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Abstract

Mixed-criticality systems are promoted in industry due to their poten-

tial to reduce size, weight, power, and cost. Nonetheless, deploying mixed-

criticality applications on commercial multi-core platforms remains a highly

challenging problem. To name a few reasons: (i) Industrial mixed-criticality

applications are usually complex reactive applications, which cannot be spec-

ified by traditional, e.g., dataflow-based, models of computation. Appropri-

ate mixed-criticality models of computation built upon Vestal’s assumptions

are missing; (ii) Scheduling such applications on multicores with shared re-

sources, such as memory buses, requires that any timing interference among

applications of different criticality is bounded in order to guarantee - the nec-

essary for certification - temporal isolation and to enable incremental design;

(iii) The implementation of isolation-preserving mixed-criticality schedulers

is itself subject to certification. Hence, it needs to be not only efficient, but

also provably correct. This paper proposes, for the first time, a complete

design flow covering all aspects from the high-level specification of mixed-

criticality applications and target architectures, to methods for scheduling

and mapping optimization that ensure temporal isolation, to functional val-

idation of the design based on formal methods, and finally to the correct-

by-construction code generation for the target platform. We demonstrate the

applicability of our design flow with an industrial avionic test case on the

state-of-the-art Kalray MPPA R©-256.
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1 Introduction

With the proliferation of multi- and many-core platforms in the electronics mar-

ket, the embedded system industry is experiencing an unprecedented trend to-

wards integrating multiple applications into a common platform. The migration

from single-core to multi-core designs affects even safety-critical domains, such

as avionics and automotive. In such domains, applications are characterized by

discrete safety criticality levels, as defined e.g., by the DO-178C avionics stan-

dard [16]. Integration of applications with different safety criticality has lead to the

design of so-called mixed-criticality systems, which has been a prominent research

topic in recent years [12]. Nonetheless, a complete and sound methodology for

successfully integrating mixed-criticality applications on (shared-memory) multi-

cores remains by and large an open problem. Some of the challenges are listed

below.

Specification. Firstly, the specification of mixed-criticality (MC) applications

does not usually fit into traditional streaming models of computation, such as

Kahn process networks [34], for which established multi-core scheduling meth-

ods exist [52]. MC applications are also reactive control applications, where task

activation depends on a combination of data availability (similar to streaming appli-

cations), complex (non-periodic) arrival patterns, and dynamic decisions by sched-

ulers which can skip tasks or activate them in degraded mode. Even models that are

widely used in MC literature, like Vestal’s [59], do not necessarily capture data de-

pendencies, service degradation, etc. The specification complexity necessitates the

introduction of new, richer models of computation for the precise representation of

real-world MC applications.

Temporal Isolation. Secondly, mixed-criticality design needs to ensure temporal

isolation for certification purposes. Namely, applications of different safety criti-

cality levels should not interfere (delay each other), or their interference must be

bounded according to safety standards. To achieve isolation on a single core, sys-

tem designers usually rely on time partitioning mechanisms at platform level, such

as the ones specified by the ARINC-653 standard [7]. In contrast to partitioning,

in research literature it is commonly assumed that the isolation property is ensured

in a non-symmetric way, for efficiency. That is, the interference from lower to

higher criticality tasks is eliminated or bounded, but the interference from higher

to lower tasks is tolerated. The established MC application model [59], represents

tasks with multiple worst-case execution time (WCET) bounds at different safety

criticality levels. The bounds become more conservative and more probable as the

criticality level increases. Most scheduling policies based on this model execute all

tasks initially according to their least conservative WCET bounds, and can change

the schedule dynamically at runtime if high criticality tasks require more resources

(execution time). After the schedule switch, lower criticality tasks may receive less

or no service. Inhibiting those tasks prevents unwanted interference to high criti-

cality tasks and improves resource efficiency. This way, non-symmetric isolation is
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ensured on single cores. However, on multicores one has to consider possible inter-

ferences among tasks with different criticality on additional (non-computational)

shared platform resources, e.g., shared caches or memory buses. Preserving iso-

lation in the presence of shared resources is not trivial. It requires new industrial

specifications, like [7], and an extension of Vestal’s original MC model to account

for the accessing behavior to shared resources.

Incremental Design. Thirdly, due to the high cost of certification, industry poses

the requirement for incremental design of MC systems [8]. A MC scheduling pol-

icy should support adding new applications to a system without any impact on the

schedule or the real-time properties of higher criticality applications that already

existed in the system design. This removes the need for re-certification every time

a new application is integrated, thus reducing the overall cost. Industrial standards,

such as [7], specify mechanisms for incremental design that are restricted to single

cores and symmetric isolation. New incremental design methodologies have to take

into consideration non-symmetric isolation and interference of shared resources on

multicores. This requirement has received, nonetheless, minimal attention in liter-

ature.

Implementation. Fourthly, the implementation of both MC applications and

their supporting mechanisms, such as schedulers and mechanisms for temporal

isolation, is itself subject to certification. Given that such mechanisms can include

inter-core synchronisation, distributed monitoring of task execution times, dynamic

schedule reconfigurations, resource servers, a manual implementation can be chal-

lenging and error-prone, since most commercial multicores do not provide support

for mixed-criticality and they are not designed for predictability. Additionally,

the runtime overhead of the supporting mechanisms is non-negligible and must be

considered at design time for a safe deployment [49]. These challenges call for

rigorous approaches for the implementation and validation of MC schedulers and

the correct-by-construction MC software synthesis.

In this paper we present a complete design flow for mixed-criticality multi-core

systems, which addresses all aforementioned challenges. The main contributions

can be summarized as follows:

• We extend Vestal’s model for MC task sets [59] to account, besides WCET, also

for shared-resource accesses at different criticality levels, for degraded mode of

low-criticality tasks, and for incremental design. We extend it further to model

inter-task dependencies and non-blocking communication.

• We propose an architecture description language (ADL), DOL-Critical, for the

specification of MC applications and schedules complying with the above ex-

tended model. This way we demonstrate the new elements that can be poten-

tially included in popular ADLs, such as AADL, to account for mixed-criticality

and multi-core designs.

• We implement an optimization tool for isolation-preserving multi-core schedul-

ing of MC applications which are specified in DOL-Critical. The optimization
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tool is integrated with worst-case response time analysis that considers task in-

terference on shared resources. Thus, we propose a method that can handle our

Vestal’s model extensions in practice.

• For rigorous system design, we extend the timed-automata language BIP [2]

to support asynchronous tasks, thus obtaining an enhanced variant of task au-

tomata [21]. These automata are extended by multi-core support and by the

possibility to program scheduling policies with custom runtime management

mechanisms. We propose and demonstrate the concept of implementing the

DOL-Critical specifications by first compiling them into BIP task automata and

performing functional validation.

• We implement a generator for hardware-dependent software (HdS), i.e., binary

executables for the MC application which, after being linked with the BIP run-

time environment (RTE), can be directly executed on a target platform. The

synthesized code preserves the BIP model semantics up to some bounded clock

drift caused by (analysable) runtime overhead. We evaluate the BIP HdS gener-

ator on the Kalray MPPA R©-256 platform.

• We integrate all tools, from application specification in DOL-Critical to system

modeling in BIP to code generation, into a single tool-chain.

• We show how to integrate runtime overheads that are identified and characterized

after the deployment of the MC application on the target platform back into

timing analysis, by introducing a feedback loop to the scheduling optimization

tool.

• We demonstrate the applicability of our design flow with an avionic test case,

and provide empirical evidence for the necessity of the aforementioned feedback

loop.

To the best of our knowledge, this is the first tool-chain for the specification,

scheduling optimization, timing analysis, and correct-by-construction implemen-

tation of MC applications on commercial-off-the-shelf multi-core platforms. Note

that except for the extension to Vestal’s model (partly), the isolation-preserving

scheduling policy, and the respective optimization method, all listed contributions

are presented for the first time in this paper.

The combined DOL-BIP-Critical design flow, which follows the established Y-

chart approach [35], is illustrated in Figure 1. The document shapes represent data

(specifications of application, architecture, mapping in DOL-Critical, BIP mod-

els, executable code) and the rectangular shapes represent tools, respectively. The

highlighted parts of the flow are user-defined. Namely, the MC application and

the target architecture are specified by the system designer. All other steps of the

design flow are executed automatically, except for the back annotation of the appli-

cation specification, which is performed by the system designer after the execution

of the MC application on the architecture. The front- and the back-end of the tool-

chain are publicly available under [17, 45], respectively.
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Figure 1: DOL-BIP-Critical Design Flow

Outline. In the remainder of the paper, Sec. 2 discusses related work. Sec. 3

presents the extensions to Vestal’s MC model for resource-sharing multicores, and

defines the requirements for MC schedulability. Sec. 4 proposes a scheduling pol-

icy, which explicitly considers the effects of resource sharing and ensures temporal

isolation, along with an approach for optimizing MC scheduling w.r.t. incremental

design. Sec. 5 starts the description of the tool-chain of Figure 1 by presenting

the DOL-Critical language for specifying applications, architectures and sched-

ules. Sec. 6 presents the backbone language BIP, with the internal models for a

MC application and its optimized schedule. Sec. 7 and 8 discuss the automated

HdS generation and execution on the target platform, along with the feedback loop

from execution to timing analysis. Finally, Sec. 9 demonstrates the developed de-

sign flow with an avionic test case and Sec. 10 concludes the article.

2 Related Work

Mixed-Criticality Models and Scheduling. Scheduling of mixed-criticality

(MC) systems has received increasing attention since the original work [59], which

introduced the currently dominating model. This model represents MC tasks as pe-

riodic (sporadic) real-time tasks with multiple worst-case execution times (WCET),

defined at different safety criticality levels. Vestal’s model has been applied and ex-
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tended in several works, [37, 20, 9, 42, 19, 33] to name a few. For an up-to-date

compilation and review of the model extensions and relevant scheduling policies,

the interested readers are referred to [12]. In this work, we extend Vestal’s model to

(i) capture shared-resource accesses, besides WCET, at different criticality levels,

(ii) define the degraded mode of lower criticality tasks, and (iii) ensure incremental

design.

Although several policies have been suggested for single-core MC systems,

fewer solutions exist currently for multicores. One of the main challenges in mul-

ticores is satisfying the requirement for temporal isolation (or freedom from inter-

ference), which is dictated by industrial certification standards [16, 1]. Since mul-

ticores typically feature different types of shared hardware resources, MC schedul-

ing has to explicitly eliminate or bound potential timing interferences on all shared

resources. For this purpose, several works advocate the static scheduling or per-

core budget assignment on memory buses [54, 65, 22], the implementation of

novel criticality-aware memory controllers [41, 26, 28], the privatization of mem-

ory banks by cores running single-criticality applications [47, 62, 64], or the use

of virtualization and monitoring mechanisms for isolation among flows of differ-

ent criticality on a network-on-chip [57]. Such methods allow bounding the effect

of resource sharing on the response time of high-criticality applications. However,

most of them lack flexibility (e.g., static time-triggered bus scheduling) and/or need

special hardware support which limits their applicability to commercial-off-the-

shelf platforms.

System-level solutions that target at global temporal isolation via scheduling

have been also proposed recently. Anderson et al. proposed scheduling MC sys-

tems by employing different strategies (partitioned EDF, global EDF, cyclic execu-

tive) for different criticality levels and utilizing a bandwidth reservation server for

isolation [6, 40]. This work considers mainly the CPU cores as shared resources,

but no other platform resources where mixed-criticality applications can interfere.

To overcome this limitation, the authors of [24, 13] propose scheduling MC ap-

plications such that only tasks of the same criticality can be executed, and hence

interfere on shared platform resources, at any time. Huang et al. formalise this

notion under the term Isolation Scheduling and provide optimality results in [32].

In this paper, we employ policies for Isolation Scheduling of MC systems in order

to facilitate their deployment on commercial-off-the-shelf platforms without dedi-

cated hardware support. Particularly, we adopt the flexible time-triggered schedul-

ing policy of [24] because (i) it complies with the proposed MC model of Sec. 3,

(ii) its dynamic runtime behavior allows efficient resource utilization (Sec. 4), (iii)

it enables incremental design, and (iv) timing analysis methods which explicitly

consider the effects of timing interference on shared resources are available [25].

Implementation of Mixed-Criticality Systems. The current industrial practice

for implementingMC systems on single-core platforms enforces temporal isolation

by means of operating system and hardware-level partitioningmechanisms, e.g., as

specified in the ARINC-653 standard [7]. No existing standards, however, define
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how isolation is preserved on resource-sharing multicores. Hence to the best of

our knowledge, commercial multicores are not used currently for MC deployments

in large-scale industrial applications. This highlights the vast need for tools and

methodologies for the implementation of multi-core MC systems.

