IEEE 25th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’19), pages 1-6. IEEE, 2019.

C. Pagetti, J. Forget, H. Falk, D. Oehlert, and A. Luppold.
Automated generation of time-predictable executables on multi-core.
In RTNS 2018, Proceedings of the 26th International Conference on Real-Time Networks
and Systems, POITIERS, France, Oct. 2018.

:
Julien Forget (CRIStAL, Lille) Code generation for AER tasks on a distributed memory platform « 30 /30—

	Introduction
	A question of semantics: synchronous real-time with Prelude
	Code generation for distributed memory
	Conclusion