In research, implementation aspects of MC scheduling have started being ad-

dressed recently. Herman et al. consider the implementation and runtime overhead

of multicore MC scheduling in [29], where the scheduling method of [6, 40] is im-

plemented in the real-time operating system LITMUS [14]. This policy does not

preserve isolation in the presence of shared platform resources. Huang et al. de-

velop a framework, where several single-core MC policies are implemented on top

of a standard Linux kernel, and their runtime overheads are evaluated on an Intel

Core i7 platform [30]. Sigrist et al. compare alternative implementations of com-

mon multi-core MC mechanisms on top of Linux, and evaluate their overheads on

an 4-core Intel Core i5 and a 60-core Xeon Phi [49]. Among others, they con-

sider the overheads of the flexible time-triggered scheduling policy of [24], which

is considered in our paper, and show that the implementation overheads can have a

tremendous effect on schedulability, hence cannot be neglected. This shows clearly

the challenge of implementing multi-core MC systems; rigorous methods are nec-

essary for their scheduling, software synthesis, and timing analysis. This paper

achieves a major step in this direction by presenting the first complete design flow

for the implementation of isolation-preserving MC systems on commercial multi-

core platforms, with explicit consideration of runtime overheads.

Model-Driven Software Synthesis. Rigorous design of timing-critical systems

should employ models which possess formal operational semantics and capture

the notion of physical time [60]. A relevant class of such models are timed au-

tomata, i.e., finite automata with continuous-time clock variables [4]. A literature

overview [60] on applying timed automata in real-time systems reveals a large

number of tools and a solid mathematical basis. An important extension of the

timed automata are timed automata with tasks, also known as task automata [21].

These models can explicitly express and measure time segments of their execu-

tion where tasks are running. Timed and particularly task automata have many

applications in timing analysis and code synthesis, an important example being the

task-automata analysis and implementation tool TIMES [5].

Still, timed/task automata alone cannot satisfy all modeling needs, for two rea-

sons. Firstly, they are often not convenient for programmers. Therefore, compila-

tion from high-level languages, such as UML, to timed automata becomes a com-

mon practice, see e.g.,[63]. Secondly, large timed automata suffer from analysis

scalability issues. Therefore, for timing-critical system design it may be favorable

to employ less expressive, yet better scalable customized models. Examples are

(i) the AADL-based design flow TASTE [44], which employs tools for classical

schedulability analysis, and (ii) the design flow CompSoC [27], which supports

throughput/latency analysis of dataflow graphs.

In this work, we use the DOL-Critical high-level description language for
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the specification of applications and mapping/scheduling solutions. The DOL-

Critical specifications are fully automatically compiled to BIP language for timed

automata [2], which we extend here to task automata. Our rationale for compila-

tion to automata is to reuse their known ability to formally express runtime resource

management mechanisms, especially in mixed-criticality settings [50], and to ob-

tain a rigorous methodology for managing the runtime overheads. We perform

code synthesis for both the application and runtime scheduling directly from the

BIP task automata model. Due to scalability issues, for timing analysis we cur-

rently rely on a customized DOL-Critical analyzer which verifies the system prior

to compilation into BIP. Nevertheless, we believe that the refinement relation es-

tablished at compilation can be used to construct, in future work, a formal proof

that the analysis can safely bound the runtime overheads.

DOL-Critical is based upon the Distributed Operation Layer (DOL) [55, 31].

A compilation framework from the original DOL to (untimed) automata in BIP

was introduced in [10]. However, in the presented tool-chain we consider new

concepts that were not present in the original framework, such as task activation

patterns, explicit scheduling policy, and mixed criticality. This has lead to an es-

sential redefinition of the DOL methodology and a switch from untimed to timed

task automata in BIP compilation and code synthesis.

3 System Model

This section defines the abstract application and architecture models1 that are

considered in our work as well as the necessary conditions for mixed-criticality

schedulability. The application model is based on established assumptions from

literature, which are extended to support resource sharing, degraded mode, depen-

dencies, and non-blocking communication, while the architecture model is inspired

by commercial many-core architectures. The schedulability conditions extend the

state-of-the-art by capturing temporal isolation and incremental design.

3.1 Mixed-Criticality Application Model

We consider mixed-criticality task sets τ = {τ1, . . . , τn} with criticality lev-

els among 1 (lowest) and L (highest). The tasks (processes in DOL-Critical)

can be periodic or sporadic. A periodic task is characterized by a 4-tuple τi =
{Wi, χi,Ci, Ci,deg}, where:

• Wi ∈ N
+ is the task’s period.

• χi ∈ {1, . . . , L} is the task’s criticality level.

• Ci is a size-L vector of execution profiles, where Ci(ℓ) =
(emin

i (ℓ), emax
i (ℓ), µmin

i (ℓ), µmax
i (ℓ)) represents a lower and an upper bound

on the execution time (ei) and number of shared resource accesses (µi) of τi at

1These models are used in our tool-chain for timing analysis (Sec. 4.2). The concrete class of

applications and targets architectures that can be specified in DOL-Critical is described in Sec. 5.
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level ℓ ≤ χi. Note that execution time ei denotes the computation or CPU time

of τi, without considering the time spent on accessing shared resources. Such

decoupling of the execution and communication time is feasible on fully timing

compositional platforms [61].

• Ci,deg is a special execution profile that can be employed at runtime if a task τj
(χj > 1) consumes more resources than Cj(ℓ

′) for some ℓ′ in {1, . . . , χj − 1}.
In Vestal’s model, in this case it is legal to drop all subsequent jobs of tasks

τi with χi ≤ ℓ′ in order to free resources for the more critical task τj . In this

work, for compliance with industrial standards, we do not drop tasks, but instead

execute them in degraded mode, which is characterized by profile Ci,deg. This

corresponds to the minimum required functionality of τi so that no catastrophic

effect occurs in the system. If execution of τi can be aborted without catastrophic

effects, then Ci,deg = (0, 0, 0, 0).

A sporadic task is characterized by a 5-tuple τi = {ai, Ii, χi,Ci, Ci,deg}, with
the new parameters (ai ∈ N

+, Ii ∈ N
+) denoting the maximum allowed number of

task activations, ai, within any time interval Ii. For scheduling purposes, a sporadic

task is over-approximated by a periodic “server” task that has a sufficiently high

execution frequency and tighter deadline to meet the deadlines of the sporadic task

that it represents, see [46].

Periodic and sporadic tasks generate an infinite amount of jobs respecting the

corresponding period or task activation per interval parameters. For simplicity,

we assume that the first job of all periodic tasks is activated at time 0 and that

the relative deadline Di of τi is equal to its period, i.e., Di = Wi. Furthermore,

the worst-case parameters of Ci(ℓ) are monotonically increasing for increasing ℓ

and the best-case parameters are monotonically decreasing, respectively. Namely,

the min./max. range of execution times and shared resource accesses in Ci(ℓ) is
included in the corresponding range of Ci(ℓ + 1), for ℓ ∈ {1, . . . , χi − 1}. Note
that the best-case parameters are only required for tight response time analysis. If

not available, they are assumed equal to 0.

The bounds for the execution times and accesses can be obtained by different

tools. For instance, at the lowest level of assurance (ℓ = 1), the system designer

may extract them by profiling and measurement, as in [43]. At higher levels, certi-

fication authorities may use static analysis tools, such as the abstract interpretation

suite aIT [3], with more and more conservative assumptions as the required con-

fidence increases. The execution profile Ci(ℓ) for each task τi is derived only for

ℓ ≤ χi. For ℓ > χi, there is no valid execution profile since certification at level

ℓ ignores all tasks with a lower criticality level. At runtime, if a task with criti-

cality level greater than χi requires more resources than initially expected, then τi
may run in degraded mode with execution profile Ci,deg. Note that we forbid the

case where a task τi consumes more resources than its own criticality level profile

Ci(χi).
Dependencies can be defined among tasks with equal periods. We represent

these by a directed acyclic graph Dep(V , E), where each node τi ∈ V represents
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a task, and an edge e ∈ E from τi to τk implies that within a period the job of τi
must precede that of τk.

With regards to inter-task communication, we assume that it can be achieved

through shared objects, called data channels, which are updated and read by tasks

in a non-blocking fashion. The non-blocking communication is selected to avoid

(potentially unbounded) blocking delays, and hence to facilitate scheduling, timing

analysis and certification of mixed-criticality systems. Instead of blocking, we use

dependencies to ensure functionally deterministic communication. Two tasks that

communicate should have a dependency between them, going in the same or in the

opposite direction w.r.t. the flow of data. Recall that a dependency implies equal

task periods. Therefore, to let two different-rate tasks communicate, we transform

them into equal-rate tasks with a common-divisor period and internal skipping of

excess activations.

The MC model described above extends Vestal’s model [59], mainly by: (i) In-

troducing the shared resource access bounds, which are required for timing analysis

on shared-resource multicores; (ii) Defining the degraded mode for lower critical-

ity tasks. Guaranteeing a minimal functionality for such tasks (instead of dropping

them as in the original model) has been also advocated in [48, 53, 11]; (iii) Intro-

ducing the notion of non-blocking inter-task communication through data channels

protected by dependencies. This idea is used also in a related model in [46].

3.2 Shared-Resource Multi-core Architecture Model

We consider a set P of m processing cores, P = {p1, . . . , pm}. Here, the cores

are identical but our approach can be generalized to heterogeneous platforms. The

mapping of a task set τ to the cores in P is defined by function Mτ : τ → P .

In our work, Mτ is not given, but it is calculated by our optimization approach in

Sec. 4.2.

Each core in P has access to a private cache memory and to a shared general-

purpose memory. The code and data of the tasks in τ as well as the data channels

used for the inter-task communications are assumed to fit in the shared memory.

This abstract model gives a partial view of commercial many-core platforms, for

instance the Kalray MPPA R©-256 [15] and the STHorm/P2012 [38]. These plat-

forms are on-chip networks of shared-memory clusters, with 16 cores per cluster.

Currently, our model is restricted to a single cluster, since exploiting more on-chip

clusters would require network-on-chip management, which is outside the scope

of this paper.

For timing analysis, we need to consider shared resources which are accessed

synchronously, namely which cause execution on the cores to stall until any pend-

ing access requests are served. We assume that such resources, for instance a mem-

ory bus, can be accessed by only one core at a time, and that once granted, a re-

source access is completed within a fixed time interval, Tacc. Access to the shared

resources can be arbitrated according to any event- or time-triggered scheme, e.g.,

round-robin or time-division-multiple-access. To enable safe timing analysis under
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resource contention, we consider hardware platforms without timing anomalies,

such as the fully timing compositional architecture defined in [61], where execu-

tion and communication times can be decoupled. Note that the MPPA R©-256 cores

have been shown to be fully timing compositional [15].

3.3 Mixed-Criticality Schedulability Conditions

Under the above system assumptions, we seek a feasible schedule for the MC task

set τ on the cores P , which enables temporal isolation among criticality levels and

incremental design. Below we define the properties of feasibility, isolation and

incremental design. The feasibility conditions follow from Vestal’s schedulability

conditions, by considering shared resource accesses and degraded mode. The iso-

lation and incremental design conditions are introduced to capture the certification-

induced requirements in safety-critical domains.

Definition 1 (Execution Scenario) At runtime, the tasks follow a level-ℓ scenario

in a given time interval if, within this interval, the resource demand for all execut-

ing jobs of tasks τi with criticality χi ≥ ℓ complies with the execution and access

bounds of profiles Ci(ℓ). If ℓ > 1, there must be at least one job of a task τj , for

which the resource demand violates the bounds of Cj(ℓ− 1).⊓⊔

The term resource, in this context, refers to both processing time and shared-

resource access. Take, for instance, an infinitely small interval following a level-1

scenario. When we extend this interval, the first job of a task τj , whose resource

demand exceeds Cj(1), switches the current scenario to level 2. Later, a job of

the same or another task τj′ , whose resource demand exceeds Cj′(2), switches to
level 3, and so on. A mixed-criticality scheduling policy has an interval of obser-

vation from the last resetting point to the current time. The first resetting point is at

time zero. The intervals are regularly reset at specific – for the given policy – time

instances, when all cores and shared resources should be idle.

Definition 2 (Feasibility) A schedule is feasible if for any level-ℓ scenario (ℓ ∈
{1, · · · , L}), it guarantees the conditions:

• the jobs of each task τi, satisfying χi ≥ ℓ, receive enough resources between

their activation time and deadline to meet their real-time requirements according

to execution profile Ci(ℓ),

• the jobs of each task τi, satisfying χi < ℓ, receive enough resources between

their activation time and deadline to meet their real-time requirements according

to execution profile Ci,deg.⊓⊔

Definition 3 (Temporal Isolation) A schedule satisfies non-symmetric temporal

isolation if all tasks of criticality level ℓ suffer no interference from tasks with

lower criticality level, for all ℓ ∈ {1, . . . , L}. Namely, the execution and access

activities of a task τi do not delay in any way any task with criticality level higher

than χi. ⊓⊔
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Definition 4 (Incremental Design) A scheduling algorithm enables incremental

design if adding new tasks of lower criticality into the system can be done without

altering the schedule for the existing tasks.⊓⊔

Note that the property of incremental design is based upon non-symmetric tem-

poral isolation. The two properties imply that if the schedule of a task set τ is

certified as feasible, the certification procedure will not need to be repeated if new,

lower-criticality tasks are added later to the system. This is highly desirable, since

repeating the certification process of already certified tasks if the system is gradu-

ally incremented results in excessive costs [8].

4 Mixed-Criticality Scheduling on Resource-Sharing

Multicores

The previous section presented the abstract models of mixed-criticality applica-

tions and multi-core architectures that can be specified in DOL-Critical. Here, we

focus on determining the mapping, i.e., the binding of the application tasks to pro-

cessing cores, and scheduling, i.e., the execution order of the tasks on the cores.

For the problem of mixed-criticality multi-core scheduling, policies that explicitly

address the effects of interference on shared resources need to be considered. For

this, we select the Time-Triggered scheduling policy with Synchronization points

(TTS) [24], which is designed for temporal isolation and incremental design. Tem-

poral isolation is achieved by allowing only a statically known subset of tasks in τ

with the same criticality level to be executed across the cores P at any time. This

is necessary for deployments on commercial-off-shelf-platforms which do not pro-

vide special support for criticality isolation on their shared resources. Allowing a

static subset of tasks to be executed in parallel enables, additionally, tight worst-

case timing analysis, which is also crucial for certification.

Sec. 4.1 presents the main principles of the TTS scheduling policy from [24],

assuming that a TTS schedule for a particular task set and platform is given. We

show how to determine a TTS schedule in Sec. 4.2. The design space exploration

method of Sec. 4.2 is implemented in DOL-Critical.

4.1 TTS Scheduling

The non-preemptive TTS scheduling policy combines time- and event-triggered

task execution. The tasks are mapped statically to cores and no migrations are

allowed. A TTS schedule repeats itself over a scheduling cycle equal to the hyper-

period H of the tasks in τ (least common multiple of periods). The scheduling

cycle consists of fixed-size frames (set F), and each frame is divided further into

L flexible-length sub-frames. A sub-frame contains only jobs of the same criti-

cality level, and the sub-frames are ordered within a frame in decreasing order of

criticality. Within a sub-frame, tasks are scheduled sequentially on each core fol-

lowing a predefined order, namely every task is triggered upon completion of the
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Figure 2: Global TTS schedule for 2 cycles (dark annotation: CL 2, light: CL 1)

previous one. The jobs executed in a sub-frame have been generated at or before

the respective frame start and have deadline at or after the frame end. The begin-

ning of frames and sub-frames is synchronized among all cores in P . The (fixed)

frame lengths can differ, but they are upper bounded by the minimum period in

τ . Each sub-frame (except the first of a frame) starts once all jobs of the previ-

ous sub-frame complete execution across all cores. Synchronisation is achieved

dynamically at runtime via a barrier mechanism, for the sake of efficient resource

utilization.

Example 4.1 An illustration of a TTS schedule is given in Figure 2 for a dual-

criticality set of seven tasks, with hyper-period H = 200 ms. Figure 2 depicts two

consecutive scheduling cycles. The solid lines define the frames and the dashed

lines the sub-frames, i.e., potential points, where barrier synchronisation is per-

formed at runtime. The TTS scheduling cycle (H = 200 ms) is divided into four

frames of equal lengths (50 ms). Each frame has L = 2 sub-frames: the first

for criticality 2 (high) and the second for criticality 1 (low), respectively. At run-

time, the length of each sub-frame varies based on the different execution times

and memory accessing patterns that the concurrently executed tasks exhibit. For

example, the first sub-frame of f1 finishes earlier when τ1, τ2 run according to their

level-1, i.e., low-criticality execution profiles (cycle 1) than when at least one task

runs according to its level-2, i.e., high-criticality profile (cycle 2).

Despite the dynamic runtime behavior, the sub-frame worst-case lengths can be

computed offline for a given TTS schedule by applying timing analysis under

shared-resource interference. Function barriers : F × {1, . . . , L} → R
L defines

a vector with the worst-case length of all sub-frames of a frame when a particular

scenario ℓ is followed. We denote the worst-case length of the k-th sub-frame of

frame f for the level-ℓ scenario as barriers(f, ℓ)k. Note that the k-th sub-frame of

f contains tasks of criticality level (L− k + 1). Also, ℓ corresponds to the highest
level execution profile that the tasks of f exhibit at runtime. For ℓ > 1, execution
in lower-criticality sub-frames of f may be degraded.

Runtime behavior. Given a feasible TTS schedule and the barriers function, the

scheduler manages task execution on each core within a frame f ∈ F as follows:

• For the k-th sub-frame, the scheduler triggers sequentially the corresponding

jobs following the predefined order. Upon completion of all jobs on the core, it

13



signals an event and waits until the remaining cores reach the barrier (all jobs of

the sub-frame are completed).

• Let the elapsed time from the beginning of the frame until the barrier synchro-

nisation of the k-th sub-frame be t. Below, ℓmax defines the maximum-level

execution profile in the frame:

ℓmax = argmin
ℓ∈{1,...,L}







t ≤
k

∑

j=1

barriers(f, ℓ)j







, (1)

The scheduler will trigger jobs in the next sub-frame such that tasks with criti-

cality level lower than ℓmax run in degraded mode.

• The two previous steps are repeated for each sub-frame, until the last sub-frame

is reached.

Note that the decision on whether a task will run in degraded mode affects only the

current frame. The interval for observing the execution scenario is reset at frame

boundaries.

Feasibility. A given TTS schedule is feasible if and only if the following condi-

tion holds for all scenarios ℓ ∈ {1, · · · , L}:

L
∑

k=1

barriers(f, ℓ)k ≤ Lf , ∀f ∈ F , (2)

where Lf denotes the length of frame f . If the condition holds for all frames

f ∈ F , it follows that all scheduled jobs can meet their deadlines when running

according to their level-ℓ profiles.

Temporal isolation & incremental design. The TTS scheduling policy pre-

serves temporal isolation, since only tasks of the same criticality level can run

simultaneously on the platform. The isolation is non-symmetric because of the

criticality-monotonic dynamic scheduling of the sub-frames within each frame:

The jobs of a sub-frame cannot be delayed in any way by lower-criticality

jobs, however higher-criticality jobs can implicitly delay the execution of lower-

criticality by shifting the barrier synchronisation point. The TTS policy enables

incremental design, since adding new tasks in sub-frames has no impact on pre-

vious sub-frames. In addition, the cross-core utilisation of frames is bounded at

design time and the remaining slack intervals, where all cores are idle, can be even

filled by new frames of other applications. Note that for incremental design, an

attractive optimisation goal for a scheduler is to ‘pack’ the sub-frames as evenly

across the core as possible, in order to minimize function barriers and maximize

the slack intervals.
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4.2 Mapping and Scheduling Optimization

In DOL-Critical, for a given application and target architecture, we seek an optimal

TTS schedule. We define a schedule as optimal if (i) it is feasible, and (ii) the worst-

case total sub-frame lengths are minimal. The latter condition implies maximal

aggregate slack intervals, which can be used for incremental design.

The problem of optimal task mapping on multiple cores is known to be NP-hard

in most cases, resembling the combinatorial bin-packing problem [39]. To tackle

this challenge, we propose and implement in our tool-chain the Mixed-Criticality

Mapping and Scheduling Optimization (MCMSO) tool. MCMSO takes as input a

mixed-criticality task set τ and a set of cores P , and returns the mapping function

Mτ of tasks to cores and a feasible TTS schedule if at least one such schedule

exists.

MCMSO performs design space exploration with two main objectives. The

primary objective is to find feasible solutions. The second objective is to improve

the quality of a feasible solution by maximizing the total size of slack intervals

available for incremental design. To perform the exploration, MCMSO implements

a heuristic approach based on simulated annealing [36]. In summary, the MCMSO

approach is described by the following steps:

1. Dimension the TTS scheduling cycle and frame lengths based on the periods of

tasks in τ .

2. Generate a random schedule of the jobs of τ within hyper-periodH on the cores

of P and the frames F of the TTS cycle, such that all dependencies are re-

spected.

3. Apply a simulated annealing approach to generate and explore neighboring map-

pings (assignments of tasks to cores) and schedules (assignment of jobs to sub-

frames), until an optimized solution is found or a given computational budget is

exhausted.

To express the optimality criteria, we define the cost function of the optimization

problem as:

Cost(S) =

{

c1 = maxf∈F
{

maxℓ∈{1,...,L} late(f, ℓ)
}

if c1 > 0

c2 = ‖barriers‖3 if c1 ≤ 0
(3)

where late(f, ℓ) expresses the difference between the worst-case completion time

of the last sub-frame of f and the length of f :

late(f, ℓ) =
L
∑

k=1

barriers(f, ℓ)k − Lf . (4)

Component c1 of the cost function provides a measure of “infeasibility". If

late(f, ℓ) > 0, the tasks in f cannot complete execution by the end of the frame

for their ℓ-level execution profiles. Therefore, with this cost function, we initially
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guide the design space exploration to find a feasible solution (by penalising in-

feasible solutions). When such a solution is found, cost c1 becomes negative

or 0. Thereafter, c2, i.e., the 3-norm of all sub-frame lengths, ∀f ∈ F , ∀ℓ ∈
{1, . . . , L}, is used to minimize the worst-case lengths of all sub-frames. The

3-norm of a vector x with n elements (here, positive real numbers) is defined

as ||x||3 :=
(
∑n

i=1
|xi|

3
)1/3

. We selected this value to map the flattened vec-

tor with the barriers values, for all sub-frames of the frames f ∈ F and for all

ℓ ∈ {1, . . . , L}, over other norms, such as the average or the Euclidean norm,

because empirically it provides a good trade-off between reducing the worst-case

sub-frame lengths (to ensure schedulability) and enabling progress in the optimiza-

tion. The simulated annealing approach for optimizing a TTS schedule is detailed

and evaluated extensively in [24].

Timing Analysis. MCMSO is tightly coupled with a timing analyzer in our de-

sign flow (Figure 1). During design space exploration, for every visited TTS sche-

dule this tool performs worst-case response time analysis for all tasks in each

sub-frame and each execution scenario, in order to compute the worst-case sub-

frame lengths, i.e., the function barriers. Real-time analysis of concurrently ex-

ecuting tasks under resource contention is a highly complex problem. We have

addressed this by applying the theory of timed automata [4] and real-time calcu-

lus [56] in [23], and by an analytic arbitration-dependent approach in [24]. The

latter approach is implemented in DOL-Critical. For brevity, we omit the timing

analysis here and refer the interested readers to the aforementioned publications.

5 Description Language DOL-Critical

In our design flow, the DOL-Critical language is used for specifying a mixed-

criticality application (Sec. 3.1) and a target architecture (Sec. 3.2). The same lan-

guage, specifically the integrated MCMSO tool and the timing analyzer (Sec. 4.2),

are used for design space exploration and determination of a TTS schedule with

maximal aggregate slack time. This section provides details about the user-defined

specifications of mixed-criticality applications and multi-core architectures, as well

as the auto-generated specification of the mapping and scheduling solution in DOL-

Critical.

5.1 Specification of a Mixed-Criticality Application

To specify a mixed-criticality application that complies with the model of Sec. 3.1

in DOL-Critical, we distinguish between two layers: a functional layer which con-

sists of tasks and data channels, and a control layer which consists of task con-

trollers and task dependencies. The specification of each task contains source code

and its execution profiles, while the task controllers (one per task) specify the tasks’

activation patterns and deadlines. For the specification, DOL-Critical uses two dis-

tinct languages: C/C++ to program the task functionality and complex activation
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01 < p r o c e s s name=" s qu a r e " c r i t i c a l i t y =" 2 ">

02 < s up e r b l o c k >

03 < i n f o l e v e l =" 1 " minAccess=" 5 " maxAccess=" 10 "

04 minExecu t ion=" 7 " maxExecut ion=" 18 " / >

05 < i n f o l e v e l =" 2 " minAccess=" 5 " maxAccess=" 20 "

06 minExecu t ion=" 5 " maxExecut ion=" 25 " / >

07 < / s u p e r b l o c k >

08 < p o r t t yp e =" i n _ d a t a " name=" pIN " / >

09 < p o r t t yp e =" o u t _ d a t a " name="pOUT" / >

10 < p o r t t yp e =" i n _ e v e n t " name=" p2 ">

11 < even t name=" s t a r t " / >

12 < / p o r t >

13 < sou r c e l o c a t i o n =" s qu a r e . c " / >

14 < / p r o c e s s >

15

16 < c o n t r o l l e r name=" C t r l _ s q u a r e " d e a d l i n e =" 0 . 2 ">

17 < a c t i v a t i o n t ype =" p e r i o d i c ">

18 <pa r ame t e r name=" p e r i o d " v a l u e =" 0 . 2 " / >

19 < / a c t i v a t i o n >

20 < p o r t t yp e =" ou t _ e v e n t " name=" p1 ">

21 < even t name=" s t a r t " / >

22 < / p o r t >

23 < / c o n t r o l l e r >

24

25 < d a t a _ c h a n n e l name=" da t a IN " t ype =" mai lbox " s i z e =" 8 " l e n g t h =" 2 ">

26 < p o r t name="pdOUT" t ype =" o u t _ d a t a " / >

27 < / d a t a _ c h a n n e l >

28 < conn e c t i o n name=" da t a I nToSqua r e ">

29 < p o r t name="pdOUT" / >

30 < p o r t name=" pIN " / >

31 < / c o nn e c t i o n >

Listing 1: XML source code for

process square and data channel

dataIN

01 struct S q u a r e _ s t a t e {

02 int i ndex ;

03 int l e n g t h ;

04 } ;

05 struct DOLCData {

06 bool v a l i d ;

07 float va l u e ;

08 } ;

09

10 void S q u a r e _ i n i t ( S q u a r e _ s t a t e ∗ST ) {

11 ST−>index =0;

12 ST−>l e n g t h = 200 ;

13 }

14

15 void S q u a r e _ f i r e ( S q u a r e _ s t a t e ∗ST , i n t mode ) {

16 DOLCData x , y ;

17

18 if ( mode == DEGRADED) {

19 r e t u r n ;

20 }

21

22 if ( ST−>index < ST−> l e n g t h ) {

23 DOLC_read ( " pIN " , &x , s i z e o f ( f l o a t ) ) ;

24 if ( x . v a l i d ) {

25 y . v a l u e = x . v a l u e ∗ x . v a l u e ;

26 y . v a l i d = t r u e ;

27 DOLC_write ( "pOUT" , &y , s i z e o f ( f l o a t ) ) ;

28 }

29 }

30 ST−>index = ST−>index + 1 ;

31 }

Listing 2: C source code for process

square (square.c)

Figure 3: Square Application Example

patterns, and XML for the task properties, connections through data channels, de-

pendencies. The choice of these languages is based on practical reasons. C/C++ al-

lows to reuse existing legacy code. XML is easy to handle due to the large number

of available tools. Alternative choices are ADA, Simulink, and SDL for functional

code [44], and UML or AADL for task control and data interfaces.

Inter-task communication. In DOL-Critical, we support two concrete types

of the defined in Sec. 3.1 data channels: blackboards (buffers) and mailboxes

(queues). Note that unlike most dataflow languages, we use non-blocking com-

munication and do not force the tasks to write/read a fixed number of tokens at

each execution. For this reason, every data channel is equipped with a validity bit,

which indicates that the channel is not empty.

For simplicity, we present blackboard as a protected shared variable2 that can

2In reality, the blackboard is defined and implemented as a more complex object [17], for which
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be written via a ‘write’ port of a single task and read via a ‘read’ port by one or

more tasks. The reading operation does not change the state of the blackboard,

which preserves the last written value. If no value was previously written, the

reading operation returns with validity bit set to ‘false’.

A mailbox connects one writing task with one reading task. It is a bounded

queue allowing to store several data elements of the same type. The queue length

is determined at design time according to the needs of the given application. It

is typically desirable that a writing attempt to a full mailbox never occurs in the

nominal mode of execution. If this situation still occurs, the writing operation will

not block the writer task, but instead it will return an error code. Similarly, reading

from an empty mailbox does not cause blocking, but returns with validity bit set to

‘false’.

Example 5.1 A partial example of a DOL-Critical application specification can

be found in Listing 1 (XML) and Listing 2 (C). Note that in the context of DOL-

Critical, we use the terms task and process interchangeably. The application

(Figure 3) features one periodic, implicit-deadline task, square. Task square

reads floating-point values from a mailbox, dataIN, computes the square of them,

and writes the result to mailbox dataOUT, as indicated by the source code in

square.c. It is characterized by safety criticality level 2 (high in a dual-criticality

system) and its execution time (CPU cycles) and number of resource accesses

are given for both execution levels. Note that the parameter ranges for level

1 are included into the respective parameter ranges of level 2. The controller

Ctrl_square, is responsible to activate square periodically every 0.2 seconds.

Communication between the controller and the task is achieved via an event chan-

nel. Specifically, Ctrl_square sends a control event start to square to acti-

vate it. The mailbox dataIN, from which square reads, corresponds to a queue

with a capacity of 8 elements, each with a size of 2 bytes.

The C/C++ code that defines the functionality of the tasks is written in a DOL-

Critical specific dialect. The data channels, control events (for communication

between controllers and tasks), and ports of data channels and tasks, which are

defined in XML, are re-used in the C/C++ code in a way that establishes a unique

connection between the XML and the C/C++ specification (see e.g., port ”pIN” in

Listings 1,2). Each task has a state data structure, an initialisation subroutine, and

a subroutine defining one execution of a job. In the DOL-Critical application pro-

gramming interface (API), these are denoted <Task>_state, <Task>_init(),

and <Task>_fire(), respectively. Furthermore, the API supports two main func-

tions for the communication between tasks: DOLC_read() and DOLC_write()

(see Figure 3 for an example). These functions enable reading/writing from/to

a data channel and have different semantics depending on the type of the target

data channel. The complete semantics of the DOL-Critical programming interface

are omitted here for brevity. However, a detailed presentation of the API as well

the given simplified definition provides a reasonable abstraction.
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as XML templates for the specification of mixed-criticality applications in DOL-

Critical can be downloaded from [17].

5.2 Specification of a Target Architecture and a TTS Schedule

For the specification of a resource-sharing multicore that complies with the model

of Sec. 3.2, the computation and communication components, along with their at-

tributes and connections, are described in XML format. Specifically, one can model

processing cores with attributes such as their frequency, and shared resources with

their arbitration policy and maximum access latency. The abstraction level defines

the accuracy of the timing analysis, which is performed during design space explo-

ration by the MCMSO tool (Sec. 4.2).

After the scheduling optimization, theMCMSO tool exports the optimized TTS

schedule (see Figure 2 for reference) in XML format. This specification includes

(i) the mapping of tasks to cores, (ii) the dimensioning of the TTS scheduling cycle

(period, number of frames, frame lengths), (iii) the values barriers(f, ℓ)k for all

sub-frames k of frame f ∈ F and for different execution scenarios ℓ ∈ {1 . . . L},
(iv) the execution order of the assigned tasks on each core and each TTS frame.

Customized XML schemata are used for describing the format of architecture

and mapping specifications. These specifications are used as inputs for timing

analysis during design space exploration as well as software synthesis after they

are compiled into the backbone language BIP, which is presented in the following.

6 Backbone Language BIP for Mixed-Criticality Systems

A backbone language defines the concurrency and timing semantics of all system

software components. After compilation from system specification into a back-

bone language, one obtains an executable model that can be simulated for func-

tional validation. This model is also used as reference for system analysis and

code generation. In our design flow the backbone language is BIP.

Under ‘BIP’ we refer to the so-called ‘RT-BIP’ dialect [2], which is designed

to express networks of connected timed automata components (Sec. 6.1). In the

present work, we extend BIP from timed to task automata, by allowing self-timed

automata transitions. This extension allows expressing control decisions based on

runtime monitoring of task response times in timed automata. This feature is im-

portant for runtime resource management mechanisms, such as those employed for

mixed criticality. For example, recall that the TTS scheduling policy makes online

decisions based on the exhibited sub-frame lengths at runtime. A particular feature

of BIP is the ability to specify a network of components, so that multiple tasks

can be executed in different components concurrently. This makes it particularly

suitable for multi-core platforms. Our extensions to the original RT-BIP dialect are

presented in Sec. 6.2.
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Figure 4: BIP model example

6.1 Introduction to BIP

To familiarise the readers with BIP notation, Fig. 4 shows a BIP example, repre-

senting two tasks, A and B. These can be scheduled on one of the two available

threads running on two different cores. The model consists of four components,

namely, ‘PeriodicA’, ‘DelayableB’, ‘Thread1’ and ‘Thread2’. All the components

are defined by an automaton and a set of ports (shown in white rectangles), used

for connecting to other components via connectors (shown as green lines that join

the bullets).

A BIP component has multiple locations, denoted in Fig. 4 as ‘S0’, ‘S1’. The

execution run of a component consists of going from location to location by taking

a transition, denoted by an arc. For example ‘(Skip)’ is a transition from location

‘S1’ to location ‘S0’ in component ‘DelayableB’. Each component has an initial

transition, which brings it to initial location at system start. Initial transition is

shown as an arc without origin pointing to the initial location, such as location

‘S0’ in ‘DelayableB’. A transition may have an enabling condition and may trig-

ger some action. In our figures, we show the conditions in blue color and square

brackets, e.g., component ‘DelayableB’ has condition ‘[DOUT 6= 0]’ for transition
‘StartB’. The actions are shown in red color.

The transition labels such as ‘StartB’ signify a port of the component, in which

case the transition participates in interactions through this port, which means that

it is synchronized with transitions in other components whose ports are connected,

e.g., ‘StartB’ may interact with ‘Start’ in ‘Thread1’ or ‘Thread2’. Note that a port

may participate in one interaction at a time. In our example, each port is linked to

two connectors, so if both of them have an enabled interaction, a non-deterministic

choice has to be made between them. There are also internal transitions, not as-

sociated to ports, executed by a component independently. We put their labels in

parentheses, e.g., ‘(Skip)’ and ‘(Poll)’.

In BIP, every component is seen as an object in an object-oriented program-

ming sense. Every component encapsulates some data and some subroutines to
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manipulate the data. The actions of transitions can call subroutines written in an

imperative language (C/C++). In the figures, the actions are depicted as blocks of

pseudo-code in red color, e.g., in component ‘DelayableB’, transition ‘(Poll)’ ex-

ecutes action ‘DOUT := DATA_IO(B)’, where a subroutine is called and its return

value is assigned to variable ‘DOUT’. The actions have access only to the local vari-

ables of the component itself, but the components may exchange data from ‘OUT’

to ‘IN’ variables at interactions via ports. For example, port ‘Start(DIN)’ receives
the new value of DIN from the DOUT of either ‘StartA’ or ‘StartB’, depending on

the component with which it interacts. Note that the data exchange between ports

precedes the transitions, e.g., port ‘StartA(DOUT)’ sends the value of DOUT before it

is modified by the respective transition.
As for the data variables, in this work we consider four main types: integer,

Boolean, reference, and queue. A reference is a pointer to a user-type object that

is allocated at component initialisation. Our models for critical systems do not

dynamically allocate data after system initialisation. A queue is a circular buffer of

statically-known size. Unless explicitly done otherwise in the initial transition or

in natural-language annotations, in the presented figures we assume that the initial

transition implicitly sets the data variables to zero in the case of integers, ‘False’

for Booleans etc. Besides data variables, the components can have compile-time

parameters, such as period TA and minimal execution interval TB in Fig. 4.

The condition to execute a transition in fact consists of two parts: a data con-

dition and a timing constraint, indicated by the keyword ‘when’. The timing con-

straint defines an interval of time when a transition may be enabled. By default it

is ‘always’, i.e., the whole time axis.

To define the timing constraints a component uses private clock variables. The

clocks are real-valued variables that are initialized to zero and whose values are

continuously and synchronously increasing with the passage of physical time. In

our models, we use letters x, y and t for the clocks, e.g., the model in Fig. 4 uses

two clocks. The usage of clocks is restricted to two possible scenarios. Firstly, a

clock can be reset to zero inside a transition action (e.g., ‘reset x’ in ‘PeriodicA’).

Secondly, it can be used in the timing constraint of a transition, see, (e.g., ‘when

x = TA’ in ‘PeriodicA’).

In our models we assume that all transitions are marked as ‘urgent’ in BIP. The

presence of ‘urgency’ attribute means that the transition should start as soon as

(and no later than) this transition and all those that participate in the same interac-

tion (if any) get enabled. For example, consider timing constraint ‘when [y ≥ TB]’
in Fig. 4. Due to this constraint, if component ‘DelayableB’ is in location ‘S0’,

then it should execute transition ‘(Poll)’ immediately when it sees that clock y

has reached a value at least equal to TB . Note that the ‘urgency’ property is usu-

ally not directly available in timed automata languages, but it is very useful for

modeling compute-intensive real-time systems, where typically the system must

make progress immediately when several conditions become true. For example, in

the TTS scheduling policy the barrier synchronization should occur immediately

when all tasks scheduled in a given sub-frame finish their execution.
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6.2 BIP Extension for Modeling the Tasks

By default, BIP assumed that all data-processing actions cost zero time (at least,

conceptually). However, real-time tasks may occupy the processing cores at sig-

nificant utilisation levels, and to properly model them one should allow executing

their data-processing operations in non-zero time. Therefore, in the extended ver-

sion of BIP, we distinguish between the ‘starting’ and the ‘finishing’ times of a

transition, and we refer to the time duration in between as transition response time.

Further, we introduce the ‘self-timed’ attribute for the transitions and we assume

that all transitions are conceptually instantaneous (i.e., have zero response time)

unless they have this attribute. A transition marked as self-timed has a response

time equal to the time required to finish the corresponding action on a finite-speed

physical resource. This can take any time duration, not known at the moment when

the transition starts.

We use internal self-timed transitions to represent task processing steps and

self-timed interactions via ports to represent inter-task communication. In our fig-

ures, we denote self-timed transitions by thick arrows, e.g., ‘(Task)’ transitions

in Figure 4. Note that by putting a self-timed transition in between two instanta-

neous transitions, one can measure its response time by resetting a clock before and

checking the clock value after the self-timed transition. Measuring the response

time is necessary to program mixed-criticality scheduling policies.

Though the self-timed transitions represent a new concept added into BIP lan-

guage to model tasks, at the semantics level the behavior can be interpreted into the

default BIP language, i.e., timed automata with instantaneous transitions. Never-

theless, at the implementation level, the BIP framework needed certain extensions

to handle these transitions correctly. Figure 5 shows a self-timed transition τ of a

task automaton in the extended BIP and its interpretation in timed automata of the

‘default’ BIP. In the timed automaton model, transition τ is represented by two in-

stantaneous transitions, one modeling the start and other one the finish. In between

these transitions, there is a location ‘busyτ ’, which models the state where the sys-

tem is busy waiting until the platform executes transition τ . Note that the data

variables are explicitly set into ‘unknown’ state, because during the execution they

can potentially take arbitrary values. Note also that if the transition interacts with

other components via a port, then in the expanded automaton the port is inherited

by the start transition, which indicates that the interacting components synchronize

with each other at the start of their transitions.

An additional clock xτ measures the elapsed time since the start and the exe-

cution of transition τ . The execution finishes when the response time of transition

τ , denoted ϕ(τ), has been reached. Model-wise, it is important to observe that

the ‘Finishτ ’ transition and time ϕ(τ) are controlled not by the system itself, but

rather by an external party, i.e., the environment. Indeed, the software cannot di-

rectly influence the time it takes to execute a given, arbitrarily complex piece of the

task’s code. This is determined by the target platform, which actually acts here as

environment. For simulation or modeling purposes, one can make an abstraction
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Figure 6: Overall BIP Software Model Obtained by Compilation from

DOL-Critical

of the the environment by letting ϕ(τ) take non-deterministic values. However,

when implementing the BIP program on a real platform, the BIP system may not

‘decide’ by itself, non-deterministically, how long delay ϕ(τ) should be. Instead

it should let the environment ‘decide’ this. Therefore, it should start the execu-

tion of the transition on the platform and wait until the platform eventually signals

its completion. This observation makes the difference between executing the BIP

model on the left and on the right of Figure 5.

7 Compilation of DOL-Critical Specification into BIP

Models

In this section, we show how to translate the DOL-Critical application (Sec. 5.1)

and schedule (Sec. 5.2) specifications into components of the BIP language, and

how to connect them with each other. The resulting BIP model is used for func-

tional validation (by simulation) and code synthesis.

Figure 6 gives a sneak-preview of the final model structure after compilation.

The scheduler components are shown on the top and the application components

on the bottom. The components are joined by BIP connectors, through which they

can perform interactions with each other. The application components include the

components dedicated to DOL-Critical tasks, denoted τ1, τ2, . . . , their controllers,

and data channels, denoted ‘BlacBrd’ and ‘MailBx’, for blackboard and mailbox,

respectively. The scheduler components include one component for TTS Cycle,

a set of components for TTS Frames, and Periodic Servers, which present each

sporadic task to the scheduler by its periodic over-approximation. The scheduler
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components are connected to the tasks to coordinate their execution according to

the schedule.

Sec. 7.1 presents first the commonly required properties of all BIP components.

In Sec. 7.2 we present the scheduling components and in Sec. 7.3 the application

components, respectively.

7.1 Required Properties of the Compiled Models

Provided that the DOL-Critical application and scheduling are correctly specified,

the generated BIP models should by construction be: (i) free from local deadlock

and (ii) action-deterministic.

Local deadlock is a situation where for a component (in the given global state

of the system) no transitions are possible any more. Our BIP components are

constructed in such a way that a local deadlock indicates that either the hardware

resources cannot handle the activated real-time tasks on time or that the activation

does not conform to specification. For example, in Fig. 4, component ‘PeriodicA’

is ready to execute an interaction at port ‘StartA’ only when x = TA. If at this

time instant both ‘Thread’ components are busy executing the previously started

‘(Task)’ transitions, then component ‘PeriodicA’ will deadlock, as the clock x will

continue increasing with time, never returning to the level TA. To avoid a deadlock

in ‘PeriodicA’, at least one of the ‘Thread’ components should be ready for interac-

tion at periodic instances in time: TA, 2TA, 3TA, . . .. Certain components obtained

by compilation from DOL-Critical have upper-bounded timing constraints, to en-

code a violation of the required timing properties by a local deadlock. Namely, the

task controller components go into deadlock state if the tasks miss their deadlines

or violate the required sporadic activation constraints. Most of such components

are equipped with additional transitions that raise a runtime error in case of a local

deadlock (not shown in the figures for ease of presentation). Note that absence of

local deadlocks implies the absence of global system deadlocks.

Action determinism of a BIP model means that the model should never have to

make a non-deterministic choice between two mutually-exclusive transitions (ac-

tions). The actions that can be taken at each given moment of time fully depend on

the current state of the model. If a port is linked to two or more connectors, like in

Figure 4, then our model will enable only one of them at a time. The same holds

for two outgoing transitions from the same location.

In the next two sections we present the BIP components generated at compila-

tion and discuss how they satisfy these two properties.

7.2 Compiling the Scheduling Policy into BIP

First we show how the TTS scheduling policy (see Sec. 4.1) is implemented in BIP.

For this, we use the example in Figure 7. The figure shows a partial TTS schedule

for an application with tasks denoted ‘A’, ‘B’, ‘C’, etc. Note that currently our

compiler supports only two levels of criticality, though the models can be extended
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Figure 7: TTS Scheduling Frames in BIP

to more levels in a straightforward way. In dual-criticality systems, as in Figure 7,

every frame consists of two sub-frames.

Recall that ‘barriers(f, ℓ)k’ denotes the maximal permitted length of the k-th

sub-frame of frame f for the level-ℓ execution scenario. In our models, we use

notation ‘f [k]’ to denote the k-th sub-frame and ‘L〈f〉’ (i.e., L1, L2, . . . ) to denote
the frame duration Lf . We use ‘Bar〈f〉’ to denote barriers(f, 1)1. Depending

on whether the actual runtime length of the first sub-frame respects this barrier or

not, the tasks in the second sub-frame will run in normal or degraded mode (see

Eq. 1). This is the main mixed-criticality runtime mechanism we aim to reflect in

the generated BIP components.

To the right of the Gantt chart in Fig. 7, we show a (slightly simplified) general

structure of the ‘Frame〈f〉’ component, taking ‘Frame1’ as example. This com-

ponent controls the mode ‘MOUT’ of execution of the two sub-frames contained in

the frame. Initially the mode is set to ‘normal’. When frame f is about to start,

interaction ‘BeginF〈f〉’ (‘begin frame f ’) gets enabled. At this point we reset

clock t so that it measures the elapsed time in frame f . Then, we signal the be-

gin of sub-frame f [1] via interaction ‘BeginSF〈f〉[1]’. At the moment when the

sub-frame finishes, the interaction ‘EndSF〈f〉[1]’ gets enabled, and we check the

elapsed time t. We keep the normal mode if t does not exceed barrier ‘Bar〈f〉’,
otherwise the mode is set to degraded. After executing the second sub-frame, the

frame finishes, which is signalled via ‘EndF〈f〉’.
Examining this component, we conclude that it is characterized by action de-

terminism, as the transition branching has mutually exclusive timing constraints.

Also, it is free from local deadlock provided that the schedule is correct and the

tasks scheduled in the frame finish their execution by time ‘L〈f〉’. Otherwise the
component will be blocked forever at the origin of transition ‘EndF〈f〉’.

The two components given at the bottom of Figure 7 are Containers, which

are in charge of triggering jobs’ execution according to the given TTS schedule.

The container components are specific per sub-frame f [k] and core. They trig-

ger jobs according to the corresponding sequential schedule. In the figure, the left
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Figure 8: Composing Cycle, Frames and Containers

component implements the sequential schedule assigned to Frame 1, Sub-frame [1]
on Core 1, which executes first a job of task ‘C’ and then of task ‘D’. Therefore,

in this component we see a chain of transitions that start and finish these jobs.

By convention, we use the notation ‘Start_〈task_name〉’ for the job start interac-

tion, and a similar notation for the job finish interaction. For synchronization with

the frame component, the sequence of calls to the jobs is enwrapped in ‘BeginS-

F/EndSF’ interactions. At ‘BeginSF’, the frame component transmits the value of

variable ‘mode’, which is passed through to the task components via the ‘Start’

interactions.

In Figure 8 we show how frames and containers are connected to each other.

There is a ‘Cycle’ component, which just executes a cyclic ‘Begin/End’ sequence.

The ‘begin’ of a cycle triggers the execution of all frames in the cycle in the order

of their index f , whereby we join the ‘end’ of frame f to the ‘begin’ of frame

f+1. In the given example we assumed two frames per cycle. For every sub-frame

the ‘begin’ and ‘end’ connectors join together all the containers for the specific

sub-frame on Core 1, Core 2, . . . . Therefore, the employed ‘barrier’ mechanism

to synchronize the cores at frame and sub-frame boundaries is a multi-party BIP

interaction.

7.3 Compiling the Application into BIP

In [51] we give a detailed report on how we compile applications based on the

FPPNmodel of computation (Fixed-priority Process Network [46]) into BIP. FPPN

differs from the application model of DOL-Critical by employing a different mech-

anism for synchronisation among tasks. Also, it does not provide any support

for mixed criticality. Nevertheless, we developed the compilation frameworks

of DOL-Critical and FPPN together and ensured that several BIP models can be

reused in both models of computation. Therefore, for some models we omit the

details for brevity and address the readers to [51].
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7.3.1 Compiling the Tasks

The BIP model of a DOL-Critical task is automatically extracted from its source

code. For example, the code of the square task in Figure 3 (Example 5.1) is com-

piled into the BIP automaton shown in Figure 9(a). The local state variables of a

DOL-Critical task become internal data variables of the BIP component. The initial

transition implements the ‘〈task〉_init()’ subroutine. The rest of the task compo-

nent implements the source code of the task’s job, i.e., the ‘〈task〉_fire()’ subrou-
tine (DOL-Critical API). We enwrap the job execution between task start and task

finish interactions (‘Start/Finish_〈task〉’). They are used both to enable the job

executions upon their activation by the corresponding DOL-Critical controller and

to delay them until the scheduled time by TTS containers (e.g., Figure 7).

When translating the ‘〈task〉_fire()’ subroutine to a BIP model, the source code

is parsed, searching for primitives that are relevant for the interactions between the

task and the other components of the system. The relevant primitives are calls to

‘DOLC_read()’ and ‘DOLC_write()’ for reading/writing from/to the data channels.

We see that the behavior of the resulting automaton is consistent with the behav-

ior of the original source code, whereby the interaction primitives are replaced

by patterns with interactions via BIP ports. As shown in Figure 9(a), the pattern

for ‘DOLC_read()’ and ‘DOLC_write()’ consists of three transitions: (i) request

(‘Req’), (ii) data-copying, and (iii) acknowledgement (‘Ack’).

Let us consider reading data for example. First, we have an interaction

‘Read_〈port〉_Req’, which is an interaction requesting access to the channel via

the DOL-Critical port ‘port’. In the corresponding interaction, the task receives

from the data channel a reference ‘RIN’ to the memory area from where it can read

and a validity flag ‘VIN’. The next transition copies the data from the provided ref-

erence to the local variable to effectuate the data reading, and the third transition

acknowledges the success of the read operation. Writing is performed in a similar

way.

When compiled from a reasonable task source code (which, for safety-critical

systems, should be confirmed by WCET analysis and software verification tools),

the task components cannot introduce local deadlock or non-determistic behavior.

By construction, the transitions have no explicit timing constraints and branches

have mutually-exclusive data conditions. The transition actions are compiled from

pieces of source code that should eventually terminate. All local-state variables

should be always initialized to the same value and when a job execution starts

from the same local state and reads the same data from the input data channels, it

should produce the same data at the output channels.

7.3.2 Compiling the Data Channels

According to the task-to-channel connection topology specified in the XML files,

BIP connectors are inserted between ‘Read/Write_〈port〉_Req/Ack’ at the task and
the ‘Read/Write_Req/Ack’ ports at the data channel components.

Recall the DOL-Critical data channels introduced in Sec. 5.1. A basic notion
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(c) Mailbox

Figure 9: Compiling Tasks and Data Channels to BIP

of the supported data channels is the validity flag. The meaning of this flag is

availability of data, given the non-blocking nature of read and write operations in

DOL-Critical. A blackboard channel represents a shared variable and a mailbox is

a queue buffer.

Figure 9(b) shows the model for a blackboard. At the initial transition, we

(implicitly) allocate a user-type variable of given byte size. Read (Write) opera-

tions are separated into request and acknowledge transitions, coherently to the task

model of Figure 9(a). During the request the blackboard communicates to the task

the memory address, from (to) which it should read (write). In case of a read, the

validity flag is communicated as well.

The BIP model of a mailbox is shown in Fig. 9(c). It is similar to blackboard,

but instead of allocating a scalar user-type variable, the component initially cre-

ates a queue, i.e., a circular buffer, of user-type elements with a given capacity

(‘length’). Read (write) operations on a mailbox give the address of the tail (head)

of the queue.

The branching between ‘Read_Req’ and ‘Write_Req’ shows a possibility of

non-determinism in the case that the reader and writer tasks try to access the chan-

nel at the same time. However, in DOL-Critical we ensure functional determin-

ism by setting dependencies between tasks that share a channel. This obliges the

MCMSO optimizer to schedule their jobs in a sequential order in a sub-frame or in

separate sub-frames, which excludes the possibility of non-deterministic interleav-

ing of read and write interactions.
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Figure 10: Connection between a Periodic Task and its Containers

7.3.3 Compiling the Controllers

In DOL-Critical, exactly one task controller is instantiated per task, see Figure 3.

The two types of DOL-Critical task controllers – periodic and sporadic – are com-

piled into two corresponding types of BIP components. The details of these BIP

models can be found in [51]. These components are responsible to activate the task

components according to their periodic or sporadic patterns, and to check their

deadlines.

Note that the sporadic controllers in BIP are parametrized by a C subrou-

tine of DOL-Critical, called activation protocol, where the user should imple-

ment the polling of system I/O peripherals to evaluate the conditions to activate

the task. Next to the response time of task data processing (see Figure 5), non-

deterministic activation is another environment-dependent non-deterministic part

of overall model behavior. Except for these two circumstances, the compiled BIP

model is action-deterministic. We take this observation into account when dis-

cussing the system analysis in Sec. 8.3.

7.3.4 Connecting Application and Scheduler

Figure 10 illustrates the BIP connections between the TTS scheduler and applica-

tion components for the case of periodic tasks. In general, a task can be scheduled

in multiple containers. In the running example, we assume that task ‘C’ is sched-

uled in two containers, as in the model of Figure 7.

According to Figure 10, in the case of a periodic task, the containers are linked

to the ‘Start_〈task〉’and ‘Finish_〈task〉’ connectors of the task directly, together

with the periodic controller. For a sporadic task, such a connection can lead to local

deadlock, as sporadic tasks are not regularly activated, whereas the TTS scheduler

schedules them regularly. For this reason we insert a ‘periodic server’ component

in between the scheduler and the sporadic task, which acts as a ‘bridge’ between

them. For details on the periodic server, see [51].

Note that linking the task-component ports ‘Start’ and ‘Finish’ to multiple con-

nectors indicates a possibility for action non-determinism. However, this is im-

possible by construction, because the containers connected to a task are active in

different frames, and hence never at the same time.
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Figure 11: BIP Software Model and its Deployment on Multi-Core System

8 Deployment on Target Architecture

In this section, we show how to use the BIP system model for automated code

generation on a target platform, specifically the Kalray MPPA R©-256. We also de-

scribe the feedback loop from the execution to DOL-Critical, which enables refined

timing analysis and consideration of the runtime overheads for the optimized TTS

schedule.

8.1 From BIP to Executable Code

Figure 11 illustrates the deployment of the BIP system, using the same notations

as in the running example of Figure 6. We implemented our framework in a single

shared-memory cluster of the Kalray MPPA R©-256 many-core platform. A cluster

consists of 16 processing cores and 2MB of shared memory, and it can be pro-

grammed using the POSIX threads library, with at maximum one thread per core.

Core 0 runs the default thread and Cores 1-15 can execute up to 15 additional

threads created at runtime.

The BIP software model is translated into C++ and linked with the multi-

threaded BIP runtime environment (RTE), which supports parallel execution of

BIP components using POSIX threads, and whose original version was described

in [58]. At the heart of this library lies a low-level scheduler that coordinates the

interactions between the components, to which we refer as the BIP RTE engine.

Our centralized RTE engine architecture simplifies the maintenance of the com-

mon notion of global physical time. In this work, substantial extensions to the BIP

RTE were necessary for the support of real-time tasks, such as the support for self-

timed transitions, the mapping of multiple BIP components to the same thread, as

well as a restricted migration of components among different threads for enhanced

parallelism.

As shown in Figure 11, on top of the threads that run the tasks, the BIP RTE

uses the default thread on Core 0 for the execution of the RTE engine. Our com-

piler also maps all the ‘middleware’ components to this thread, i.e., all BIP com-

ponents except the ones for the tasks. These are the task controllers, the scheduler

components, and the data channels. The reason for separating the engine and the

middleware from the tasks is the need to execute urgent instantaneous interactions

for system control (e.g., task activation, checking the deadline miss, starting a task)
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as timely as possible. The tasks execute the self-timed transitions for internal com-

putations, and these transitions may take a significant time, up to the worst-case

response time of the tasks. The urgent instantaneous interactions cannot wait until

self-timed transitions finish, therefore the components that run these interactions

are separated into an independent thread. At the same time, multiple tasks can be

mapped to the same thread, according to the task-to-core mapping determined by

the MCMSO tool. By construction, the tasks mapped to the same core will never

try to concurrently obtain permission from the engine to execute on the core, as se-

quential execution of such tasks is orchestrated by the TTS scheduler components,

whereas their timeliness should be ensured by the offline optimizer tool, namely

the MCMSO.

An exception from the general rule of static mapping of components to threads

is the support of a restricted component migration. Currently, this facility can be

applied to the data-channel components, but not yet to tasks. We exploited migra-

tion to obtain improved system parallelism by letting the data-channel Read/Write

interactions be executed entirely inside the threads of the tasks that perform reading

and writing instead of executing them in the engine thread. This permits the tasks

to read and write data in parallel, not interfering with each other and the engine.

8.2 BIP RTE Engine and Interaction Scheduling

The role of the BIP RTE engine is to trigger BIP interactions while ensuring their

ordering and timing in accordance with the formal semantics of BIP. The compo-

nents, which can be mapped on different cores (threads), have to notify the engine

about the instantaneous interactions that they can potentially execute and wait until

they are triggered by the engine [58]. Semantically, the instantaneous interactions

should take zero time to execute, but in reality they require some non-zero time.

Moreover, often multiple interactions must be triggered at the same time instance,

e.g., the ‘activate’ interactions for all periodic tasks always occur simultaneously

at time zero and at the hyperperiod boundary. Since the interactions are triggered

sequentially, there is always a certain ‘response-time’ interval between the time

when the interactions should appear semantically and when they are triggered on

the physical platform. The interaction response time thus includes the execution

time of the given interaction and all semantically-simultaneous interactions trig-

gered before it. Formally, the interaction response time represents the difference

between the logical and physical values of the clock variables in the BIP model.

Therefore it is referred to as ‘clock drift’ [2]. It corresponds to system timing

inaccuracy and therefore should be bounded.

Note that the BIP engine is a simple pragmatic best-effort scheduler, which

primarily seeks to ensure semantically correct ordering and close-to-correct tim-

ing, i.e., with as small clock drift as possible. The responsibility to ensure overall

system-level timeliness is delegated to the BIP model itself. In the proposed design

approach, it is the scheduler components which are responsible for this, and in our

framework those are TTS scheduling components. The BIP engine does not dis-
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tinguish the scheduler components from the rest. It just responds to the interaction

notifications from all components according to their timing constraints.

In our BIP system models, we use instantaneous interactions for simple ac-

tions related to basic scheduling steps, e.g., activation, start and finish of a task,

beginning and end of a scheduling cycle or (sub-)frame, etc. For each instanta-

neous interaction, the engine determines the exact time instance when it should

execute and tries to schedule it as accurately as possible. However, as explained

earlier, the non-zero response times of such interactions, i.e., the clock drifts, lead

to interaction-schedule inaccuracies that should be provably bounded by some mar-

gins. In terms of real-time system design, the clock drift is perceived as runtime

overhead, which can be accounted for in the system schedulability analysis, by

adding the estimated margins to the task execution profiles. This estimation is

done via a feedback loop in our design flow, described in Section 8.3. The fact

that in our case the executable scheduler model is formal also makes it simpler to

express the problem of quantifying the runtime overhead margins in mathematical

form.

In contrast to the instantaneous transitions, the self-timed transitions are in-

tended not for carefully-timed ‘control’ steps, but for ‘data processing’ operations

inside the tasks. Since their exact timing is unimportant, these transitions bypass

the engine and get executed by different threads independently. The self-timed

transitions are executed in a ‘run-until-completion’, as soon as possible manner.

Unlike instantaneous actions, the execution time of those actions is considered to

be system workload and not runtime overhead. Note that since in our task models

all internal transitions and data-channel interactions are self-timed, there is no need

to involve the RTE engine in scheduling any other interactions for a task between

its ‘Start’ and ‘Finish’.

8.3 Feedback Loop to DOL-Critical

To account for runtime overheads during schedulability analysis, we establish a

feedback loop from the deployment to the timing analyzer of the MCMSO tool in

DOL-Critical. As mentioned previously, the overheads correspond to BIP interac-

tions from the task and scheduler components. In fact, the RTE engine represents

a single point of interference among the concurrently executed BIP components,

including the task components running on different cores. Namely, tasks contend

for access to the RTE at runtime, with their interactions being served in a first-

come first-serve, synchronous fashion. This type of interference is captured by

our model of shared resources in Sec. 3.2. Therefore, we can model the BIP in-

teractions as accesses to a shared resource, the RTE engine, in a similar way as

we model interfering accesses to a shared-memory bus. For this purpose, we in-

clude the minimum/maximum issued interactions from the BIP model to the RTE

engine in the tasks’ execution profiles, and bound the engine access time Tacc by

applying extensive measurements or static WCET analysis on the source code of

the engine. It is worth mentioning that there exists a connection between the two
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types of shared resources, i.e., the memory bus and the RTE engine, although in the

present work we focus on the latter. That is, at runtime each synchronization with

the RTE engine triggers a burst of accesses to the shared memory, as inter-thread

synchronization is in general accompanied by cache flushing on the MPPA R©.

Furthermore, there are RTE engine accesses that cannot be attributed to a par-

ticular task, a significant number of which originate from the runtime resource

management mechanisms. For instance, take the barrier-synchronisation interac-

tion at the end of each TTS sub-frame or the interactions at the beginning of each

scheduling cycle. Such overheads can be modeled as engine accesses issued from

additional virtual tasks. These overheads become known only when the complete

system executable is generated and linked with the RTE engine. We evaluate and

annotate these overheads at the feedback loop of our design flow. Afterwards, the

flow is re-iterated, first by evaluating whether the previously obtained scheduling

solution is still feasible. To this end, the timing analyzer of the MCMSO tool

repeats the analysis for the implemented TTS schedule, by considering the addi-

tional timing interference on the shared RTE engine. If the timing analysis shows

that the TTS schedule is infeasible, then new optimization, compilation, and code

generation rounds are required.

The DOL-Critical application back-annotation with task execution profiles, in-

cluding the number of RTE engine accesses, and virtual tasks is currently per-

formed manually in order to capture accurately all identified and measured run-

time overheads. To bound the RTE engine access counts, we exploit the prop-

erty of action-determinism of our BIP model, which implies that different engine

access sequences may result either from different task execution times or from

different sporadic-task activations. Therefore we (i) identify all alternative sce-

narios in terms of execution times and sporadic protocol and (ii) simulate them,

while counting the engine accesses. For this, we exploit the observations that these

scenarios are orthogonal, that the runtime variability is covered by the level-ℓ ex-

ecution scenarios of the TTS sub-frames, and that the sporadic task activation can

be characterized by maximal activation counts in different TTS frames. In future

work, we intend to formalize and automate this analytical reasoning and to estab-

lish a formal refinement relation between high-level customized timing analysis

in DOL-Critical and detailed BIP implementation models, to ensure provably safe

estimation of the worst-case runtime overheads. We also intend to study further

the connection between interference on multiple shared resources, e.g., the RTE

engine and the shared-memory bus.

9 Case-Study

To demonstrate the applicability of the complete DOL-BIP-Critical design flow, we

employ an industrial representative implementation of a flight management system

(FMS) [18]. We model the application (Sec. 9.1) and then, step-by-step, we show

how to find an optimal TTS schedule on a cluster of the MPPA R©-256 (Sec. 9.2),

how to synthesize code, execute it, and integrate the runtime overheads into the
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timing analysis (Sec. 9.3), by using the developed tool-chain.

9.1 Flight Management System Specification

The FMS is a safety-critical embedded avionics system, responsible for aircraft

localization, flightplan computation for the auto-pilot, detection of the nearest air-

port, etc. In this experiment we look into a sub-system of the FMS. Figure 12

shows the corresponding DOL-Critical application, which is responsible for calcu-

lating the best computed position (BCP) and predicting the performance (e.g., fuel

usage) of the airplane, based on periodically collected sensor data and sporadic

configuration commands from the pilot, e.g., for configuring the Global Position-

ing System (GPS).

Specifically, after being pre-processed by task ‘SensorInput’, the input data

are processed by task ‘HighFreqBCP’. Then, they arrive at task ‘LowFreqBCP’,

which post-processes the data at low frequency, and makes them available to other

sub-systems of the FMS. ‘LowFreqBCP’ also provides the results to a feedback

loop that takes into account the magnetic declination for computing the airplane

position.

All depicted tasks are periodic except for the sporadic task ‘GPSConfig’, which

can execute at most once in any 100-ms interval. All periodic tasks of the FMS are

specified with period 100 ms. However, some of them contain in their C code a

wrapper to skip the processing at all but every n-th job, to represent tasks with

original period n ·100ms. This is done for three reasons: (i) to reduce the effective

hyperperiod H, (ii) to ensure deterministic communication, and (iii) to comply

with the DOL-Critical specification requirement for equal period among tasks with

dependencies. Note that keeping the original H (in the FMS case, equal to 40

seconds) would result in generating hundreds of frame and container components

for the TTS scheduler in BIP, which would lead to infeasible memory requirements

for the implementation on a single MPPA R©-256 cluster.

The given task structure originally allowed only limited parallelism due to

the task-dependency branching from ‘LowFreqBCP’ to ‘MagnDeclin’ and ‘Perfor-

mance’. To introduce pipelining parallelism, we inserted two new tasks, denoted

as Z1 and Z2. These copy input data to the output, thus ensuring double-buffering,

which is required for pipelining. Because each inserted Zk task leads to an ad-

ditional data-propagation delay of one period, this delay is subtracted from the

deadlines of the tasks that follow in the task chain, which, therefore, should be
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Task Criticality Level
Period Level-1 Level-2 RTE Access

[ms] WCET [ms] WCET [ms] Count

Filter 1 50 32 2 3

SensorInput 2 100 1 26 3

GPSConfig 2 100 1 21 4

HighFreqBCP 2 100 1 11 3

LowFreqBCP 2 100 1 11 3

MagnDeclin 2 100 1 11 3

Performance 2 100 1 11 3

Z1 2 100 1 26 3

Z2 2 100 1 26 3

Cycle_Begin 2 100 0 0 10

Frame_Begin 2 50 0 0 4

Subframe_Bar 1 50 0 0 2

Table 1: FMS task execution profiles: virtual tasks ’Cycle_Begin’,

’Frame_Begin’, ’Subframe_Bar’ are considered only in the 2nd iteration.

sufficiently large.

All tasks of the FMS sub-system are used to calculate critical information, i.e.,

the current position of the airplane. Therefore, they are certified at safety level

DAL-B according to the DO-178B standard [16]. We map this safety level to

criticality level 2 (‘high’) in our application model (see Sec. 3.1). The execution

profiles of the tasks are shown in Table 1. The tasks are protected from exceptional

execution times overruns (due to potential faults and fault correction) by defining

a significantly more pessimistic execution profile at level 2 than at level 1. Not

having WCET tools for the MPPA R©-256 platform at our disposal, we derive level-

1 worst-case execution times based on extensive measurements. For the level-2

estimates, we augment the level-1 bounds by a margin of 10 up to 25 ms, which

also makes them at least 10x larger. We introduce a possibility to simulate fault

injection, by programming an optional prolongation of the task execution by up to

the level-2 execution time through an additional dummy loop in the C code. The

minimum execution time bounds are not presented in Table 1, as in this test case

we assume all minimal bounds equal to zero.

Table 1 includes also the bounds on RTE engine accesses for each task. We

do not distinguish between level-1 and level-2 in this case, as they turned out to be

the same. Recall from Sec. 8.3 that RTE accesses correspond to BIP interactions,

and their bounds are obtained by manual analysis of the interactions from the re-

spective task automata in the BIP model. Before the optimized scheduling solution

is generated, one can analyse only the components for application tasks and their

controllers. For the periodic tasks, we observe that their execution causes always

exactly three interactions: Start, Finish and deadline check (the latter is done in

fact in the controller). Sporadic tasks cause one extra interaction, which is related

to the activation protocol. Note that when counting BIP interactions, we neglect

self-timed interactions, as they do not lead to RTE engine accesses.

Table 1 includes also three virtual tasks, whose parameters become available

only at the second iteration of the design flow, after the scheduler components get

synthesized. Note that the virtual tasks account not only for the TTS components

35



Core 0

GPSCnf

SensorIn

LoFrBCP

50 ms0

HiFrBCP

filter

Perform

MagnDec

filter

100 ms

time

Core 1

Core 2

Core 3

Z1

Z2

Frame f1 Frame f2

Sub-frame 1 Sub-frame 2 Sub-frame 1 Sub-frame 2

Figure 13: Optimized Static TTS Schedule for the FMS sub-system

themselves, such as cycle, frames, and containers, but also for other components

that cause BIP interactions at the boundaries of the cycle, frame, and sub-frame,

respectively. For example, at the beginning of each cycle all eight periodic tasks

get activated by task controllers, which explains the high access count of the virtual

task ‘Cycle_Begin’.

Through extensive measurements on the MPPA R©-256 platform (again, due to

non-availability of suitable WCET tools), we derived a (pessimistic) upper bound

on the BIP RTE-engine delay per interaction, which amounts to Tacc = 0.42 ms.

We believe that this bound captures the cost not only of accessing the RTE engine,

but also of the subsequent accesses to the shared cluster memory, as the measure-

ments included also the impact of data cache flushing at the inter-core synchro-

nization points, where the tasks start and finish their execution. However, for the

design of a real-world safety-critical system, such an assumption would need to be

further investigated and formally proven, e.g., through static analysis.

Finally, since the considered sub-system of FMS includes only tasks of critical-

ity level DAL-B (level 2), to obtain a dual-critical application we added an artificial

periodic task called ‘Filter’, with period 50 ms. This models some digital signal

processing functionality, considered as a less critical DAL-C (level 1) task. Since

‘Filter’ is low-criticality, we model two execution modes: normal and degraded.

Specifically, ‘Filter’ executes a loop resembling a digital filter, the number of loop

iterations being significantly lower in degraded mode, to represent the possibility

of providing a reduced level of quality for a smaller number of digital filter coeffi-

cients.

9.2 Scheduling and Mapping Optimization

For the FMS sub-system, the maximal degree of parallelism is four (three pipeline

stages and one branching). Therefore, we choose to allocate a subset of five

MPPA R©-256 cores: four for task execution and one for the BIP RTE engine. For

the mapping and scheduling optimization, we provide the DOL-Critical specifica-

tions of the FMS sub-system and the 5-core subset of the MPPA R©-256 cluster to

the MCMSO optimizer, which performs design space exploration to optimize the

mapping of tasks to cores and the scheduling of the tasks on each core based on the
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1st Iteration 2nd Iteration Empirical

Frame f1, Sub-frame 1 (DAL-B)
barriers(f1, 1)1 7.46 13.34 8

barriers(f1, 2)1 29.78 35.66 27

Frame f1, Sub-frame 2 (DAL-C)
barriers(f1, 1)2 33.26 34.1 34

barriers(f1, 2)2 3.26 4.1 4

Frame f2, Sub-frame 1 (DAL-B)
barriers(f2, 1)1 6.04 7.72 6

barriers(f2, 2)1 31.04 32.72 28

Frame f2, Sub-frame 2 (DAL-C)
barriers(f2, 1)2 33.26 34.1 34

barriers(f2, 2)2 3.26 4.1 4

Table 2: Estimated function barriers before vs. after feedback look vs. empirical

results

TTS scheduling policy (Sec. 4.1). The optimization goal (Sec. 4.2) is to maximize

the slack interval at the end of the frames, while respecting the task dependencies

and accounting for the interference of concurrent task accesses to the RTE engine

as a shared resource. In this case, the TTS scheduling cycle has a period of 100 ms

(equal to the hyper-period of the tasks) and it is divided into two frames, each with

a fixed length of 50 ms. MCMSO produced the mapping and scheduling solution

which is illustrated in Figure 13 after 342 ms of exploration. It converged to this

solution after having checked 20,548 alternatives. Note that the workload distri-

bution among the cores is fairly balanced, which is due to the cost function that is

used to guide the optimization procedure (Eq. 3, Sec. 4.2).

The worst-case sub-frame lengths for the level-1 and level-2 execution sce-

narios, as computed by the timing analyzer of the MCMSO tool, are presented in

Table 2 (Column ‘1st Iteration’). The analyzer implements the approach of [24]

for taking into account the interference on the shared resource. Based on the ob-

tained subframe lengths and the condition of Eq. 2, it follows that the TTS schedule

of Figure 13 is feasible. Namely, the last sub-frames finish before the end of the

containing frames under all execution scenarios, which implies that all tasks re-

ceive enough resources to finish before their deadlines according to the respective

execution profiles.

9.3 FMS Deployment and Feedback Loop

The optimized TTS schedule for the FMS sub-system, along with the application

specification, are compiled into BIP automata, as described in Sec. 7. Functional

correctness is validated through simulation, and code is automatically synthesized

for the deployment on the MPPA R©-256 platform (subset of 5 cores within a clus-

ter). Figure 15 presents Gantt charts of the FMS execution traces on the MPPA R©-

256 for three alternative scenarios. Each chart depicts six consecutive TTS schedul-

ing cycles.

‘Level-1’ and ‘Level-2’ scenarios represent corner-cases for timing analysis,

where all tasks execute without skipping (which happens on the hyper-period

boundaries) and according to their maximal profile at the given level. In this case,

the actual sub-frame lengths can potentially approach the worst-case barriers val-
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Figure 14: Worst-case finish time [ms] of last sub-frame in each TTS frame as

computed at ‘Iteration 1’, ‘Iteration 2’, and empirically

ues at the given level. The ‘ordinary’ scenario represents a possible execution of

the system, where periodic tasks skip some periods due to pipelining and original

periods, and the sporadic task is activated by some arbitrarily chosen (encoded in

DOL-Critical) protocol. In this scenario, we simulated some fault injections in

tasks ‘Z1’, ‘Z2’, ‘HighFreqBCP’, and ‘SensorIn’ in the fifth scheduling cycle (be-

tween 400 and 500 ms). Note that the tasks take considerably longer to execute in

this cycle, with their execution time being close to their level-2 profile in Table 1.

This triggers a level-2 execution scenario, which results in providing degraded ser-

vice to the lower-criticality ‘Filter’ task in both frames of this cycle. In degraded

mode, ‘Filter’ runs for approximately 2 ms instead of the usual 32 ms.

The empirical worst-case sub-frame lengths of the TTS schedule, as measured

over long execution intervals, are depicted in the last column of Table 2. Note

that they actually surpass the respective analytically-derived bounds obtained at

the first iteration. This is because several BIP interactions, resp. accesses to the

BIP RTE engine, which take place at the beginning of each TTS frame, upon bar-

rier synchronisation, and at hyper-period boundaries, have not been considered in

timing analysis. To capture these overheads, we model the additional virtual tasks

‘Frame_Begin’, ‘Subframe_Bar’, and ‘Cycle_Begin’ with the worst-case RTE ac-

cess bounds of Table 1. After back-annotating the DOL-Critical application and

schedule specifications, the timing analyzer re-evaluates function barriers, as de-

picted in column ‘2nd Iteration’ of Table 2. As expected, the new analytic worst-

case sub-frame lengths bound safely the empirical values. Also, according to these

bounds, the TTS schedule remains feasible also after accounting for the runtime

overheads, therefore the design process has terminated successfully.

Figure 14 illustrates the worst-case finish time of the last sub-frame in each

TTS frame for level-1 and level-2 execution scenarios, as derived by the MCMSO

analyzer before and after the feedback loop, as well as the empirical worst-case

bound. The last bar is fixed to 50 ms to indicate the end of the respective frame.

Note that the empirical worst-case scenario is always bounded by the analytic re-
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sults of the second MCMSO iteration, unlike the respective results of the first it-

eration. This clearly confirms the necessity for the feedback loop in our design

flow. The analytic worst-case finish times increase up to 20.3% (frame 1, level-2)

after the feedback, indicating the non-negligible cost of runtime overheads and the

absolute need to consider its effect on schedulability.

In summary, the deployment of the FMS sub-system on the MPPA R©-256

validates the applicability of our design flow for the implementation of mixed-

criticality systems on commercial multi-core architectures. Temporal isolation is

preserved, since tasks of different criticality never overlap and lower-criticality

tasks do not interfere with the execution of higher-criticality tasks. Incremental

design is enabled, since there is a bounded slack interval at the end of each frame

(see the difference between analytic bounds and frame length in Figure 14 and idle

intervals in the Gantt charts). This slack can be used to host new lower-criticality

tasks if they are added later to the system. Task dependencies are respected, while

task execution and communication are performed deterministically, as dictated by

the BIP models. Additionally, the MCMSO was able to find a feasible (optimized

for incremental design) TTS schedule and bound safely the tasks’ worst-case re-

sponse times even in the presence of non-negligible runtime overheads. Based on

this first evidence, we are convinced that the DOL-BIP-Critical design flow can be

a viable solution for the rigorous design of mixed-criticality systems, with potential

to be applied to complex industrial-scale settings.

10 Conclusion

In this paper, we presented a complete design flow for the efficient and correct-

by-construction deployment of mixed-criticality applications on multicores. The

design flow enables the specification of complex reactive mixed-criticality appli-

cations and determines a mapping and schedule of the application on multicores,

such that temporal isolation among different criticality levels is preserved even

in the presence of shared resources, and incremental design is enabled. The run-

time mechanisms that ensure these mixed-criticality properties are naturally repre-

sented in timed-automata models and all software components are compiled from

a high-level language into a network of task automata in BIP language. Code is

generated automatically for execution on the target platform. Prototypes of all de-

veloped tools are available online and their use has been demonstrated through an

industrial-scale avionics application, which is deployed on the cutting-edge Kalray

MPPA R©-256 platform. As future work, we aim to evaluate our design flow with

additional realistic applications, and to improve the design of the BIP RTE in or-

der to reduce its runtime overhead and improve its applicability to high-integrity

systems. Moreover, we intend to investigate further the feedback loop of the de-

sign flow, by proving formal refinement relations between the implementation in

automata and high-level models in order to safely account for the runtime overhead

in schedulability analysis already at system level.
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MPPA R©-256

40



References

[1] ISO 26262, Road Vehicles - Functional Safety, 2011.

[2] T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time applications. In EM-

SOFT ’10, 2010.

[3] AbsInt. ait worst-case execution time analyzers, 2015.

[4] R. Alur and D. L. Dill. Automata For Modeling Real-Time Systems. In M. Paterson, editor, Proc. of the

17th International Colloquium on Automata, Languages and Programming (ICALP’90), volume 443 of

LNCS, pages 322–335. Springer, 1990.

[5] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times — a tool for modelling and im-

plementation of embedded systems. In Proc. Tools and Algorithms for the Construction and Analysis of

Systems, pages 460–464. Springer, 2002.

[6] J. Anderson, S. Baruah, and B. Brandenburg. Multicore operating-system support for mixed criticality. In

Workshop on Mixed Criticality: Roadmap to Evolving UAV Certification, 2009.

[7] ARINC. ARINC 653-1 avionics application software standard interface. Technical report.

[8] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy, J. Stanfill, D. Stuart, and R. Urzi. White

paper: A research agenda for mixed-criticality systems. April 2009.

[9] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality scheduling on multiprocessors. Real-

Time Systems, 50:142–177, 2014.

[10] P. Bourgos, A. Basu, M. Bozga, S. Bensalem, J. Sifakis, and K. Huang. Rigorous system level modeling

and analysis of mixed HW/SW systems. In Proc. Int. Conf. Formal Methods and Models for Codesign,

MEMOCODE 2011, pages 11–20, 2011.

[11] A. Burns and S. Baruah. Towards a more practical model for mixed criticality systems. Workshop on Mixed

Criticality, pages 1–6, 2013.

[12] A. Burns and R. Davis. Mixed criticality systems: A review. 2015.

[13] A. Burns, T. Fleming, and S. Baruah. Cyclic executives, multi-core platforms and mixed criticality appli-

cations. In Euromicro Conference on Real-Time Systems (ECRTS), pages 3–12, 2015.

[14] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson. Litmusrt : A testbed for empirically

comparing real-time multiprocessor schedulers. In RTSS, pages 111–126, 2006.

[15] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager. Time-critical computing on a single-chip

massively parallel processor. In DATE’14. EDAA, 2014.

[16] DO-178C. RTCA/DO-178C, Software Considerations in Airborne Systems and Equipment Certification,

2012.

[17] DOL-Critical. Distributed operation layer for mixed-criticality applications. http://www.tik.ee.

ethz.ch/~certainty/dolc.html, 2014.

[18] G. Durrieu, M. Faugère, S. Girbal, D. G. Pérez, C. Pagetti, and W. Puffitsch. Predictable flight management

system implementation on a multicore processor. In ERTSS’14, 2014.

[19] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic tasks on one processor. In RTSS’13,

2013.

[20] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-criticality sporadic tasks. In ECRTS’12,

2012.

[21] E. Fersman, P. Krcál, P. Pettersson, and W. Y. 0001. Task automata: Schedulability, decidability and

undecidability. Inf. Comput., 205(8):1149–1172, 2007.

[22] J. Flodin, K. Lampka, and W. Yi. Dynamic budgeting for settling dram contention of co-running hard and

soft real-time tasks. In Industrial Embedded Systems (SIES), 2014 9th IEEE International Symposium on,

pages 151–159, June 2014.

[23] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele. Timed model checking with abstractions:

towards worst-case response time analysis in resource-sharing manycore systems. In EMSOFT’12, 2012.

[24] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling of mixed-criticality applications on

resource-sharing multicore systems. In EMSOFT’13, 2013.

[25] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. de Dinechin. Mixed-criticality scheduling on

cluster-based manycores with shared communication and storage resources. Real-Time Systems, May 2015.

41



[26] S. Goossens, B. Akesson, and K. Goossens. Conservative open-page policy for mixed time-criticality

memory controllers. In DATE’13, 2013.

[27] A. Hansson, K. Goossens, M. Bekooij, and J. Huisken. Compsoc: A template for composable and pre-

dictable multi-processor system on chips. ACM Transactions on Design Automation of Electronic Systems

(TODAES), 14(1):2, 2009.

[28] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling dram memory accesses for multi-core

mixed-time critical systems. In RTAS, pages 307–316, 2015.

[29] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson. Rtos support for multicore mixed-

criticality systems. In RTAS, pages 197–208, 2012.

[30] H.-M. Huang, C. Gill, and C. Lu. Implementation and evaluation of mixed-criticality scheduling approaches

for sporadic tasks. ACM Trans. Embedded Computing Systems, 13(4s):126:1–126:25, July 2014.

[31] K. Huang, W. Haid, I. Bacivarov, M. Keller, and L. Thiele. Embedding formal performance analysis into the

design cycle of mpsocs for real-time streaming applications. ACM Transactions on Embedded Computing

Systems (TECS), 11(1):8, 2012.

[32] P. Huang, G. Giannopoulou, R. Ahmed, D. B. Bartolini, and L. Thiele. An isolation scheduling model for

multicores. In RTSS, San Antonio, TX, USA, Dec 2015.

[33] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service adaptions for mixed-criticality systems.

In ASP-DAC’14, 2014.

[34] G. Kahn. The semantics of a simple language for parallel programming. In Proc. IFIP Congress on

Information Processing, volume 74, pages 471–475, 1974.

[35] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An approach for quantitative analysis of

application-specific dataflow architectures. In Intl. Coference on Application-Specific Systems, Architec-

tures and Processors (ASAP), pages 338–349, 1997.

[36] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671–680,

1983.

[37] H. Li and S. Baruah. Load-based schedulability analysis of certifiable mixed-criticality systems. In Intern.

Conf. on Embedded Software, EMSOFT’10, 2010.

[38] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, F. Clermidy, and D. Dutoit. Platform

2012, a many-core computing accelerator for embedded socs: Performance evaluation of visual analytics

applications. In DAC’12, 2012.

[39] R. G. Michael and S. J. David. Computers and intractability: a guide to the theory of np-completeness. WH

Freeman & Co., San Francisco, 1979.

[40] M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A. Scoredos. Mixed-criticality real-

time scheduling for multicore systems. In Int. Conf. Computer and Information Technology, CIT’10, pages

1864–1871. IEEE, 2010.

[41] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero. Hardware support for wcet analysis of

hard real-time multicore systems. In ISCA, pages 57–68, 2009.

[42] R. Pathan. Schedulability analysis of mixed-criticality systems on multiprocessors. In ECRTS’12, 2012.

[43] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha. Coscheduling of cpu and i/o transactions in cots-based

embedded systems. In RTSS’08, 2008.

[44] M. Perrotin, E. Conquet, P. Dissaux, T. Tsiodras, and J. Hugues. The TASTE toolset: turning human

designed heterogeneous systems into computer built homogeneous software. In Proc. Embedded Real-time

Software and Systems Conference, 2010.

[45] P. Poplavko, P. Bourgos, D. Socci, S. Bensalem, and M. Bozga. Multicore code generation for time-critical

applications (tool), http://www-verimag.imag.fr/multicore-time-critical-code,470.html, 2015.

[46] P. Poplavko, D. Socci, P. Bourgos, S. Bensalem, and M. Bozga. Models for deterministic execution of

real-time multiprocessor applications. In DATE, 2015.

[47] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee. Pret dram controller: Bank privatization for pre-

dictability and temporal isolation. In Proceedings of the seventh IEEE/ACM/IFIP international conference

on Hardware/software codesign and system synthesis, pages 99–108, 2011.

[48] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-criticality scheduling strictness for task

sets scheduled with fp. In ECRTS, pages 155–165. IEEE, 2012.

42



[49] L. Sigrist, G. Giannopoulou, P. Huang, A. Gomez, and L. Thiele. Mixed-criticality runtime mechanisms

and evaluation on multicores. In RTAS’15, 2015.

[50] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Modeling mixed-critical systems in real-time bip. In

ReTiMiCs’2013, 2013.

[51] D. Socci, P. Poplavko, P. Bourgos, S. Bensalem, and M. Bozga. A timed-automata based middleware for

time-critical multicore applications. (Extended version of SEUS’15 workshop paper). Report TR-2015-12,

Verimag, 2015.

[52] S. Sriram and S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Synchronization, Second

Edition. Signal Processing and Communications. Taylor & Francis, 2009.

[53] H. Su and D. Zhu. An elastic mixed-criticality task model and its scheduling algorithm. In DATE, pages

147–152, 2013.

[54] D. Tamas-Selicean and P. Pop. Design optimization of mixed-criticality real-time applications on cost-

constrained partitioned architectures. In RTSS’11, 2011.

[55] L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping Applications to Tiled Multiprocessor Embedded

Systems. In ACSD’07, 2007.

[56] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time systems. In

ISCAS, 2000.

[57] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer. Idamc: A noc for mixed criticality systems. In RTCSA,

pages 149–156, 2013.

[58] A. Triki, J. Combaz, S. Bensalem, and J. Sifakis. Model-based implementation of parallel real-time systems.

In FASE’13. Springer, 2013.

[59] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assur-

ance. In RTSS’07, 2007.

[60] M. T. B. Waez, J. Dingel, and K. Rudie. A survey of timed automata for the development of real-time

systems. Computer Science Review, 9:1–26, 2013.

[61] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Memory hierarchies,

pipelines, and buses for future architectures in time-critical embedded systems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 28(7):966 –978, 2009.

[62] Z. P. Wu, Y. Krish, and R. Pellizzoni. Worst case analysis of dram latency in multi-requestor systems. In

RTSS, pages 372–383, Dec 2013.

[63] G. Yan, X. Zhu, R. Yan, and G. Li. Formal throughput and response time analysis of MARTE models. In

Proc. Formal Methods and Software Engineering, pages 430–445, 2014.

[64] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. Palloc: Dram bank-aware memory allocator for per-

formance isolation on multicore platforms. In Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2014 IEEE 20th, pages 155–166, 2014.

[65] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control in multiprocessor for

real-time systems with mixed criticality. In ECRTS’12, 2012.

43


